TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1"

Transkript

1 TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor Teori: Kompendiet, (Kap ), Kap. 3 Maria Magnusson, Datorseende, Inst. ör Systemteknik, Linköpings Uniersitet p. En bild är en D signal D: (t) är en unktion som beror a tiden t. D: (x,y) är en unktion som beror a de spatiella (rums-) koordinaterna x och y. Ex) x, y sinx y x, y sart x, y itt p. Fig.. För en digital bild gäller En digital bild är en samplad D-unktion. Samplen kallas pixlar (picture elements). Antalet pixlar = bildens storlek. En anlig storlek: 5x5= 8 =.5 Mpixel. Ota är samplen kantiserade i interallet [,55]. Dessa ärden öersätts ia en ärgtabell i datorn till gråskaleärden, ds ->sart och 55->itt eller godtyckliga g ärger (pseudo-ärg) Ibland är samplen lyttalsärden. Dessa transormeras till interallet [,55] och idare ia ärgtabell i datorn. En äkta ärgbild har 3 st ärden per pixel. De transormeras ar ör sig till interallet [,55] och sedan idare ut på datorns röda, gröna respektie blåa kanal ilket möjliggör 56 3 = ,8 miljoner ärger. p. 3 Exempel på ärginnehåll i bilder p. PET-bild a hjärna Psedo-ärgbild Äkta ärgbild gråskalebild

2 Exempel på en digital bild p. 5 Vanlig gråskaleärgtabell 56 ärger p. 6 zoom Bildstorlek: 7x pixels Pixelärde (x,y) Linjär transor- mation : : : R G B D/A-omandlare: omandlar ett digitalt ärde till ett analogt ärde i orm a en elektrisk signal I denna 55: kursen jobbar i mest med Till D/A-omandlare gråskaleoch ut på skärmen ärgtabellen. Pseudo-ärgtabell 56 ärger p. 7 Äkta ärgtabell p. 8 Öer 6 miljoner ärger Pixelärde (x,y) : : : R G B??? Ex ) En PET-bild kan isa ar det är aktiitet i hjärnan. Hög aktiitet kan isas röd och låg aktiitet kan isas blå. : : : R Pixelärde [ r (x,y), g (x,y), b (x,y)] : : : G godtycklig transor- mation Linjär trans- ormation Linjär trans- ormation Linjär trans- ormation : : : B 55: Till D/A-omandlare och ut på skärmen Ex) Anändbart t ex när i ill isa negatia ärden blå och positia ärden äd röda. 55: 55 Till D/A-omandlare och ut på skärmens röda kanal 55: 55 Till D/A-omandlare och ut på skärmens gröna kanal 55: 55 Till D/A-omandlare och ut på skärmens blåa kanal

3 D kontinuerlig ouriertransorm p. 9 D ouriertransormen är separabel p. D ouriertransorm j xu y x, y Fu, x, ye dx dy D iners ouriertransorm 3.3 j xu y F u, x, y Fu, e du d 3. Den kan beräknas örst i ena ledden och sen i andra ledden: F j xu y u, x, y e, dx dy dy e jy jxu x, ye dx 3.3 F x, ouriertransorm i y - led Fouriertransormen a en reell unktion är hermitisk p. En bild med amplitudspektrum p. Realdelen är jämn och imaginärdelen är udda. F u, F u, Det går att isa på liknande sätt som ör D. F u, F u, Fu, F u, 3.7 Amplitudspektrum är symmetriskt i origo. se Fig. 3. Amplitudspektrum är spegelsymmetriskt De låga rekenserna dominerar Fig. 3.

