Begrepp:: Kort om Kryssprodukt
|
|
- Alexander Martinsson
- för 8 år sedan
- Visningar:
Transkript
1 Begrepp:: Kort om Kryssprodukt Introduktion till kryssprodukten Namnet kryssprodukt kommer av att produktsymbolen skrivs som ett kryss. Kryssprodukten av två vektorer u och v skrivs då u v. input = vektorer u v x kryssprodukt output = vektor u x v Figur 1: Kryssprodukten tar två vektorer och bildar en ny tredje vektor. Om vi beskriver kryssprodukten med en input-output modell så gäller situationen i ovanstående figur. Med denna bild så poängteras att u v är en vektor. Ibland kallar man kryssprodukten för en vektorprodukt för att poängtera just att man får en vektor 1 Definitionen av kryssprodukten Låt u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ). Kryssprodukten definieras med en determinant: i j k u v = det u 1 u 2 u 3 (1) v 1 v 2 v 3 Här är det nu bara att räkna med determinanten på vanligt sätt så att u v = i[u 2 v 3 u 3 v 2 ] j[u 1 v 3 u 3 v 1 ] + k[u 1 v 2 u 2 v 1 ] För det sista och avgörande steget så ersätter vi symbolerna i, j och k med deras vektordefinitioner: 2 och får då i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1) u v = ([u 2 v 3 u 3 v 2 ], [u 1 v 3 u 3 v 1 ], [u 1 v 2 u 2 v 1 ]) = (u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ) (2) Denna formel är inget man behöver lägga på minnet utan man ska utifrån (1) kunna beräkna den genom att använda sina kunskaper om determinantberäkning och standarbasvektorerna. Följande exempel vissar hur man typiskt går till väga. 1 till skillnad från skalärprodukten (Eng: dot product) som är en produkt av två vektorer men där resultatet är en skalär, dvs ett tal. 2 Vektorerna i, j och k är alltså standardbasvektorerna i R 3 1
2 Exempel 1. Beräkna kryssprodukten u v av vektorerna u = (1, 2, 3) och v = (2, 1, 1). Vi har från (1) att u v = det i 1 j 2 k 3 = = i[( 2) ( 1) 3 1] j[1 ( 1) 2 3] + k[1 1 2 ( 2)] = = i + 7j + 5k = (1, 0, 0) + 7(0, 1, 0) + 5(0, 0, 1) = ( 1, 7, 5) Notera hur vi använder symbolerna i, j och k hela vägen och först i sista steget byter vi ut dem mot dess vektormotsvarigheter. Övning 1. Använd vektorerna i föregående exempel och beräkna nu v u. Övning 2. Beräkna kryssprudukterna a b och b a, där a = ( 2, 1, 1) och b = (1, 3, 2). Övning 3. Vilka slutsatser skulle du vilja dra om kommutativiteten 3 för kryssprodukten? Vad beror egenskapen på? 3 Multiplikation av vanliga tal är kommutativ (ab=ba), matrismultiplikation är icke kommutativ AB BA 2
3 c Mikael Forsberg 1 juni 2009 Kryssproduktens geometriska egenskaper Observera att kryssprodukten endast definieras fo r vektorer i va rt tredimensionella rum. I detta tredimensionella rum sa har kryssprodukten flera geometriska tolkningar som go r produkten anva ndbar. Kryssprodukten a r vinkel ra t mot vektorerna Den fo rsta geometriska egenskapen a r att krysspruktvektorn u v a r vinkelra t mot ba de u och v. Detta visar vi enkelt genom att anva nda uttrycket (2): u (v u) = u1 (u2 v3 u3 v2 ) + u2 (u3 v1 u1 v3 ) + u3 (u1 v2 u2 v1 ) = = 0 v (v u) = v1 (u2 v3 u3 v2 ) + v2 (u3 v1 u1 v3 ) + v3 (u1 v2 u2 v1 ) = = 0 (3) O vning 4. Visa att kryssproduktsvektorn a r ortogonal mot de inga ende vektorerna da u = ( 1, 2, 1) och v = ( 2, 1, 1). Ho gerhandsregeln Vi sa g att kryssprodukten var vinkelra t mot vektorerna. Givet tva vektorer u och v sa finns det exakt tva vektorriktningar som a r vinkelra t mot ba da dessa