Bildförbättring i frekvensdomänen (kap.4)

Storlek: px
Starta visningen från sidan:

Download "Bildförbättring i frekvensdomänen (kap.4)"

Transkript

1 Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är borttagna pga ilstorleken. I stället hänisas till igrerna i boken.

2 Koppling rekens spatial domän r örhåller sig ilter i spatial resp. rekensdomänen till arandra? Faltning i en domän mltiplikation i andra Faltningsteoremet Tå nktioner storlek M N: * F h. n m h n m MN h M m N n

3 Koppling rekens spatial domän En impls dirac nktion id deinieras: Aδ M N s Aδ As Fnktionsärdet id implsen gånger implsens amplitd Implsen är en bild M N öerallt tom id implsen

4 Koppling rekens spatial domän Foriertransorm impls i origo: Faltning med impls: MN e MN N M j M N / / + π δ. h MN n m h n m MN h M m N n δ δ

5 Koppling rekens spatial domän Utnttja altningsteoremet och implsens egenskaper: Filter i olika domäner är transormpar Inerstransormera mellan ] [ * * h h F h I δ δ

6 Koppling rekens spatial domän Alla ilter och bilder lika stora Eektiare i rek.dom. Men bättre om man anänder mindre ilter i spat.dom. Lättare att speciicera i rek.dom Skapa rekensilter Inerstransormera Förminska

7 Eempel Gassiskt ilter lika i båda Skapa i rek.dom. Ae / σ In.trans. till spat.dom. h π σae π σ

8 Eempel Frekens Spatial h 4 /6 /9

9 Eempel ögpassilter di. a gasser Frekens Spatial h

10 Lågpassilter Idealt LP-ilter Tar bort alla rekenser högre än brtrekensen D om D om D > D D D är aståndet rån origo i centrerat spektrm D [ M / + N / ] /

11 Idealt LP-ilter Figr 4. Figr 4.

12 Idealt LP-ilter Figr 4.

13 Idealt LP-ilter Tdliga ringningar Faltningsteoremet: Likärdigt med att alta med inersen a iltret i spatialdomänen

14 Ringningar Figr 4.3

15 Btterworth LP-ilter Minska ringningarna Brtrekens D ordning n : n + [ D / D ] ögre ordning eektiare iltrering Rnt ordning liknar BLPF ett ILPF mcket ringning

16 Btterworth LP-ilter Figr 4.4 Filterproil ör olika ordningar Figr 4.6 Spatial representation a olika ordningar

17 Btterworth LP-ilter Figr 4.5

18 Gassiska LP-ilter / σ D e D aståndet rån origo Låt σ ara brtrekens D Inersen också gassisk ingen ringning / D D e

19 Gassiska LP-ilter Figr 4.7

20 Gassiska LP-ilter Figr 4.8

21 Eempel Flla igen brtna bokstäer Gassiskt ilter D 8 Figr 4.9

22 ögpassilter LP-ilter spärrar höga rekenser P-ilter ska ngera omänt spärra låga och släppa igenom höga rekenser hp lp lp är öeröringsnktionen ör ett LP-ilter

23 Tre olika högpassilter Figr 4.

24 Tre olika högpassilter Spatial representation a öregående ilter jämör med LP-iltren Figr 4.3 Idealt ilter Btterworth Gassiskt

25 Idealt P-ilter Motsats till ILPF om D D om D > D Ringningar Figr 4.4

26 Btterworth P-ilter Deinieras: n + [ D / D ] Ordning olika brtrekens Figr 4.5

27 Gassiska P-ilter Motsats till GLPF e D / D Ingen ringning Figr 4.6 Man kan äen skapa GPF genom att beräkna dierensen mellan tå gassnktioner

28 Laplace-ilter Transorm a deriering: Laplace andraderiator Transorm F j d d n n n + F F j F j I

29 Laplace-ilter I rekensdomänen + Med centrerat spektrm i origo öriga ärden negatia [ ] M / + / N

30 Laplace-ilter Figr 4.7

31 Öka skärpan i en bild med laplaceiltret Som i spatialdomänen g + om negatit i centrm om positit i centrm Lägg ihop till ett ilter [ ] M / + / N

32 Öka skärpan i en bild med laplaceiltret Figr 4.8

33 Oskarp mask high boost iltrering Likadant som spatial iltrering Oskarp mask igh boost iltrering lp hp lp hp hp hb hp hb lp hb + + A A A A