4 Realdel och Imaginärdel a Fouriertransormen p. 3 Teorem och samband p. Formelsamlingen och tabell 3. isar teorem ör Douriertransorm, bl a skalnings-, altnings-, translations- och deriata-teoremet. teoremet Dessa är generaliseringar a Dteoremen. Notera också de D-unika teoremen ör generell skalning, rotation och Laplace. Generell skalning : a A a a a Realdelen är jämn Imaginärdelen är udda Fig. 3. Rotation inkeln cos sin sin cos : R 3.6 Transorm-par illustrerade i Teorem och samband Fig. 3. p. 5 D DFT p. 6 Separabla unktioner ger separabel ourier-transorm, se ormelsamlingen, tabell 3.3 och ekation (3.): x, y gx hy Fu, Gu H 3. Rotationssymmetriska transormpar i Tab. 3.: D F D N M D n m N M F D k, l j nk / N ml / M e k l j nk / N ml / M k, l n, me 3. MN n, m 3. Matlabkommando: FD=t(D) Notera dock att den symmetriska arianten, se ekation (3.) och (3.3), ota är att öredra i bild-sammanhang. Matlabkommando: FD=tshit(t(itshit(D)))

5 Teorem och samband Tabell 3. isar teorem ör D DFT. Notera att multiplikation i DFT-domänen motsarar cirkulär altning i spatialdomänen. (Mer om detta nästa öreläsning.) p. 7 D sampling a (x,y) Ingen ikningsdistorsion! p. 8 Fig. 3.3 D sampling a (x,y) Vikningsdistorsion! p. 9 p. Bilder med ouriertransorm. Fig. 3.5a Tillräcklig samplingsrekens. size: 56 size: 56 Fig. 3.

6 Bilder med ouriertransorm. Fig. 3.5b För låg samplingsrekens. p. p. Samband mellan samplad kontinuer- lig ouriertransorm och DFT Fig. 3.7 Eekten a ikningsdistorion som syns tydligt i bl a byxornas randning. Vikningsdistorisionen i i i syns äen i ourierdomänen som en ökad intensitet ör de högre rekenserna. size: size: x8 size: x8 8 size: 8 Relationen mellan kontinuerlig rekens u, och diskret rekens k,l är alltså u k N där N,M är 3.3 l M antalet sampelpunkter och är sampelaståndet. g g g D altning Kontinuerlig x y h x, y hx, y,, d d Linjär diskret p x y h x, y hx, y,, N M x, y h x, y hx, y, N Cirkulär diskret N g D linjär diskret altning x, y h x, y hx, y, Spegla h i x- och y-axeln = rotera 8 o. Glid med den speglade h öer. Multiplicera och summera öerlappande ärden. Detta ger g * = x, y x, y gx y h, p.

7 Beräkningsbörda id altning p. 5 Bildstorlek id D linjär diskret altning p. 6 Fig. 3.8 g 3... Fig Valid: Värden utanör inbilden anses odeinierade => Utbilden blir mindre än inbilden. Full: Värden utanör inbilden anses ara => Utbilden blir större än inbilden. Eller lika stor om de extra ärdena slängs (Same) 5 multiplikationer och 8 additioner per pixel! Hur beräknas D ouriertransormen a /? Byt t x, y, u,, T Sätt dirac-spikar (x,y)=(x)(y) på arje element i altningskärnan. Antag sampelastånd. Detta ger h x x x y/ Tag D kontinuerlig Fouriertransorm H ju ju u, e e / cosu / cos u p. 7 här Lågpassiltrerande altnings- kärna i x-led (u-led) cos u p. 8 y u x / Fig. 3.

8 här Lågpassiltrerande altnings- kärna i y-led (-led) cos p. 9 y u x / Fig. 3. p. 3 Lågpassiltrerande cos u cos altningskärna i här x- och y-led Dämpar höga rekenser (u- och -led) = /6 * / / Fig. 3. Mer lågpassiltrerande altningskärna i x- och y-led (u- och -led) = 66 6 /56 * /6 /6 cos p. 3 u cos här Fig. 3. Lågpassiltrering * p /56 Ex på enkel anändning: ) Den suddiga nummerplåten kan klistras in i Ex på enkel anändning: ) Den suddiga nummerplåten kan klistras in i den skarpa bilden. ) Om det hade unnits ointressanta detaljer i bakgrunden skulle de kunna suddats ut.