vektorerna. Dessa tva vektorriktningar a r parallella och pekar i motsatta riktningar. Figur 2: Hur man kan ta reda pa kryssproduktsvektorns orientering Fo r att ta reda pa vilken av de ba da riktningarna som a r den ra tta sa kan man anva nda sig av den sa kallade ho gerhandsregeln. Denna inneba r att man placerar ho ger hands pekfinger i den fo rsta vektorns riktning (u), ho gerhands la ngfinger i den andra vektorns riktning (v). Da pekar kryssproduktvektorn i ho ger hands tummes riktning, se figur 2. Kryssprodukten och arean av ett parallellogram Vektorerna u och v spa nner upp ett parallellogram. Kryssproduktsvektorns la ngd anger detta parallellograms area: u v = u v sin ϕ = arean fo r parallellogrammet da r ϕ a r vinkeln mellan vektorerna u och v. 3 (4)
4 Följande bild ger idén till beviset för detta resultat: Arean för ett parallellogram är basen gånger höjden och för parallellogrammet i figur 3 så har vi att basen är b = v och höjden blir h = u sin ϕ. Arean får vi om multiplicerar basen med höjden. Resultatet blir precis som vi påstod i andra likheten i ekvation (4)! u h u ϕ h v b= v Figur 3: Arean för ett parallellogram är basen b gånger höjden h. För att bevisa första likheten i ekvation (4) så behöver vi använda oss av räkneregel (15) nedan. 4 u v 2 = u 2 v 2 (u v) 2 = använd egenskap för skalärprodukten = u 2 v 2 u 2 v 2 cos 2 ϕ = u 2 v 2 (1 cos 2 ϕ) = = u 2 v 2 sin 2 ϕ Eftersom vinkeln ϕ ligger mellan 0 och π så är sin ϕ 0 vilket gör att vi kan utan problem ta roten ur i båda led och komma fram till vilket var precis vad vi ville visa! u v = u v sin ϕ. Kryssprodukten och den skalära trippelprodukten Den skalära trippelprodukten av tre vektorer u, v och w definieras som u (v w) (5) Övning 5. Visa att om u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) och w = (w 1, w 2, w 3 ) så gäller att u (v w) = det u 1 u 2 u 3 v 1 v 2 v 3 (6) w 1 w 2 w 3 Övning 6. Förklara med hjälp av formeln (6) varför kryssprodukten u v är ortogonal mot både u och v. (Hint: Det följer direkt från en av determinantens egenskaper.) Eftersom trippelprodukten enligt övning 5 är lika med en determinant så följer det att trippelproduktens belopp är volymen av den parallellepiped som spänns av trippelproduktens tre vektorer: u (v w) = volymen av den parallellepiped som spänns av u, v och w 4 Skalärprodukten brukar ofta definieras som a b = a b cos φ, där φ är vinkeln mellan a och b för skalärprodukten och är hur som helst en viktig egenskap för skalärprodukten. Det är denna egenskap som introducerar vinkelbegreppet till den linjära algebran... 4
5 Kryssproduktens algebraiska egenskaper Efersom determinanten har den egenskaper att om två rader i en matris byter plats så växlar kryssprodukten tecken om vektorerna byter plats. Detta ger oss den antikommutativa egenskapen: u v = v u (7) Determinantens egenskaper leder även fram till andra användbara räkneregler :: u (v + w) = u v + u w (8) (u + v) w = u w + v w (9) k(u v) = (ku) v = u (kv) (10) u 0 = 0 u = 0 (11) u u = 0 (12) u (v w) = (u w)v (u v)w (13) (u v) w = (u w)v (v w)u (14) u v 2 = u 2 v 2 (u v) 2 (15) Varför är kryssprodukten viktig? I tredimensionell geometri så kan man ofta ha nytta av kryssprodukten för att lösa olika problem. Låt oss titta på ett litet exempel på hur det kan se ut. Exempel 2. Bestäm avståndet mellan de två linjerna l 1 (s) = (1, 1, 2) s + ( 1, 1, 2) }{{} och l 2 (t) = (0, 1, 1) t + (2, 1, 1) }{{} u v Om man förbinder de båda linjerna med linjesegment så är det kortaste linjesegmentet sådant att det är vinkelrät mot båda linjerna. Detta innebär att vi kan hitta det avståndsminimerande linjesegmentets riktningsvektor genom att beräkna kryssprodukten av de båda linjernas riktningsvektorer: n = u v = ( 1, 1, 1) Bilda nu en skillnadsvektor mellan linjerna: a = (2, 1, 1) ( 1, 1, 2) = (3, 2, 1). Denna skillnadsvektor representerar ett linjesegment mellan de båda linjerna. För att få en vektor som realiserar det kortaste avståndet så behöver vi nu bara projicera denna skillnadsvektor på ovanstående kryssproduktvektor: b = proj n a = a n n = (2, 2, 2) n 2 Längden av denna projektion blir b = 2 3 så detta blir avståndet mellan de två linjerna. En naturlig föjldfråga är vilka punkter på linjerna som ligger närmast varandra. Att bestämma dessa kräver mer räkning som vi dock utlämnar eftersom det inte är nödvändigt för vårt problem. Kryssprodukten inom fysik Inom fysiken, speciellt inom mekanik och elektricitetslära så formuleras många fysikaliska samband med hjälp av tredimensionella vektorer och involverar ofta kryssprodukten. Exempel från mekaniken är moment och rörelsemängdsmoment M = F r, L = r p, där M är momentet,f en kraft och r hävarm. Rörelsemängdsmomentet L ges av lägesvektor r och rörelsemängd p. Rörelsmängd är i princip massa gånger hastighet. 5
6 Electricitetslärans teoretiska grund ligger i de så kallade Maxwells ekvationer: 5 D = ρ f B = 0 E = B t H = J f + D t I dessa ekvationer så är E = Elektriska fältet, D = Elektriska flödestätheten, H = Magnetfältet, B = Magnetiska flödestätheten och J f betecknar fria strömmen av laddningstäthet. = ( x, y, z ) är den så kallade nablaoperatorn och den är med i alla Maxwells ekvationer. Som ni ser så är varje komponent av nablaoperatorn en derivering vilket gör att Maxwells ekvationer är en sorts differentialekvationer. Det finns också en integralvariant av ekvationerna. 5 Dessa ekvationer är naturligtvis rätt avancerade och man behöver kunskaper från åtminstone flervariabelanalys och vektoranalys för att kunna jobba med ekvationerna. Genom förenklingar och approximationer kan man från maxwells ekvationer t.ex. härleda den klassiska Ohms lag från elkretstekniken. (U = I R). 6
Determinanten och dess geometriska betydelse
Version 0.9 :: 18 oktober 2015 @ 11:42 Determinanten och dess geometriska betydelse med en introduktion till kryssprodukten Mikael Forsberg 18 oktober 2015 ii Innehåll 1 Determinanten 1 1.1 Introduktion
Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.
Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B
Explorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Föreläsning 13 Linjär Algebra och Geometri I
Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och
October 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Exempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Exempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Mer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
Att beräkna:: Avstånd
Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre
Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v
Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2
kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.
vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
SF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer.
Ortogonalitet Man kan tala om vinkel mellan vektorer.. Skalär produkt Vi definierar längden (eller normen) av en vektor som ett reellt tal 0 (Se boken avsnitt.). Vi definierar skalär produkt (Inner product),
Veckoblad 3, Linjär algebra IT, VT2010
Veckoblad 3, Linjär algebra IT, VT Vi inleder den tredje veckan med att gå igenom begreppen determinant och invers matris som vi inte hann med i vecka, se veckoblad för övningar etc på dessa avsnitt. Därefter
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
MAA123 Grundläggande vektoralgebra
Test 1 2009.09.14 08.30 09.30 Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på 073 763 27 88 Övriga anvisningar: Skriv läsbart.
RÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell
Föreläsning 3, Linjär algebra IT VT Skalärprodukt
Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1
Mekanik FK2002m. Vektorer
Mekanik FK2002m Föreläsning 2 Vektorer 2013-09-02 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 2 Introduktion Förra gången pratade vi om rörelse i en dimension. När vi går till flera dimensioner behöver
===================================================
AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)
2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.
Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på
Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22
Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl
entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1
ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik
Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt
1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).
N-institutionen Mikael Forsberg 06-64 89 6 Prov i matematik Matematik med datalogi, mfl. Linjär algebra mk06a Testtenta. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, 5),
1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
LINJÄRA AVBILDNINGAR
LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet
En kortfattad redogörelse för Determinantbegreppet
En kortfattad redogörelse för Determinantbegreppet Göran Starius, goran@chalmers.se Matematiska vetenskaper Chalmers/GU 2009 1 Introduktion Vi skall till varje kvadratisk matris A ordna ett tal, som kallas
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n
Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:
SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.
UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom
Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?
Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.
Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Övningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
SKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas
1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
Linjär algebra/matematik. TM-Matematik Mikael Forsberg ma014a, ma031a
TM-Matematik Mikael Forsberg 074 41 1 Linjär algebra/matematik för ingenjörer ma014a, ma01a 011 0 8 Skrivtid: 09:00-14:00. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara
Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan
ORTOGONALA VEKTORER OCH ORTONORMERADE (ORTONORMALA) BASER I R n INLEDNING ( repetition om R n ) Låt RR nn vara mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs RR nn {(aa, aa,, aa
SF1624 Algebra och geometri
Föreläsning 2 Institutionen för matematik KTH 2 november 2016 Skalärprodukt Dagens ämne: Skalärprodukt, kapitel 1.3-1.4 i boken Definition, skalärprodukt på två sätt Vinklar mellan vektorer Norm Plan och
x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z
Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 14, 2018 5. Indexnotation Precis som vi har räkneregler för
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
En vektor är mängden av alla sträckor med samma längd och riktning.
En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver
Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning.
Slappdefinition En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver
Studiehandledning till linjär algebra Avsnitt 2
Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 2 Kapitel 2 och 3 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.) I detta avsnitt
Linjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Självkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
SF1624 Algebra och geometri
Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar
2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1
ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.
x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m.
Fredagen 006 Avbildningar Låt A vara matrisen () = 0 0 Till varje vektor X i R får vi vid matrismultiplikationen AX en vektor i R Mera explicit, om X = x x x x är en given punkt i R, då får vi punkten
Linjär Algebra, Föreläsning 9
Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd
M = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Övningar. Nanovetenskapliga tankeverktyg.
Övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Gör en skiss av funktionen f(t) = t, t [ π, π] (med period 2π) och beräkna dess fourierserie. 2. Gör en skiss
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Version 1.0 :: 20 januari 16:52. INTRODUKTION TILL VEKTORER :: (iv) ivmikael Forsberg
Version 1.0 :: 20 januari 2015 @ 16:52 INTRODUKTION TILL VEKTORER :: (iv) ivmikael Forsberg 20 januari 2015 ii Innehåll 1 Introduktion till vektorer 1 1.1 Begreppet vektor.....................................
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.
Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella
1 Allmänt om vektorer och vektorvärda funktioner
1 llmänt om vektorer och vektorvärda funktioner 1.1 Vektorer och skalärer Inom fysiken gör vi skillnad på skalära och vektoriella storheter. Det som kännetecknar skalära storheter är att de har både storlek