34 omomor iltrering Förbättra en bild genom att komprimera gråskalan och öka kontraster i bilden En bild är en prodkt a illminans och relektans Illminans i belsningen Relektans r objekten i r Vill egentligen bara ha r

35 omomor iltrering Det går inte att behandla rekenskomponenter direkt I{ } I{ i } I{ r } Logaritmera möjligt att dela pp prodkter z ln ln i + ln r Transorm I{ z } I{ln i } + I{ln r } eller Z Fi + F r

36 omomor iltrering Vid iltrering med I spatialdomänen Eponentiera F F Z S r i + ' ' } { ' } { ' } { } { r i s F r F i F F s r i r i + I I + I I skri sedan om till och låt ' ' ' ' r i r i s e r e i r i e e e g och

37 omomor iltrering Blockschema ln DFT DFT - ep g homomoriskt ilter Illminans låga rekenser Relektans höga rekenser

38 omomor iltrering Förstärka höga örminska låga rekenser γ L < γ > Proilbild rotationssmmetriskt ilter γ γ L D

39 omomor iltrering Kran kan approimeras med GPF c reglerar kran L [ ] c D D e / γ L γ γ + Figr 4.33

40 Korrelation Matchning Sök eter mönster Del i bilden Jämör med altning Korelation n m h n m MN h M m N n n m h n m MN h M m N n + + o * - komplea konjgatet samma om reel Teckenbte

41 Korrelation Korrelationsteoremet Jämör med altningsteoremet Korskorrelation olika bilder Atolorrelation eektspektrm * G F g G F g o F o

42 Korrelation Figr 4.4

TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1

TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1 TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

TATM79: Föreläsning 5 Trigonometri

TATM79: Föreläsning 5 Trigonometri TATM79: Föreläsning 5 Trigonometri Johan Thim augusti 016 1 Enhetscirkeln Definition. Enhetscirkeln är cirkeln med centrum i origo och radie ett. En punkt P = (a, b på enhetscirkeln uppfyller alltså a

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans 1 Föreläsning 1, Ht 2 Hambley asnitt 11.11, 14.1 Fyra typer a förstärkare s 0 s i ut s in i A in ut L s in i G L in 0 Spänningsförstärkare Spänningströmförstärkare (transadmittansförst.) i in 0 i in i

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Samtidighet. Föreläsning 2: Relativitetsteori fortsättning

Samtidighet. Föreläsning 2: Relativitetsteori fortsättning Föreläsning : Relativitetsteori ortsättning Samtidighet Samtidighet i ett system innebär inte samtidighet i ett annat med likormig rörelse relativt varandra Eempel: Per Person provkör sin nya 4 m långa

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2 Flervariabelanals I Vintern Översikt öreläsningar läsvecka Denna vecka ägnas nästan uteslutande åt problemet att hitta största och minsta värden till en unktion av lera variabler. Vi kommer att studera

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

En mycket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart:

En mycket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart: En mcket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart: För en mätserie som denna är det ganska klart att det finns en koppling mellan -variabeln

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller Sinal- och Bildbehandlin ÖRELÄSNING 7 D sinalbehandlin (bildbehandlin) Den diitala bilden, ärtabeller D kontinuerli ouriertransorm och D DT D samplin D diskret altnin Låpassiltrerande D altninskärnor Teori:

Läs mer

Grundredigering i Photoshop Elements. Innehåll. Lennart Elg Grundredigering i Elements Version 2, uppdaterad 2012-09-14

Grundredigering i Photoshop Elements. Innehåll. Lennart Elg Grundredigering i Elements Version 2, uppdaterad 2012-09-14 Grundredigering i Photoshop Elements Denna artikel handlar om grundläggande fotoredigering i Elements: Att räta upp sneda horisonter och beskära bilden, och att justera exponering, färg och kontrast, så

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

Raka spåret. Merkurius? resvägar. omöjliga. Möjliga. till. i solsystemet. Kan man åka. och. av Magnus Thomasson

Raka spåret. Merkurius? resvägar. omöjliga. Möjliga. till. i solsystemet. Kan man åka. och. av Magnus Thomasson Kan man åka Raka spåret till Merkris? Möjliga och resägar i solsystemet omöjliga NASA/Johns Hopk i ns U n ie rsity Appli e d Physics Laboratory/Car n eg i e Instittion of Washington a Magns Thomasson Merkrissonden

Läs mer

Hur påverkar rymden och tiden varandra vid relativ rörelse?

Hur påverkar rymden och tiden varandra vid relativ rörelse? Hur påerkar rymden oh tiden arandra id relati rörelse? Einsteins tolkningar ar nya för sin tid, men de grundade sig delis på tidigare fysikers tankar. Galileo Galilei (564 64) framlade okså på sin tid

Läs mer

Ellära och Elektronik. Föreläsning 7

Ellära och Elektronik. Föreläsning 7 Ellära och Elektronik Moment Filter och OP Föreläsng 7 Bandpassilter och Bodediagram Ideala OPörstärkare OPörstärkarkopplgar Bandpass och bandspärrilter För att konstrera denna typ av ilter krävs både

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Matematisk modellering 3. Modelleringsprinciper 3.. Modelltyper För att knna göra design och analys av reglersystem behöver man en matematisk modell, som beskriver systemets dynamiska beteende. Vi kan

Läs mer

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e . Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare

Läs mer

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Sammanfattning TSBB16

Sammanfattning TSBB16 Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Digital- och datorteknik

Digital- och datorteknik LEU Digital- och datorteknik, Chalmers, /6 Föreläsning # Uppdaterad 6 september, Digital- och datorteknik Föreläsning # Biträdande professor Jan Jonsson SP- och PS-form: Vid förra föreläsningen konstaterade

Läs mer

T1-modulen Lektionerna 16-18. Radioamatörkurs OH6AG - 2011

T1-modulen Lektionerna 16-18. Radioamatörkurs OH6AG - 2011 T1-modulen Lektionerna 16-18 Radioamatörkurs - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Antti Seppänen, OH3HMI Heikki Lahtivirta, OH2LH 1 Filter Filtrens unktion i radiotekniken

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

- Datorer - Servers - Nätverk. - Installationer - Reparationer - Service - Support

- Datorer - Servers - Nätverk. - Installationer - Reparationer - Service - Support När det gäller kalificerade Onsdagen den 30 noember Vi har erfarenhet sedan 1991 en trygghet för åra kunder > > För företag > Priat > Kontakta > oss Kalmar NDC har som mål att alltid leererar kalitati

Läs mer

Photoshop - Kanaler. Den översta raden motsvarar de sammanslagna kanalerna RGB.

Photoshop - Kanaler. Den översta raden motsvarar de sammanslagna kanalerna RGB. Photoshop - Kanaler Varje enskild färg i RGB-systemet motsvaras av en kanal i kanalpanelen och visar sig som svartvita representationer om man ställer sig där. På bilden kan du se att på den röda kanalen

Läs mer

Spänningen som angets ovan är spänningen mätt mellan 2 faser. Den kallas för systemspänning.

Spänningen som angets ovan är spänningen mätt mellan 2 faser. Den kallas för systemspänning. 3-FAS Det allmänna distrubitionsnätet har 3 aser med direktjordad nollpunkt (T-system). Från energileverantör till abonnent transormeras spänningen suggestivt ned ör att hos abonnent (normalkund) anta

Läs mer

Grundläggande 1D och 2D Signalbehandling för Bilder Baserat på ett äldre kompendium av Per-Erik Danielsson

Grundläggande 1D och 2D Signalbehandling för Bilder Baserat på ett äldre kompendium av Per-Erik Danielsson Grndläggande D och D Signalbehandling för Bilder Baserat på ett äldre kompendim av Per-Erik Danielsson Maria Magnsson Avdelningen för datorseende Instittionen för systemteknik Linköpings niversitet Linköping,

Läs mer

Husets energianvändning

Husets energianvändning Id:55909 Energideklaration för Utövägen 5, Saltsjö-boo. Detta hus använder 119 kwh/m² och år, varav el 18 kwh/m². Id:55910 Energideklaration för Utövägen 7, Saltsjö-boo. Id:55911 Energideklaration för

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

Krets- och mätteknik, fk

Krets- och mätteknik, fk Krets- och mätteknik, fk Bertil Larsson 2014-08-19 Sammanfattning föreläsning ecka 1 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskria olika typer a förstärkare och kra på dessa.