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller Sinal- och Bildbehandlin ÖRELÄSNING 7 D sinalbehandlin (bildbehandlin) Den diitala bilden, ärtabeller D kontinuerli ouriertransorm och D DT D samplin D diskret altnin Låpassiltrerande D altninskärnor Teori:

Läs mer

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

TATM79: Föreläsning 5 Trigonometri

TATM79: Föreläsning 5 Trigonometri TATM79: Föreläsning 5 Trigonometri Johan Thim augusti 016 1 Enhetscirkeln Definition. Enhetscirkeln är cirkeln med centrum i origo och radie ett. En punkt P = (a, b på enhetscirkeln uppfyller alltså a

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

Bildförbättring i frekvensdomänen (kap.4)

Bildförbättring i frekvensdomänen (kap.4) Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är

Läs mer

Parametriska kurvor: Parametriska ytor

Parametriska kurvor: Parametriska ytor Kror och ytor Eplicit form Implicit form Kror och ytor Parametrisk form Procerbaserade Polynom Catmll-Clark ekannan och dess datormotsarighet Martin Newell, 975. Gsta aén CID gstat@nada.kth.se Kbiska (grad

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ 'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans 1 Föreläsning 1, Ht 2 Hambley asnitt 11.11, 14.1 Fyra typer a förstärkare s 0 s i ut s in i A in ut L s in i G L in 0 Spänningsförstärkare Spänningströmförstärkare (transadmittansförst.) i in 0 i in i

Läs mer

Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm

Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Formelsamling i kursen Medicinska Bilder, TSBB31 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Maria Magnusson, maria.magnusson@liu.se 27 oktober 2016 1 1-D Tidskontinuerliga Fouriertransformer

Läs mer

Bildbehandling En introduktion. Mediasignaler

Bildbehandling En introduktion. Mediasignaler Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning

Läs mer

Rotation Rotation 187

Rotation Rotation 187 6. Rotation 87 6.. Rotation Vi har tidigare i Exempel 6.5 isat hur man roterar rummets ektorer kring en axel parallell med en a basektorerna. Nu är i redo att besara frågan om hur man rider kring en godtycklig

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen

Läs mer

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings

Läs mer

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett

Läs mer

Signal- och bildbehandling

Signal- och bildbehandling 1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Ansiktsigenkänning med MATLAB

Ansiktsigenkänning med MATLAB Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

3. Analytiska funktioner.

3. Analytiska funktioner. 33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

FUKTÄNDRINGAR. Lars-Olof Nilsson. En kvalitativ metod att skriva fukthistoria och förutsäga fuktförändringar i oventilerade konstruktionsdelar

FUKTÄNDRINGAR. Lars-Olof Nilsson. En kvalitativ metod att skriva fukthistoria och förutsäga fuktförändringar i oventilerade konstruktionsdelar LUNDS EKNISKA HÖGSKOLA FUKCENRUM VID LUNDS UNIVERSIE Ad Byggnadsmaterial FUKÄNDRINGAR En kalitati metod att skria fukthistoria och förutsäga fuktförändringar i oentilerade konstruktionsdelar Kursmaterial

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera

Läs mer

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. "The Schmitt Trigger )

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. The Schmitt Trigger ) Operationsförstärkare (OP-förstärkare) Kapitel 8.1-8.2, 8.5 (öersiktligt), 15.5 (t.o.m. "The Schmitt Trigger ) Förstärkare Förstärkare Ofta handlar det om att förstärka en spänning men kan äen ara en ström

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37 Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

Svar och arbeta vidare med Cadetgy 2008

Svar och arbeta vidare med Cadetgy 2008 Sar och arbeta idare med Cadetgy 2008 Det finns många intressanta idéer i årets Känguruaktiiteter. Problemen kan inspirera underisningen under flera lektioner. Här ger i några förslag att arbeta idare

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc) 1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Säkerhetsavstånd i bilköer Rätt hastighet (och rätt förare) räddar liv!

Säkerhetsavstånd i bilköer Rätt hastighet (och rätt förare) räddar liv! Projektarbete åren 008 Sid:1 Säkerhetsastånd i bilköer Rätt hastighet (och rätt förare) räddar li! Linus Karlsson linuskar@kth.se Geir Ynge Paulson gypa@kth.se Jacob Langer jlanger@kth.se Tobias Gunnarsson

Läs mer

Bildregistrering Geometrisk anpassning av bilder

Bildregistrering Geometrisk anpassning av bilder Bildregistrering Geometrisk anpassning av bilder Björn Svensson, Johanna Pettersson, Hans Knutsson Inst. för Medicinsk Teknik, Linköpings Univeristet Maj, 2007 1 Problembeskrivning Sök förflyttningsfält

Läs mer

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Diskret matematik: Övningstentamen 1

Diskret matematik: Övningstentamen 1 Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Vision Arvika kommun

Vision Arvika kommun Vision Arika kommun Arika - en attraktiare kommun Vision Arika en attraktiare kommun Visionen beskrier kommunens långsiktiga inriktning och politiska ilja. Den konkretiseras i strategiska mål och strategier

Läs mer

Krets- och mätteknik, fk

Krets- och mätteknik, fk Krets- och mätteknik, fk Bertil Larsson 2014-08-19 Sammanfattning föreläsning ecka 1 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskria olika typer a förstärkare och kra på dessa.

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

9.3. Egenvärdesproblem

9.3. Egenvärdesproblem 9.3. Egenvärdesproblem Problem som innehåller en parameter men endast kan lösas för speciella värden av denna parameter kallas egenvärdesproblem. Vi skall här nöja oss med ett exempel på ett dylikt problem.

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm Koordinatsystem Koordinatsystem För att verktygen i en CNC-maskin skall kunna styras exakt till samtliga punkter i maskinens arbetsrum, använder man sig av ett koordinatsystem. Den enklaste formen av koordinatsystem

Läs mer

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

Addition av hastigheter

Addition av hastigheter ddition a hastigheter Vi har nu konstaterat att Einsteins postulat leder till en att i inte alltid kan följa år intuition när det gäller hur obseratörer uppfattar rum-tiden. Det är därför inte förånande

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng ENAMEN Kursnummer: Moment: Program: Rättande lärare: Eaminator: Datum: id: Hjälpmedel: Omattning oc betgsgränser: HF Matematik ör basår I EN ekniskt basår Marina Arakelan, Jonass Stenolm & Håkan Strömberg

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Bildbehandling, del 1

Bildbehandling, del 1 Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Differentialekvationer av första ordningen

Differentialekvationer av första ordningen Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

Laboration 4: Digitala bilder

Laboration 4: Digitala bilder Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse

Läs mer

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna. Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Stokastiska variabler

Stokastiska variabler Sannolikhetsteori ör MN1 ht 2004 2004-09 - 07 Bengt Rosén Stokastiska variabler Deinition av stokastisk variabel Den matematiska beskrivningen av ett slumörsök är ett ar (Ω, P( )), där utallsrummet Ω är

Läs mer

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

Komplexa tal. z 2 = a

Komplexa tal. z 2 = a Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Grunderna i. Digital kamerateknik. SM3GDT Hans Sodenkamp SK3BG 2014-01-29

Grunderna i. Digital kamerateknik. SM3GDT Hans Sodenkamp SK3BG 2014-01-29 Grunderna i SM3GDT Hans Sodenkamp SK3BG 2014-01-29 Min resa genom Mpixel världen 4000 3500 3000 2500 2000 1500 1000 500 0 1 3 2MP Nanozoomer 4 Scanner 1,5GP Kamera20,5MP Kamera 3,6GP5 Iphone 8MP Serie1

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISKA HÖGSKOLAN I LINKÖPING Intitutionen för Fyik, Kei och Biologi Galia Pozina Tentaen i ekanik TFYA6 Tillåtna Hjälpedel: Phyic Handbook eller Tefya utan egna anteckningar, aprograerad räknedoa enligt

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap

Läs mer

Att verifiera Biot-Savarts lag för en platt spole samt att bestämma det jordmagnetiska fältets horisontalkomposant

Att verifiera Biot-Savarts lag för en platt spole samt att bestämma det jordmagnetiska fältets horisontalkomposant Elelaboration Magnetisk flödestäthet Uppgift: Materiel: Att erifiera Biot-Saarts lag för en platt spole samt att bestämma det jordmagnetiska fältets horisontalkomposant angentbussol med tillbehör Amperemeter

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer