TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1"

Transkript

1 TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor Teori: Kompendiet, (Kap ), Kap. 3 Maria Magnusson, Datorseende, Inst. ör Systemteknik, Linköpings Uniersitet p. En bild är en D signal D: (t) är en unktion som beror a tiden t. D: (x,y) är en unktion som beror a de spatiella (rums-) koordinaterna x och y. Ex) x, y sinx y x, y sart x, y itt p. Fig.. För en digital bild gäller En digital bild är en samplad D-unktion. Samplen kallas pixlar (picture elements). Antalet pixlar = bildens storlek. En anlig storlek: 5x5= 8 =.5 Mpixel. Ota är samplen kantiserade i interallet [,55]. Dessa ärden öersätts ia en ärgtabell i datorn till gråskaleärden, ds ->sart och 55->itt eller godtyckliga g ärger (pseudo-ärg) Ibland är samplen lyttalsärden. Dessa transormeras till interallet [,55] och idare ia ärgtabell i datorn. En äkta ärgbild har 3 st ärden per pixel. De transormeras ar ör sig till interallet [,55] och sedan idare ut på datorns röda, gröna respektie blåa kanal ilket möjliggör 56 3 = ,8 miljoner ärger. p. 3 Exempel på ärginnehåll i bilder p. PET-bild a hjärna Psedo-ärgbild Äkta ärgbild gråskalebild

2 Exempel på en digital bild p. 5 Vanlig gråskaleärgtabell 56 ärger p. 6 zoom Bildstorlek: 7x pixels Pixelärde (x,y) Linjär transor- mation : : : R G B D/A-omandlare: omandlar ett digitalt ärde till ett analogt ärde i orm a en elektrisk signal I denna 55: kursen jobbar i mest med Till D/A-omandlare gråskaleoch ut på skärmen ärgtabellen. Pseudo-ärgtabell 56 ärger p. 7 Äkta ärgtabell p. 8 Öer 6 miljoner ärger Pixelärde (x,y) : : : R G B??? Ex ) En PET-bild kan isa ar det är aktiitet i hjärnan. Hög aktiitet kan isas röd och låg aktiitet kan isas blå. : : : R Pixelärde [ r (x,y), g (x,y), b (x,y)] : : : G godtycklig transor- mation Linjär trans- ormation Linjär trans- ormation Linjär trans- ormation : : : B 55: Till D/A-omandlare och ut på skärmen Ex) Anändbart t ex när i ill isa negatia ärden blå och positia ärden äd röda. 55: 55 Till D/A-omandlare och ut på skärmens röda kanal 55: 55 Till D/A-omandlare och ut på skärmens gröna kanal 55: 55 Till D/A-omandlare och ut på skärmens blåa kanal

3 D kontinuerlig ouriertransorm p. 9 D ouriertransormen är separabel p. D ouriertransorm j xu y x, y Fu, x, ye dx dy D iners ouriertransorm 3.3 j xu y F u, x, y Fu, e du d 3. Den kan beräknas örst i ena ledden och sen i andra ledden: F j xu y u, x, y e, dx dy dy e jy jxu x, ye dx 3.3 F x, ouriertransorm i y - led Fouriertransormen a en reell unktion är hermitisk p. En bild med amplitudspektrum p. Realdelen är jämn och imaginärdelen är udda. F u, F u, Det går att isa på liknande sätt som ör D. F u, F u, Fu, F u, 3.7 Amplitudspektrum är symmetriskt i origo. se Fig. 3. Amplitudspektrum är spegelsymmetriskt De låga rekenserna dominerar Fig. 3.

4 Realdel och Imaginärdel a Fouriertransormen p. 3 Teorem och samband p. Formelsamlingen och tabell 3. isar teorem ör Douriertransorm, bl a skalnings-, altnings-, translations- och deriata-teoremet. teoremet Dessa är generaliseringar a Dteoremen. Notera också de D-unika teoremen ör generell skalning, rotation och Laplace. Generell skalning : a A a a a Realdelen är jämn Imaginärdelen är udda Fig. 3. Rotation inkeln cos sin sin cos : R 3.6 Transorm-par illustrerade i Teorem och samband Fig. 3. p. 5 D DFT p. 6 Separabla unktioner ger separabel ourier-transorm, se ormelsamlingen, tabell 3.3 och ekation (3.): x, y gx hy Fu, Gu H 3. Rotationssymmetriska transormpar i Tab. 3.: D F D N M D n m N M F D k, l j nk / N ml / M e k l j nk / N ml / M k, l n, me 3. MN n, m 3. Matlabkommando: FD=t(D) Notera dock att den symmetriska arianten, se ekation (3.) och (3.3), ota är att öredra i bild-sammanhang. Matlabkommando: FD=tshit(t(itshit(D)))

5 Teorem och samband Tabell 3. isar teorem ör D DFT. Notera att multiplikation i DFT-domänen motsarar cirkulär altning i spatialdomänen. (Mer om detta nästa öreläsning.) p. 7 D sampling a (x,y) Ingen ikningsdistorsion! p. 8 Fig. 3.3 D sampling a (x,y) Vikningsdistorsion! p. 9 p. Bilder med ouriertransorm. Fig. 3.5a Tillräcklig samplingsrekens. size: 56 size: 56 Fig. 3.

6 Bilder med ouriertransorm. Fig. 3.5b För låg samplingsrekens. p. p. Samband mellan samplad kontinuer- lig ouriertransorm och DFT Fig. 3.7 Eekten a ikningsdistorion som syns tydligt i bl a byxornas randning. Vikningsdistorisionen i i i syns äen i ourierdomänen som en ökad intensitet ör de högre rekenserna. size: size: x8 size: x8 8 size: 8 Relationen mellan kontinuerlig rekens u, och diskret rekens k,l är alltså u k N där N,M är 3.3 l M antalet sampelpunkter och är sampelaståndet. g g g D altning Kontinuerlig x y h x, y hx, y,, d d Linjär diskret p x y h x, y hx, y,, N M x, y h x, y hx, y, N Cirkulär diskret N g D linjär diskret altning x, y h x, y hx, y, Spegla h i x- och y-axeln = rotera 8 o. Glid med den speglade h öer. Multiplicera och summera öerlappande ärden. Detta ger g * = x, y x, y gx y h, p.

7 Beräkningsbörda id altning p. 5 Bildstorlek id D linjär diskret altning p. 6 Fig. 3.8 g 3... Fig Valid: Värden utanör inbilden anses odeinierade => Utbilden blir mindre än inbilden. Full: Värden utanör inbilden anses ara => Utbilden blir större än inbilden. Eller lika stor om de extra ärdena slängs (Same) 5 multiplikationer och 8 additioner per pixel! Hur beräknas D ouriertransormen a /? Byt t x, y, u,, T Sätt dirac-spikar (x,y)=(x)(y) på arje element i altningskärnan. Antag sampelastånd. Detta ger h x x x y/ Tag D kontinuerlig Fouriertransorm H ju ju u, e e / cosu / cos u p. 7 här Lågpassiltrerande altnings- kärna i x-led (u-led) cos u p. 8 y u x / Fig. 3.

8 här Lågpassiltrerande altnings- kärna i y-led (-led) cos p. 9 y u x / Fig. 3. p. 3 Lågpassiltrerande cos u cos altningskärna i här x- och y-led Dämpar höga rekenser (u- och -led) = /6 * / / Fig. 3. Mer lågpassiltrerande altningskärna i x- och y-led (u- och -led) = 66 6 /56 * /6 /6 cos p. 3 u cos här Fig. 3. Lågpassiltrering * p /56 Ex på enkel anändning: ) Den suddiga nummerplåten kan klistras in i Ex på enkel anändning: ) Den suddiga nummerplåten kan klistras in i den skarpa bilden. ) Om det hade unnits ointressanta detaljer i bakgrunden skulle de kunna suddats ut.

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1 Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

TSBB31 Medicinska bilder Föreläsning 3

TSBB31 Medicinska bilder Föreläsning 3 TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

Signaler, information & bilder, föreläsning 12

Signaler, information & bilder, föreläsning 12 Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller Sinal- och Bildbehandlin ÖRELÄSNING 7 D sinalbehandlin (bildbehandlin) Den diitala bilden, ärtabeller D kontinuerli ouriertransorm och D DT D samplin D diskret altnin Låpassiltrerande D altninskärnor Teori:

Läs mer

Signaler, information & bilder, föreläsning 13

Signaler, information & bilder, föreläsning 13 Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,

Läs mer

Signaler, information & bilder, föreläsning 13

Signaler, information & bilder, föreläsning 13 Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se

Läs mer

Signaler, information & bilder, föreläsning 14

Signaler, information & bilder, föreläsning 14 Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor

Läs mer

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande

Läs mer

6 2D signalbehandling. Diskret faltning.

6 2D signalbehandling. Diskret faltning. D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad

Läs mer

Signaler, information & bilder, föreläsning 15

Signaler, information & bilder, föreläsning 15 Översikt Signaler, inormation & bilder, öreläsning 5 Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

TATM79: Föreläsning 5 Trigonometri

TATM79: Föreläsning 5 Trigonometri TATM79: Föreläsning 5 Trigonometri Johan Thim augusti 016 1 Enhetscirkeln Definition. Enhetscirkeln är cirkeln med centrum i origo och radie ett. En punkt P = (a, b på enhetscirkeln uppfyller alltså a

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)

Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1) Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som

Läs mer

7 Olika faltningkärnor. Omsampling. 2D Sampling.

7 Olika faltningkärnor. Omsampling. 2D Sampling. 7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)

Läs mer

Bildförbättring i frekvensdomänen (kap.4)

Bildförbättring i frekvensdomänen (kap.4) Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,

Läs mer

Parametriska kurvor: Parametriska ytor

Parametriska kurvor: Parametriska ytor Kror och ytor Eplicit form Implicit form Kror och ytor Parametrisk form Procerbaserade Polynom Catmll-Clark ekannan och dess datormotsarighet Martin Newell, 975. Gsta aén CID gstat@nada.kth.se Kbiska (grad

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)

Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12) Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB31, 2014-01-10 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL 1: Grundläggande 2D signalbehandling Uppgift

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ 'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

TSBB31 Medicinska bilder Föreläsning 1

TSBB31 Medicinska bilder Föreläsning 1 TSBB3 Medicinska bilder Föreläsnin Inormaion hp://www.cvl.isy.liu.se/educaion/underraduae/sbb3 Repeiion (och lie ny?) av D Fourierransorm Vikia sinaler (unkioner) Tolknin Teorem Eenskaper Linjär sysem

Läs mer

Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm

Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Formelsamling i kursen Medicinska Bilder, TSBB31 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Maria Magnusson, maria.magnusson@liu.se 27 oktober 2016 1 1-D Tidskontinuerliga Fouriertransformer

Läs mer

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans 1 Föreläsning 1, Ht 2 Hambley asnitt 11.11, 14.1 Fyra typer a förstärkare s 0 s i ut s in i A in ut L s in i G L in 0 Spänningsförstärkare Spänningströmförstärkare (transadmittansförst.) i in 0 i in i

Läs mer

Bildbehandling En introduktion. Mediasignaler

Bildbehandling En introduktion. Mediasignaler Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet

Läs mer

Rotation Rotation 187

Rotation Rotation 187 6. Rotation 87 6.. Rotation Vi har tidigare i Exempel 6.5 isat hur man roterar rummets ektorer kring en axel parallell med en a basektorerna. Nu är i redo att besara frågan om hur man rider kring en godtycklig

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen

Läs mer

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Signal- och bildbehandling

Signal- och bildbehandling 1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET

Läs mer

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

Ansiktsigenkänning med MATLAB

Ansiktsigenkänning med MATLAB Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. "The Schmitt Trigger )

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. The Schmitt Trigger ) Operationsförstärkare (OP-förstärkare) Kapitel 8.1-8.2, 8.5 (öersiktligt), 15.5 (t.o.m. "The Schmitt Trigger ) Förstärkare Förstärkare Ofta handlar det om att förstärka en spänning men kan äen ara en ström

Läs mer

MR-laboration: design av pulssekvenser

MR-laboration: design av pulssekvenser MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information

Läs mer

3. Analytiska funktioner.

3. Analytiska funktioner. 33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

Dagens teman. Mängdlära forts. Relationer och funktioner (AEE 1.2-3, AMII K1.2) Definition av de naturliga talen, Peanos axiom.

Dagens teman. Mängdlära forts. Relationer och funktioner (AEE 1.2-3, AMII K1.2) Definition av de naturliga talen, Peanos axiom. Dagens teman Mängdlära orts. Relationer och unktioner (AEE 1.2-3, AMII K1.2) Deinition av de naturliga talen, Peanos axiom. Relationer och unktioner Relationer Generell deinition: En relation R på mängden

Läs mer

Histogramberäkning på en liten bild

Histogramberäkning på en liten bild Signal- och Bildbehandling FÖRELÄSNING Histogram och tröskelsättning Binär bildbehandling Morfologiska operationer Dilation (Expansion) och Erosion () och kombinationer Avståndskartor Mäta avstånd i bilder

Läs mer

FUKTÄNDRINGAR. Lars-Olof Nilsson. En kvalitativ metod att skriva fukthistoria och förutsäga fuktförändringar i oventilerade konstruktionsdelar

FUKTÄNDRINGAR. Lars-Olof Nilsson. En kvalitativ metod att skriva fukthistoria och förutsäga fuktförändringar i oventilerade konstruktionsdelar LUNDS EKNISKA HÖGSKOLA FUKCENRUM VID LUNDS UNIVERSIE Ad Byggnadsmaterial FUKÄNDRINGAR En kalitati metod att skria fukthistoria och förutsäga fuktförändringar i oentilerade konstruktionsdelar Kursmaterial

Läs mer

Luft. film n. I 2 Luft

Luft. film n. I 2 Luft Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen ör Fysik, Kemi och Biologi Galia Pozina Tentamen i mekanik TFYA16 014-04- kl. 14-19 Tillåtna Hjälpmedel: Physics Handbook eller Teyma utan egna anteckningar,

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37

Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37 Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B. MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 343 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standard 73 88 34 LMA55 Matematik KI, del B Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)

Läs mer

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).

Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ). STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i

Läs mer

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc) 1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Tentamen i Matematisk analys MVE045, Lösningsförslag

Tentamen i Matematisk analys MVE045, Lösningsförslag Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar

Läs mer

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från

Läs mer

Planering för Matematik kurs E

Planering för Matematik kurs E Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Säkerhetsavstånd i bilköer Rätt hastighet (och rätt förare) räddar liv!

Säkerhetsavstånd i bilköer Rätt hastighet (och rätt förare) räddar liv! Projektarbete åren 008 Sid:1 Säkerhetsastånd i bilköer Rätt hastighet (och rätt förare) räddar li! Linus Karlsson linuskar@kth.se Geir Ynge Paulson gypa@kth.se Jacob Langer jlanger@kth.se Tobias Gunnarsson

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

A dt = 5 2 da dt + A 100 =

A dt = 5 2 da dt + A 100 = Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

Svar och arbeta vidare med Cadetgy 2008

Svar och arbeta vidare med Cadetgy 2008 Sar och arbeta idare med Cadetgy 2008 Det finns många intressanta idéer i årets Känguruaktiiteter. Problemen kan inspirera underisningen under flera lektioner. Här ger i några förslag att arbeta idare

Läs mer

Reglerteori. Föreläsning 10. Torkel Glad

Reglerteori. Föreläsning 10. Torkel Glad Reglerteori. Föreläsning 10 Torkel Glad Föreläsning 10 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x): f(0)

Läs mer

7 Extremvärden med bivillkor, obegränsade områden

7 Extremvärden med bivillkor, obegränsade områden Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

UltraLink Controller FTCU. Dimensioner. Beskrivning. Underhåll Behöver vanligtvis inget underhåll. Fabriksinställningar. Beställningsexempel

UltraLink Controller FTCU. Dimensioner. Beskrivning. Underhåll Behöver vanligtvis inget underhåll. Fabriksinställningar. Beställningsexempel Dimensioner 315 H l B Beskrining Anändning: Controller är lämplig för mätning och styrning a luftflöde samt temperaturmätning. Kommunikation upprättas ia analoga signaler eller digital signal med Modbus.

Läs mer

Crash Course Envarre2- Differentialekvationer

Crash Course Envarre2- Differentialekvationer Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till

Läs mer