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

Hambley: OBS! En del av materialet kommer att gås igenom på föreläsningen

Hambley: OBS! En del av materialet kommer att gås igenom på föreläsningen Föreläsning 3, 2/ Hambley: 4.2 4.4 OBS! En del a materialet kommer att gås igenom på föreläsningen den 9/. Operationsförstärkare [4.] Operationsförstärkaren (operational amplifier eller opamp.) uppfanns

Läs mer

KONSTRUKTION AV HYDRAULSYSTEM FÖR LASTBILSKRAN

KONSTRUKTION AV HYDRAULSYSTEM FÖR LASTBILSKRAN Linköpings Uniersitet Konstruktionsuppgift 1(7) KONSTRUKTION AV HYDRAULSYSTEM FÖR LASTBILSKRAN Konstruktionsuppgift i kursen Fluidmekanisk Systemteknik för M3, läsåret 2014 Linköpings Uniersitet Konstruktionsuppgift

Läs mer

TSKS06 Linjära system för kommunikation - Elektriska kretsar - Föreläsning 7

TSKS06 Linjära system för kommunikation - Elektriska kretsar - Föreläsning 7 Operationsförstärkaren TSKS06 Linjära system för kommunikation Kursdel Elektriska kretsar Föreläsning 7 Matningsspänning Institutionen för Systemteknik (ISY) Inimpedans Ämnesområdet Elektroniksystem Utimpedans

Läs mer

Perfekt skärpa i Photoshop

Perfekt skärpa i Photoshop Perfekt skärpa i Photoshop Lathunden innehåller viktiga nyckelbegrepp från kursen och alla riktvärden du behöver. Dessutom finns ett antal tips och förtydliganden som inte nämndes i kursen. Alla värden

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering

Läs mer

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind

Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,

Läs mer

Enkätens uppbyggnad COPSOQ SVERIGE. Introduktion

Enkätens uppbyggnad COPSOQ SVERIGE. Introduktion Enkätens uppbyggnad Introduktion Enkäten mäter den psykosociala arbetsmiljön genom åtta dimensioner. Varje dimension består i sin tur a en till flera skalor som mäter olika aspekter inom arje dimension.

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Viking Virkgarn. Bordstablett GARNALTERNATIV: Viking Virkgarn (100% bomull), nystan à 100 gr.

Viking Virkgarn. Bordstablett GARNALTERNATIV: Viking Virkgarn (100% bomull), nystan à 100 gr. Bordstablett 1406-1 Storlek 52 70 cm GARNALTERNATIV: Viking Virkgarn (100% Vit nr 800 Virknål och tillbehör: Virknål nr 1,5 mm 2 nystan Virkfasthet: 40 stolpar på bredden med irknål 1,5 mm mäter ca 10

Läs mer

I praktiskt bruk finns här huvudsakligen två tekniker: Pulslöptidmätning (Time of Flight, TOF) och Lasertriangulering.

I praktiskt bruk finns här huvudsakligen två tekniker: Pulslöptidmätning (Time of Flight, TOF) och Lasertriangulering. Lasermätteknik När laser kom i början på 60 talet ar det anändningsområde (örutom etenskaplig orskning) man såg ramör sig enbart att strålen skulle kunna anändas militärt ör att med den ärme som utecklas

Läs mer

Funktioner: lösningar

Funktioner: lösningar Funktioner: lösningar 6. Sätt 1 = t 7. Också strängt väande: f (t) = 1 (1 t) = = 1 1+t t = = t t 8. Återigen strängt väande: T.e. a < b g (a) < g(b) f (g (a)) < f (g (b)) a < b g (a) > g(b) f (g (a))

Läs mer

Kinetik. Föreläsning 1

Kinetik. Föreläsning 1 Kinetik Föreläsning 1 Varför kunna kinetik? För att till exempel kunna besvara: Hur lång tid tar reaktionen till viss omsättningsgrad eller hur mycket produkt bildas på viss tid? Hur ser reaktionens temperaturberoende

Läs mer

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

POSTKODVINSTER á 1.000 kronor Inom nedanstående postkoder vinner följande 307 lottnummer 1.000 kronor vardera:

POSTKODVINSTER á 1.000 kronor Inom nedanstående postkoder vinner följande 307 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 05-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

EG-försäkran om överensstämmelse

EG-försäkran om överensstämmelse kontroller och service. Reningsverket består av en cylindrisk tank av plast som täcks av ett plastlock och är fördelad i Höjd 110 PP-4 1-4 0,15-0,6 0,06-0,24 1400 1500 - Små reningsverk för avloppsvatten

Läs mer

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna. Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm

Läs mer

Skillnaden mot att jobba som i ett vanligt ordbehandlingsdokument, är att internet tar inte emot textrutor. Det få r man istället ersätta med ramar.

Skillnaden mot att jobba som i ett vanligt ordbehandlingsdokument, är att internet tar inte emot textrutor. Det få r man istället ersätta med ramar. Gör en hemsida Denna övning utgå r frå n att man skapar en affish på internet. Man kan ex. informera om en teaterföreställning, som klassen producerat, eller annat arrangemang. Skillnaden mot att jobba

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37 Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

TENTAMEN: DEL A Reglerteknik I 5hp

TENTAMEN: DEL A Reglerteknik I 5hp TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 december 03, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

10 Relativitetsteori och partikelfysik

10 Relativitetsteori och partikelfysik 0 Relatiitetsteori och artikelfysik 00. a) b) c) 00. a) (0,c) 0,0 0,99,005 (0,8c) 0,64 0,36 0,6,667 =,000000000556 0000 (3,0 0 8 ) 0,0c 0,64c Sar: a),005 b),667 c),000000000556 0 0 0 b) 3 4 c 3 4 0,9999999989

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner

TATM79: Föreläsning 6 Logaritmer och exponentialfunktioner TATM79: Föreläsning 6 Logaritmer och eponentialfunktioner Johan Thim augusti 06 Den naturliga logaritmen Vi börjar med att introducera den naturliga logaritmen. Definition. Den naturliga logaritmen ln

Läs mer

Teori- och räkneuppgifter

Teori- och räkneuppgifter Teori- och räkneuppgifter Version December 7 014 1 Fel- och störningsanalys 11 Värdet på x är uppmätt till 0956 med ett absolutfel på högst 00005 Ge en öre gräns för absolutfelet i y exp(x + x Motiera

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 27-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

FYTA12 VT11 halvtid, kursutvärdering

FYTA12 VT11 halvtid, kursutvärdering FYTA12 VT11 halvtid, kursutvärdering FYTA12 VT11 halvtid, kursutvärdering Översikt Totalt antal svar 5 Filter nej Gruppera efter fråga nej Del 1. Allmänna omdömen Ge dina omdömen på en skala 1-5. Observera

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

Uppskatta ordersärkostnader för inköpsartiklar

Uppskatta ordersärkostnader för inköpsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,

Läs mer

Photoshopskolan, skärpa upp en bild

Photoshopskolan, skärpa upp en bild Sida 1 av 7 skriv ut» Öka skärpan i bilder (Ps6) Att öka skärpan i en bild är en åtgärd som du säkert har behov av i olika situationer, tex om din bild redan från början är oskarp eller om du varit tvungen

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

MÄTNING AV ELEKTRISKA STORHETER

MÄTNING AV ELEKTRISKA STORHETER MÅ NIVSITT Tillämpad fysik och elektronik Hans Wiklund 996-05- MÄTNING AV LKTISKA STOHT Laboration 5 LKTO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): ättningsdatum Kommentarer Godkänd: ättningsdatum

Läs mer

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 172 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 172 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 12-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Analoga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning

Analoga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning Analoga och Digitala Signaler Analogt och Digitalt Analogt 00000000000000000000000000000000000 t Digitalt Analogt kontra Digitalt Analogt å komponenter låg eektörbrukning verkliga signaler Digitalt Hög

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter på 50 mm. Rörets ytråhet, e, är mm. Om tryckfallet i röret inte får

B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter på 50 mm. Rörets ytråhet, e, är mm. Om tryckfallet i röret inte får B1 Vatten strömmar i ett rör som är 100 m långt och har en diameter å 50 mm. Rörets ytråhet, e, är 0.01 mm. Om tryckallet i röret inte år överstiga 50 kpa, vad är då den högst tillåtna vattenhastigheten?

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

3.1. Innerväggar. Bärande väggar utan krav på brandmotstånd. Konstruktionsdetaljer. Krav på golv och överliggande bjälklag.

3.1. Innerväggar. Bärande väggar utan krav på brandmotstånd. Konstruktionsdetaljer. Krav på golv och överliggande bjälklag. Gyproc DUROnomic Innerväggar med stålstomme Datablad.15:110 1200 mm breda gipsskivor på stålstomme 1 2 3 c 600 mm 3. 12,5 mm Gyproc Gipsskivor, 1200 mm breda Bjälklag: Nedböjning pga nyttig last ska ej

Läs mer

REGISTER för SÄRSKILDA LÄKEMEDEL vid OSTEOPOROS START AV BEHANDLING FORMULÄR 1 GUIDE FÖR IFYLLNAD AV FORMULÄR OCH HANTERING AV DATA

REGISTER för SÄRSKILDA LÄKEMEDEL vid OSTEOPOROS START AV BEHANDLING FORMULÄR 1 GUIDE FÖR IFYLLNAD AV FORMULÄR OCH HANTERING AV DATA START AV BEHANDLING FORMULÄR 1 GUIDE FÖR IFYLLNAD AV FORMULÄR OCH HANTERING AV DATA Följande formuläret utgör underlag för inmatning i den webbaserade databasen. 1) Formulär 1 - Start av behandling 2)

Läs mer

Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik

Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik Grunderna i programmeringsteknik 1. Vad är Känna till nämnda programmering, begrepp. Kunna kompilera högnivå språk, och köra program i det i kompilering, kursen använda tolkning, virtuella programmeringsspråket.

Läs mer

VIKINGKATALOG 1207 Viking Eko Alpacka- Fox4you

VIKINGKATALOG 1207 Viking Eko Alpacka- Fox4you VIKINGKATALOG 1207 Viking Eko Alpacka- Tröja 1207-1 Storlekar: one size Öeridd ca: 120 cm Hellängd ca: 44 cm Ärmlängd ca: 16 cm GARNALTERNATIV: Viking Eko alpacka (100% alpacka) a 100 gr hära, Viking Odin

Läs mer

90,00 90,00 1:20. Garageramp 1:8. Plan 1 - Garage nedre. Torp 2:5 Lerum Förslag till nybyggnad Arkitekthuset 2012-04-11

90,00 90,00 1:20. Garageramp 1:8. Plan 1 - Garage nedre. Torp 2:5 Lerum Förslag till nybyggnad Arkitekthuset 2012-04-11 00 0 000 0 000 0 90,00 90,00 P - p l a t s u t g å r :0 9 P P L arageramp :8 Plan - arage nedre RÖ VS TR Vattenspegel Å : 0 : 0 Trägolv arageramp : TR VIN APPA L N AS UT, m² Teknik ONTOR 0, m² V RUPPRUM

Läs mer

CFM. Vad är CFM? CFM betyder cerebral function monitoring. Det är ett komprimerat EEG, som kallas aeeg (amplitudintegrerat EEG).

CFM. Vad är CFM? CFM betyder cerebral function monitoring. Det är ett komprimerat EEG, som kallas aeeg (amplitudintegrerat EEG). Skapad/reviderad: 2008-01-01/2012-11-09 CFM Vad är CFM? CFM betyder cerebral function monitoring. Det är ett komprimerat EEG, som kallas aeeg (amplitudintegrerat EEG). Hur fungerar CFM? Med hjälp av 6

Läs mer

Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37

Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Kvantmekanik II - Föreläsning 2 Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

Collage: Flygande brunnslock

Collage: Flygande brunnslock 1/6 Collage: Flygande brunnslock To kända surreallister som levde under 1900-talet är Salvador Dali och Rene Magritte. Nu har du chansen att ta upp konkurrensen. Med lagerhantering i Paint Shop Pro är

Läs mer

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s Lösningar till Kaströrelse magnetism Växelström Kaströrelse G1. y 4,6 sin 1 g t ger y (4,6 sin 1 9,8,3) m/s 0,9 m/s Sar: 1 m/s G. För hastigheterna id kaströrelse gäller x csα y sin α g t Om y 8,5 sin

Läs mer

HDR den enkla vägen. Råkonverteraren Det första vi gör i råkonverteraren är att öppna våra tre bilder. av Kristoffer Ingemansson

HDR den enkla vägen. Råkonverteraren Det första vi gör i råkonverteraren är att öppna våra tre bilder. av Kristoffer Ingemansson HDR den enkla vägen av Kristoffer Ingemansson Att ta sina bilder Allting börjar ju så klart med att man letar upp ett motiv och tar sina bilder, men man bör även tänka på en del speciella saker när man

Läs mer

Programschemat är granskat och godkänt av utbildningsledare vid akademin för Hälsa, vård och välfärd, 2013-03-19.

Programschemat är granskat och godkänt av utbildningsledare vid akademin för Hälsa, vård och välfärd, 2013-03-19. Programschema för Sjuksköterskeprogrammet, 180 hp Programkod: Gäller för läsåret 2013/2014 Programschemat är granskat och godkänt av utildsledare vid akamin för Hälsa, vård och välfärd, 2013-03-19. Om

Läs mer