Föreläsning i Elektromagnetisk fältteori: Vektoranalys

Storlek: px
Starta visningen från sidan:

Download "Föreläsning i Elektromagnetisk fältteori: Vektoranalys"

Transkript

1 Föreläsnng Elektromagnetsk fältteor: Vektoranalys 1 Inlednng 2 Multplkaton vektorer Koordnatsystem 4 Rumsdervator 5 Teorem, dtteter 6 Övnngsuppgfter Eva Palmberg, Chalmers teknska högskola 1 1 Inlednng Elektromagnetska fält orsakas laddnngar vla och rörelse Skalära storheter: tex laddnng, ström Vektorstorheter (har både storlek och rktnng): E-fält, B-fält Storheterna varerar td och rum Fyskalska lagar gäller oberode koordnatsystem V skrver lagarna, Maxwells ekvatoner, koordnat-oberode form Problem vss geometr, tex cylndrsk: klast använda cylnderkoordnater V behöver addera, multplcera, dervera storheterna Vektoranalys behövs 2

2 2 Multplkaton vektorer 21 Skalärprodukt 2 vektorer och B B = B cos där = beloppet (längd) vektorn ; är vnkeln mellan och B Resultatet: skalär storhet Skalärprodukt - Vktga resultat: B = B B = 0, om "B x = (xx +yŷ+zẑ) x = x = kompont x-led = 2 = x 2 +y 2 +z 2, där är beloppet vektorn B Exempel: rbete utfört kraft F att flytta föremål sträckan dx dw = F dx cosα = F dx " F dx 22 Vektorprodukt, kryssprodukt, och B B B = B snθ #B där = beloppet vektorn ; är vnkeln mellan och B; är hetsvektor vnkelrät mot planet nnehållande och B Resultatet: vektor vnkelrät mot både och B Högerhanregeln ger : Rotera första vektorn,, kortaste väg mot B högra han fngrar Höger tumme ger Kryssprodukt - Vktga resultat: B = - B B=0 för θ=0, π dvs då och B är parallella Exempel Vrdande momt T = r F, där r är momtarm och F är kraft 4

3 Koordnatsystem, längd-, yt-, volym-elemt 1 Kartesska koordnater $ # $ " Längdelemt = x dx+ŷdy+ẑdz Ytelemt tecknas komponter längdelemt: =dx dy; =dx dz; =dy dz; # Vektorellt ytelemt =, där är normal tll ytan Volymelemt: dv=dx dy dz " 5 2 Cylndrska koordnater Längdelemt = r dr+φ rdφ+ẑdz Ytelemt: =dr rdφ; =dr dz; = rdφ dz Vektorellt ytelemt =, där är normal tll ytan Volymelemt: dv=dr rdφ dz Sfärska koordnater ) #$%"" " ( " ((((((( ' #$% " y Längdelemt = R dr+θ Rdθ+φ Rsnθdφ Ytelemt: =dr Rdθ; =dr Rsnθ dφ; = Rdθ Rsnθ dφ Vektorellt ytelemt =, där * är normal tll ytan Volymelemt: dv=dr Rdθ Rsnθ dφ 6

4 1 Rumsdervator: gradt, dvergs, rotaton som varerar rummet gradt, kallas för fält De kan varera td också Exempel: 4Storheter Rumsdervator: dvergs, temperaturfält T(x,y,z) skalärt fält; elektrskt fält E(x,y,z) Laplace operator Vrotaton, behöver rumsdervator de elektromagnetska fält Gradt är rumsdervata skalär storhet Dvergs och rotaton är rumsdervator vektor Här kommer 41 a/ Gradtdefntonerna de koordnatoberode Gradt, V, tll skalär funkton V: 11 Gradt, deloperator Vektor, som anger storlek och rktnng vss Teoruppgft 1a Gradt V tll skalär rumsdervatan funkton V: punkt hos maxmala V D vektor som anger storlek och rktnng vss punkt hos maxmala rumsdervatan V grad V = V = dv/dn Gradts kompont rktnng : l V = V/ l Fyskalsk dv = V tolknng: Nvålnjer på karta Tätare lnjer grad V =stor #Vgradt = dv dn (dn lt ) -/ brantast punkt: gradts rktnng #V = x $V $V $V + z + y $z $y $x Slut teor 1a gradt karte rektangulära sska koordnater koordnater b/ Del-operatorn Utgåde från V ovan kan v nföra vektoroperator, del-operatorn x / x + ŷ / y + ẑ / z 1 kartesska koordnater Gradt, dvergs, rotaton 7 1 Gradt, dvergs, rotaton 1 Gradt, dvergs, rotaton Deloperatorn = ( / x, / y, / z) rektangulära koordnater Deloperatorn = ( / x, / y, / z) rektangulära koordnater för, gradt olka koordnatsystem fnns Chg (nsdan bakre pärm), Deloperatorn =Uttryck ( / x / z),rektangulära koordnater Deloperatorn,= / y ( / x, / y / z) rektangulära koordnater Uttryck för gradt koordnatsystem Beta och olka Physcs Handbook fnns Chg (nsdan bakre pärm), Beta och för Physcs Handbook Uttryck för gradt olka koordnatsystem fnns Chg bakre pärm), Uttryck gradt olka koordnatsystem fnns (nsdan Chg (nsdan bakre pärm), Beta och Physcs Handbook Beta och Physcs Handbook 1 Gradt, dvergs, rotaton 12 Dvergs 42 Dvergs 12 Dvergs 1 Gradt, dvergs, rotaton 1212 Dvergs yta Dvergs Flöde vektor gom yta Flöde vektor gom S:S: S Flöde vektor gom yta S: S Teoruppg 1b Deloperatorn = ( / x, / y, / z) rektangulära koordnater Teoruppg 1b Flöde vektor gom yta S:Syta S: Flöde vektor gom S för gradt olka, dvergs hos vss punkt: Uttryck koordnatsystem fnns Chg (nsdan bakre pärm), Teoruppg 1bTeoruppg, hos dvergs hos punkt : Noflöde ut från 1b, dvergs och punkt : Noflöde vektorn ut från vektorn Beta Physcs Handbook volym runt punkt, dvderad volym, då volym går mot noll, volym dvergs hos punkt : Noflöde vektorn ut från runt punkt, dvderad volym, då volym går mot noll, dvergs hos punkt : Noflöde vektorn ut från Noflöde vektorn ut från volym, 12 Dvergs volym runt punkt, dvderad volym, då volym går mot noll volym runt punkt, dvderad då volym gårnoll mot noll dvderad volym, dåvolym, volym går mot Flöde vektor gom yta S: o o$ S Teoruppg 1b s $ # shos dv = dv = lm o$ =, dvergs punkt : Noflöde vektorn ut från # = lm o s $ #då # 0 volym runt# punkt, dvderad volym, volym går mot noll 0 dv = == lm #volym dv #=0 lm s volym volym volym # 0 Slut teor 1b o s$ dv = = lm # 0 Slut teor 1b volym # Slut teor 1b Slut teor 1b Slut teor 1b % x % y % z dvergs %y rektangulära % z % = % y + % z + % x koordnater y= %z + rektangulära koordnater % x + %y % %z +rektangulära kartesska koordnater % % % = x + %x koordnater x y z =rektangulära + + rektangulära koordnater %x = %y + %z + %x koordnater %y %x%z %y %z %x %y %z Exempel på : Fyskalsk tolknng: dv är mått på d nneslutna Om källan "= 0 Om har Fyskalsk tolknng: dv är källan mått på d nneslutna v "= 0 har v Fyskalsk tolknng: dv är mått på d nneslutna Om nneslutna "= 0 har v källan Fyskalsk tolknng: dv är källan mått på d Om "= 0 har v källa punkt källa punkt Fyskalsk tolknng: dv är mått på d nneslutna källan Om "= 0 har v källa punkt Ekvaton E = /' källa punkt E 0 källa punkt Fyskalsk tolknng: Ekvaton E = /' säger att (laddnngstäthet) är E 0 Ekvaton E =Ekvaton /' E E /' säger att (laddnngstäthet) för är(det elektrska fältet) Ekvaton E 0 = /' E =källa E 0Ekv E = ρ/ε0 säger att laddnngs0 säger att (laddnngstäthet) är Om dv = 0, så är källfrtt säger att (laddnngstäthet) är källa för (det elektrska fältet) E säger att (laddnngstäthet) är källa för (det elektrska fältet) E täthet ρ är källa för det elektrska källaelektrska för (det fältet) elektrska källa för (det E fältet) E fältet 1 Rotaton E Teoruppg 1c Om dv = 0, så är källfrtt, rotaton hos vss punkt, defneras så här: Om dv = 0, så är källfrtt Placera punkt ltet stelt ytelemt s randkurva och normalrktnng Om E dv så källfrtt = 0, ärmått lgt källfrtt ( =ρ0,) Om är dv punkt är så påhögerhanregeln källan punkt (skruvregeln), se fg Blda för alla tänkbara normalrktnngar " längs randkurvan Välj d maxmala kurvnted slutna kurvntegral 1 Rotaton 1 Fältlnjerna Rotaton dvergerar gral och tllhörande Blda Teoruppg 1c # 1 Rotaton, rotaton hos 1 vss punkt, defneras så här: Teoruppg 1c 1 Rotaton punkt, Om dv =0, källfrtt, solodal på gelska, rotaton hossåär vss defneras så här: Teoruppg 1c s Teoruppg 1c Placera rotaton punkt hos ltet stelt ytelemt s randkurva så ochhär: normalrktnng, vss punkt, defneras och ytelemtets storlek gå mot noll vss Placera punkt ltet ytelemthos slåt randkurva normalrktnng, stelt rotaton och punkt, defneras så här: lgt högerhanregeln (skruvregeln), se fg Blda för alla tänkbara normalrktnngar " stelt Placera punkt ltet ytelemt salla randkurva och normalrktnng lgt högerhanregeln (skruvregeln), se fg Blda för tänkbara normalrktnngar " punkt Placera ltet stelt ytelemt s randkurva och normalrktnng längs randkurvan Välj d maxmala kurvnted slutna kurvntegral ) 8 längs randkurvan lgt högerhanregeln (skruvregeln), se fg Blda för alla tänkbara normalrktnngar 1 maxmala Välj d kurvnted slutna kurvntegral ^ " rot = ( = lm [ n Blda o ]för gral och tllhörande Blda lgt högerhanregeln (skruvregeln), fg max alla tänkbara normalrktnngar $ "s#0se"s längs "randkurvan Välj"cd maxmala kurvnteslutna kurvntegral gral d och tllhörande Blda # d längs randkurvan Välj d maxmala kurvnteslutna kurvntegral "c # och gral Blda 1 tllhörande Slut teor 1c 1 gral och tllhörande Blda # 1 s s ^ ^ ^ x y z 1 # s % % % och låt ytelemtets storlek gå mot noll I rektangulära koordnater ( = %x och låt ytelemtets storlekgå mot noll %y %z s

5 4 Rotaton, rotaton hos vss punkt: Placera "punkt" ltet stelt ytelemt Δs randkurva, Δc och normalrktnng, lgt högerhanregeln Blda för alla tänkbara d slutna kurvntegral längs kurvan Δc Välj max kurvntegral tllhörande Blda (1/Δs) Låt Δs0 1 rot = ( = lm [^n o "s#0 "s $ ] max "c "c ) nˆ 9 Rotaton x^ y^ z^ % % % I rektangulära koordnater ( = %x %y %z x y z Exempel på : Fyskalsk tolknng: I vattvrvel har man rotaton v 0 vrvel, där v=vatthastghet v vattvrvel v punkt är mått på rotatonskällan punkt Lt träbt roterar vattnet vrveln Om =0 är vrvelfrtt (rotatonsfrtt); rrotatonal (conservatve) på gelska 10

6 44 Laplace operator 2 Operatorn 2 = = = dvergs gradt dvs 2 V = V 2 V = 2 V/ x V/ y V/ z 2 kartesska koordnater Gradt, dvergs, rotaton, deloperator, Laplace operator olka koordnatsystem, se: Insdan kursboks bakre pärm, Beta eller Physcs Handbook 11 5 Teorem och dtteter 51 Dvergsteoremet Samband mellan volymntegral dv och vektorn ntegrerad över d slutna ytan S tll volym V dv = 52 Stokes teorem S yta s volym v # ytvektor ut från volym Samband mellan ytntegral rot och lnjentegral ntegrerad runt omkrets C tll ytan S S ( ) = C Högerhanregeln ger samband mellan och Fngrarna -rktnng, tumms rktnng 12

7 5 Idtteter 1 Rotaton grad V är dtskt lka noll ( V) 0 Följd: Om E = 0, kan man sätta E=- V, där V är skalär pottal Se elektrostatk 2 Dvergs rot är dtskt lka noll ( ) 0 Följd: Om B = 0, kan man sätta B=, där är vektorpottal Se magnetostatk 1 54 Helmholtz teorem Om man känner och hela rummet, så känner man vektorn Se not på s 65 kursbok Maxwells ekvatoner ger dvergs och rotaton för elektrska och magnetska fält, E och B Maxwells ekvatoner dffertalform: elektrostatk # E = 0 magnetostatk kvasstatonärt vågor allmänt -"B/"t = - "B "t # D = ' f = ' f H = J + "D # f "t = J f + "D "t #B = 0 = 0 D = ɛe, B = µh, J f = σe (lnjära, sotropa materal) VIKTIGT Sätt ut vektorbetecknng på alla vektorer Sätt ut skalärprck ordtlgt skalärprodukter Sätt ut krysset vektorprodukter Del-operatorn (dervator) verkar på det som står efter 14

8 6 Övnngsuppgfter - vektoranalys 1 Beräkna lnjentegralerna c d, resp, där C är slut slnga längd L 2 Ett elektrskt fält E beror rad R sfärska koordnater som E1(R) = R ρr/ε0 0 R a och E2(R) = R ρa /ε0r 2 R a, där ρ,ε0 är konstanter Beräkna E resp område Ett magnetskt fält B beror rad r cylnderkoordnater som B1(r) = φ µ0r/2πa 2 r a och B2(r) = φ µ0/2πr r a, där µ0 och är konstanter Beräkna B de båda områda 4 Vektorn p = ẑp0, där p0 är konstant Beräkna skalärprodukt (p ) Blr det samma som ( p)? Skalärprodukt ngår uttryck för kraft F=(p )Eyttre Formelsamlng C 5 R12 betecknar vektor från punkt (x1,y1,z1) tll punkt (x2, y2, z2), se fg Beräkna 1(1/R12) resp 2(1/R12) (x1,y1,z1) R12 (x2,y2,z2) 15 6 Ett elektrskt fält sfärska koord E(R,θ,φ) = R Q/4πε0R 2 för R>0 Beräkna flödet, ytntegral # = $0 s E, där ytan S är sfär R=a rktad ut från sfär Svar tll uppgfterna a 1 d =L; =0 (Vektoraddton) 2 E = ρ/ε0 R<a; E =0 R>a En konstant volymladdnngstäthet ρ för R a B = ẑµ0/πa2 r<; B = 0 r>a En lång rak strömförande ledare rad a och strömm jämnt fördelad över ledars tvärsnttsyta 4 (p )=p0 / z; ( p) = 0; Deloperatorn ska verka på det som kommer efter operatorn F=(p )Eyttre betyder att Eyttre ska derveras Man kan nte byta ordnng skalärprodukt, när operatorer är nblandade ( p) betyder ju att p derveras 5 1(1/R12)= R12/R12 ; 2(1/R12)= - R12/R12 6 Ψ = Q lka stor som d nneslutna laddnng lgt Gauss lag Laddnngsfördelnng: Q punktladdnng R=0 16

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften

PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften PARTIKELDYNAMIK Def.: En partkel är ett föremål vars utsträcknng saknar betydelse för dess rörelse. (Ej rotaton!) (YF kap. 1.2) Def. : Dynamk = Studer av vad som orsakar rörelse. (YF kap. 4) Observaton:

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x Föreläsning 2 1 Matematiska grundbegrepp Fält kalärfält: Vektorfält: Till varje punkt i rummet tilldelas en skalär Exempel: Temperaturen i olika punkter i rummet, T r,t ( ) = T ( x, y, z,t) Till varje

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Vektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys II Anders Karlsson Institutionen för elektro- och informationsteknik 9 september 215 Översikt 1 Kurvor och ytor, linje- och yt-mått 2 Integraler, Kap. 1.3 Linjeintegraler Ytintegraler Volymsintegraler

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

TATA44 Lösningar 26/10/2012.

TATA44 Lösningar 26/10/2012. TATA44 Lösningar 6/1/1. 1. Lösning 1: Konen z x + y skär sfären x + y + (z 5 5 då 4z + (z 5 5 och enkla räkningar ger nu z z some ger z(z och vi ser att z eller z. Observera att punkter på sfären med z

Läs mer

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson)

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson) Föreläsning 7/9 Kroklinjiga koordinater räkning med vektoroperatorer Kroklinjiga koordinater Henrik Johanneson/Mats Persson) Allmänt behöver vi tre parametrar u, u 2, u 3 för att beskriva en godtycklig

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Partikeldynamik. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Dynamik är läran om rörelsers orsak. Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater. TATA Lösningar /8/.. Låt vara den del av x + y + z innanför cylindern x + y. Inför cylinderkoordinater. Parametrisera med ortsvektorn r(ρ, φ (ρ cos φ, ρ sin φ, ρ som man kan skriva som r(ρ, φ ρ ˆρ + ρ

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

VEKTORANALYS Kursprogram VT 2018

VEKTORANALYS Kursprogram VT 2018 VEKTORANALYS Kursprogram VT 2018 Allmänt om kursen Målsättningen med kursen är att lära ut ett antal grundläggande matematiska metoder, som under de fortsatta studierna kommer att tillämpas i flera olika

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

0. Introduktion, matematisk bakgrund

0. Introduktion, matematisk bakgrund 0. Introduktion, matematisk bakgrund Kai Nordlund vt. 2013. Dessa anteckningar baserar sig i mycket stor utsträckning på anteckningarna förberedda av FD Krister Henriksson till kursen ht. 2005. Vissa delar,

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.

Läs mer

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

21 Flödesintegraler och Gauss sats

21 Flödesintegraler och Gauss sats Nr 2, maj -5, Amelia 2 2 Flödesintegraler och Gauss sats 2. DivergensochGausssats 2.. Flöden genom slutna ytor I detta avsnitt beräknar vi flödesintgraler på slutna ytor. Låt oss tänka oss en vind, som

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open. Institutionen för matematik KTH Tentamensskrivning, 25 6 3, kl 8 3 5B9, Vektoranalys, för Open Uppgifterna 4 5 svarar mot varsitt moment i den kontinuerliga examinationen Av dessa uppgifter skall man bara

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2007

ETE115 Ellära och elektronik, tentamen oktober 2007 (0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 4, 2018 1. Fält och derivator Ett fält är en fysikalisk storhet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

1.1 Gradienten i kroklinjiga koordinatsystem

1.1 Gradienten i kroklinjiga koordinatsystem 1 Föreläsning 4 1.1 Gradienten i kroklinjiga koordinatsystem Sats 1 i sfäriska koordinater; i cylindriska koordinater. Bevis. I kartesiska koordinater har vi att Φ = r ˆr + 1 r θ ˆθ + 1 ˆϕ (1 r sin θ ϕ

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Cartesiska kooordinater r = xˆx + yŷ + zẑ är de vanligaste men inte nödvändigtvis. Val av koordinatsystem beror på det problem vi vill studera.

Cartesiska kooordinater r = xˆx + yŷ + zẑ är de vanligaste men inte nödvändigtvis. Val av koordinatsystem beror på det problem vi vill studera. yfte : 1 Fysikens matematiska metoder. Vecka 1 1. Vektoranalys. Definiera och analysera begrepp analysen för vektorfunktionen. 1.1 Varför vektorer : Rumskonceptet En punkt i ett normalt rum som lektionssalen

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

Föreläsning 13, SF1626 Flervariabelanalys

Föreläsning 13, SF1626 Flervariabelanalys Föreläsning 13, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 28 november 2017 KTH Rekommenderade uppgifter: 15.1: 3, 5, 17. 15.2: 3, 5, 7, 21. Vektorfält DEFINITION Ett skalärfält Φ på ett

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Figur 1: Postföretagets rektangulära låda, definitioner.

Figur 1: Postföretagets rektangulära låda, definitioner. ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 OMTENTAMEN I VEKTORANALY I46 och I40 Del, VT8 Onsdagen augusti 08:00-:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

1 Vektorer och tensorer

1 Vektorer och tensorer Föreläsning 1. 1 Vektorer och tensorer Vi kommer att använda två olika beteckningar för vektorer. Enligt det första systemet använder vi fet stil för en vektor i typsatt text och ett vektorstreck då vi

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar 17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

Lösningar till seminarieuppgifter

Lösningar till seminarieuppgifter Lösningar till seminarieuppgifter 2018-09-26 Uppgift 1 z ρ P z = 0 ρ Introducera ett koordinatsystem så att det jordade planet sammanfaller med planet z = 0, oc skivans centrum med punkten (0,0,). a) Problemet

Läs mer

Begrepp:: Kort om Kryssprodukt

Begrepp:: Kort om Kryssprodukt Begrepp:: Kort om Kryssprodukt Introduktion till kryssprodukten Namnet kryssprodukt kommer av att produktsymbolen skrivs som ett kryss. Kryssprodukten av två vektorer u och v skrivs då u v. input = vektorer

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF0) och F (ETE055) Tid och plats: 4 januari, 06, kl. 8.00.00, lokal: Sparta B. Kursansvarig lärare: Anders Karlsson, tel. 40 89. Tillåtna hjälpmedel:

Läs mer

Integranden blir. Flödet ges alltså av = 3

Integranden blir. Flödet ges alltså av = 3 Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att TH-Matematik Lösningsförslag till Tentamenskrivning 5-6-, kl. 8.-3. 5B7, matematik III för E och ME 6p) Del A, 3-poängsuppgifter x. xy y )dy dx x y y3 3 ) * x 3 x3 3, x3 -. dx 5 5 x4 6 4 y x y 5 4 dx.

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys Föreläsning 13 Institutionen för matematik KTH VT 2018 Administrativt 0 Anmäl er till tentan! Vektoranalys 1 Dagens program: Vektorfält Konservativa vektorfält Potentialfunktioner Bokens kapitel 15.1-15.2

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer