Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation"

Transkript

1 Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas i frekvensdomänen och i spatialplanet. Handledare: TFE/US Etapp 2 Ett verktyg med Wavelets beställs för komprimering av mätdata i stora volymer Handledare: TFE/BT Stoppdatum för P2-projektets rapport 1 : Se planen (kursens hemsida). 1 Den skriftliga dokumentationen skall bestå av en teknisk rapport (riktad till beställaren) samt en kortfattad rapport (delar enligt projektmodellen) om projektarbetet (riktad till projektets handledare). Dokumentationen läggs senast på stoppdatum till kursens P2- dokument-databas. Etapp 1 Problem med 2-dimensionella mätdata Problembeskrivning för etapp 1 Uppdragsgivaren överväger att använda signalbehandling för sina 2-dimensionella mätdata/bilder. För att förstå hur det kan användas får ni i uppdrag att göra en förstudie och se hur filtrering av mätdata fungerar både i spatialdomänen och i frekvensdomänen. Ni ska också utvärdera vilka fördelar och nackdelar som finns med de olika metoderna. Man vill även ta fram ett verktyg för klassificering av 2-dimensionella mätdata, och har gett er ett antal bilder som ni ska prova att klassificera. Uppdragsgivaren önskar att motsvarande signalbehandling utförs med Matlab där m-koden levereras tillsammans med analysen/rapporten. I. Hur kan man med Fouriertransformen behandla 2-dimensionella mätdata? II. Hur tillämpas faltning i spatialplanet? III. Hur tillämpas filtrering i frekvensdomänen? IV. Kan man klassificera 2-dimensionella mätdata med FFT? I så fall hur? V. Ett antal detaljfrågor ingår även i uppdraget. Man har sammanställt dessa Se bilga P2-1 Länk till 2-dim exempel-data/bilder (.zip-fil med namnet bilder.zip) hittar du i kursens Moodle.

2 Tvådimensionell signalbehandling Filtrering och fouriertransformering Tillämpad Digital Signalbehandling Tips på användbara MATLAB-funktioner anges med fet stil (ta reda på hur dessa fungerar innan de används, help funktionsnamnet ), MATLAB-kod är skriven med typsnittet courier i den här specifikationen. Del 1 Fouriertransform 1.1 Fourieranalys i två dimensioner Här kommer ni att skapa en bild som ni sedan ska undersöka dess egenskaper i frekvensdomänen. Pixlarna i bilden representeras av ett flyttal mellan 0 och 1. Vid vissa beräkningar måste du skala om pixelvärden så att de ligger inom det tillåtna området. Ett hjälpmedel för att få en uppfattning om pixlarnas intensitetsvärden är funktionen hist. Den ritar upp ett histogram som visar frekvensen för varje intensitetsvärde. Börja med att studera en (egentligen imensionell) sinussignal. Nedanståe kod skapar en pixlars bild med två perioder av en horisontell sinusvåg. Bilden är skapad för att kunna visas med imshow, alltså uppflyttad och skalad att ligga mellan 0 och 1. Signalen centreras sedan runt x-axeln innan fouriertransformen beräknas. (fft, fft2, fftshift) clear; %ger en bild av format antal x antal antal=64; %antal perioder i bilden perioder=2; %orginalbild for m=1:1:antal for n=1:1:antal bild(m,n)= *sin(2.*pi.*(n./(antal./perioder))); subplot(1,2,1),imshow(bild);title('originalbild'); %ta bort bakgrunds-grånivå A=bild-.5; B=abs(fftshift(fft2(A))); subplot(1,2,2),imshow(b);title('beloppskaraktär'); Tolka resultatet av fouriertransformen. Vad borde frekvensspektrat visa (transformen av en sinusvåg)? Stämmer resultatet med det teoretiska resultatet? Vad händer med frekvensspektrat om man istället låter sinusvågen löpa vertikalt över bilden? Skapa en bild med en 9 9 pixel vit kvadrat i mitten av bilden, svart i övrigt. Här kan man behöva skala om frekvensbilden för att kunna visualisera den. Prova att använda en logtransform (log(abs(fftshift(fft2(bild)))+1)), eller skala om bilden så att alla värden ligger mellan 0-1 (bild2=(bild-min(min(bild)))./(max(max(bild))- min(min(bild)))), eller båda omskalningar. Beskriv frekvensspektrat, stämmer det med teorin (transformen av en kvadrat)? 1.2. Signalernas utbredning

3 Nu ska ni ändra lite på signalerna i föregåe uppgifter. Gör kvadraten i uppgift större, pixlar Hur förändras frekvensspektrat? Förklara hur signalens utbredning i spatialplanet påverkar utbredningen i frekvensdomänen. Ändra utbredningen på signalen i 1.1 genom att rita upp 2,5 perioder av sinusvågen. Skala om frekvensbilden så att den lämpar sig för visualisering Hur förändras utbredningen? Skiljer det sig från föregåe uppgift? Läs in en riktig bild, smregit.bmp som finns på hemsidan, och skapa en frekvensbeskrivning av denna. Förklara hur du burit dig åt. Gör en verbal tolkning av din bild! (imread, ind2gray) 1.3. Invers FFT och fasbeloppet Nedanståe kod skapar en enkel bild, en vertikal balk. I figuren visas denna och frekvensspektrat för bilden. %ger en bild av format antal x antal antal=64; bild=zeros(antal,antal); for n=antal/4-2:1:antal/4+2 for m=1:1:antal bild(m,n)=1; %originalbild; subplot(1,3,1),imshow(bild);title('orginalbild'); %beloppet av fft-analys fftbild=(fft2(bild)); B=abs(fftshift(fftbild))./300; %Skala om för visualisering subplot(1,3,2),imshow(b);title('frekvensinnehåll'); %invers fft av föregåe bild C=(ifft2(fftbild)); subplot(1,3,3),imshow(c);title('invers fft'); Nu ska ni rita upp en horisontell balk som ligger högst upp i bilden. Denna kod ritar upp balken, frekvensbeloppet av FFT:n av balken, frekvensernas fas, samt ett imensionellt snitt genom fasen, visat liggande. %ger en bild av format antal x antal antal=64; bild=zeros(antal,antal); for m=1:1:5 for n=1:1:antal bild(m,n)=1; %originalbild; subplot(2,2,1),imshow(bild);title('orginalbild'); fftbild=(fft2(bild)); %beloppet av fft-analys

4 fftbildbelopp=abs(fftshift(fftbild)); B=(fftbildbelopp-min(min(fftbildbelopp)))./(max(max(fftbildbelopp))- min(min(fftbildbelopp))); subplot(2,2,2),imshow(b);title('frekvensinnehåll'); %beräkna fasen C=angle(fftshift(fftbild)); D=(C+pi)/(2.*pi); subplot(2,2,3),imshow(d);title('faskaraktär'); E=C(:,antal/2+1); F=E'; G=unwrap(F); K=G'; subplot(2,2,4),plot(k);title('faskaraktär imensionellt'); Flytta balken i höjdled. Låt balken börja vid 11:e och 21:a pixeln i stället för första Hur förändras beloppsbilden när balken flyttas? Hur förändras fasen? Del 2 Filtrering 2.1. Faltning (filtrering i spatialplanet) För att filtrera en bild i spatialplanet använder man faltning; man faltar helt enkelt insignalen med systemets (filtrets) impulssvar. Ofta är insignalen en lång signalsekvens, medan impulssvaret är en kortare sekvens. Den senare kallas ibland för faltningskärna. Faltning heter på engelska "convolution". (conv, conv2) Skapa en bild med en pixlars kvadrat i mitten, liknande den i uppgift 2. Gör sedan en faltningskärna med följande utsee enligt nedanståe MATLAB-kod: /9 filter=ones(3, 3)./9; Filtrera bilden genom att falta den med filtret Hur förändras bilden efter filtreringen? Jämför frekvensspektrat av bilden före och efter filtrering. Hur har bildens frekvenser påverkats? Ändra storleken på filtret till 7 7 pixlar. (Filtret är ett medelvärdesfilter, dvs. det beräknar medelvärdet av alla pixlar i ett område runt aktuell pixel. Kom därför ihåg att dividera ettorna med antalet pixlar i kärnan.) Gör om filtreringen. Hur påverkas bilden nu? Jämför med föregåe uppgift. Vilken betydelse har storleken på faltningskärnorna? Skapa ett nytt filter med följande utsee (Laplace-filter): filter=[0 1 0; 1-4 1; 0 1 0]; Filtrera originalbilden med filtret. Förklara hur bilden och dess frekvensspektra påverkas.

5 2.2. Filtrering i frekvensdomänen Den andra metoden för att filtrera används i frekvensplanet. När man filtrerar i frekvensdomänen multiplicerar man fouriertransformen av en signal med ett filter som förstärker eller försvagar vissa frekvenser. Filtret kan antingen skapas i frekvensdomänen, eller bestå av transformen av en faltningskärna. Transformera både bilden med kvadraten och 3 3 medelvärdeskärnan: [M1 N1]=size(bild); [M2 N2]=size(filter); M=M1+M2-1; %Bilderna måste "zero-paddas" till denna storlek N=N1+N2-1; fftbild=fftshift(fft2(bild, M, N)); % Bestäm storleken på FFT:n, fftfilter=fftshift(fft2(filter, M, N)); % MATLAB zero-paddar automatiskt B1=log(abs(fftbild)+1); B1=(B1-min(min(B1)))./(max(max(B1))-min(min(B1))); C1=log(abs(fftfilter)+1); C1=(C1-min(min(C1)))./(max(max(C1))-min(min(C1))); figure subplot(1,2,1),imshow(b1);title('originalbild'); subplot(1,2,2),imshow(c1);title('filter'); Filtrera bilden genom att multiplicera dess FFT med filtrets nybild=fftbild.*fftfilter; %elementvis multiplikation D1=log(abs(nybild)+1); D1=(D1-min(min(D1)))./(max(max(D1))-min(min(D1))); figure subplot(1,2,1),imshow(d1);title('filtrerad bild, frekvensbelopp'); och transformera tillbaka till spatialdomänen: nybild=fftshift(nybild); %skifta tillbaka recreate=ifft2(nybild); subplot(1,2,2),imshow(recreate);title('filtrerad bild'); Beskriv hur filtret ser ut. Vilka frekvenser försvagas? Hur påverkas bilden? Jämför men bilden du filtrerade genom faltning i 2.1. Vad skiljer de filtrerade bilderna åt? Hur ser filtrets frekvensbelopp ut om man ökar kärnans storlek till 7 7? Stämmer detta med resultatet i 2.1.2? Vad finns det för fördelar och nackdelar med att filtrera i spatial resp. frekvensdomänen? Del 3 Klassificering I filen bilder.zip finns det exempel på olika bilder. Bilderna består av tre olika sorters mönster, horisontala linjer, vertikala linjer och rutmönster. Försök att göra en automatisk klassificering i tre grupper med hjälp av FFT.

6 Etapp 2 Komprimering av 2-dimensionella mätdata Problembeskrivning och uppdragsspecifikation för etapp 2 Målet med projektet är att utreda om uppdragsgivaren skall övergå till att använda Wavelets till sitt stora arkiv med mätdata/bilder. F.n. använder man DCT vid den elektroniska lagringen men man är osäker på fördelarna/nackdelarna på ett eventuellt byte (se även bilaga P2-2). I en första etapp vill man ha klarhet i följande frågor (se nedan) och förutom källkoden i Matlab m-kod beställer man en tillhörande teknisk rapport med motsvarande konkreta analyser/exempel/bilder. VI. Hur kan jag med verktyget Wavelets komprimera mina mätdata? Mätdata utgörs av en vald 2-dimensionell s/v bild. VII. Hur rekonstruerar jag mina mätdata? Hur kan jag återbilda data med mindre rekonstruktionsfel - Vilka data (eg. waveletskoefficienter) har minst- respektive mest betydelse? VIII. Hur bra är rekonstruktionen? I det teoretiska fallet - respektive i ett konkret fall med en vald testbild - hur stort är felet? Hur stor del av bildens Wavletskoefficienter kan ha värdet 0 utan att den återskapade bildens kvalitet blir betydligt sämre? Finns det några lämpliga mått för att mäta/jämföra slutresultatets kvalitet? IX. Jämför Waveletstranformen med DCT (diskreta cosinustransformen. Vad blir skillnaden mellan transformmetoderna rent resultatmässigt? Hur skiljer sig metoderna då data vid rekonstruktionen tillåts gå förlorade till begränsad del? X. Man har samplade mätdata i två fall: a) en dimension b) två dimensioner För båda fallen gäller att signalen/mätdata har Gaussiskt vitt brus adderad. Ger Waveletstransformen något stöd för att filtrera/renodla signalen/mätdata? I så fall hur bra/dåligt fungerar det i några exempelfall jämfört med t.ex. LP-filtrering

7 Verktyg för wavelets i Matlab: Bilaga P2-2

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

Tentamen Bildanalys (TDBC30) 5p

Tentamen Bildanalys (TDBC30) 5p Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

Laboration 4: Digitala bilder

Laboration 4: Digitala bilder Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse

Läs mer

Bildbehandling En introduktion. Mediasignaler

Bildbehandling En introduktion. Mediasignaler Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW Institutionen för data- och elektroteknik 004-03-15 Signalbehandling i Matlab och LabVIEW 1 Introduktion Vi skall i denna laboration bekanta oss med hur vi kan använda programmen Matlab och LabVIEW för

Läs mer

Bildbehandling, del 1

Bildbehandling, del 1 Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

Laboration i tidsdiskreta system

Laboration i tidsdiskreta system Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt

Läs mer

Institutionen för data- och elektroteknik 2004-03-22 Tillämpad digital signalbehandling Veckoplanering för signalbehandlingsteorin

Institutionen för data- och elektroteknik 2004-03-22 Tillämpad digital signalbehandling Veckoplanering för signalbehandlingsteorin Institutionen för data- och elektroteknik 2004-03-22 Veckoplanering för signalbehandlingsteorin Allmänt Erfarenheten från tidigare år säger att kursen upplevs som svår. Detta tror jag beror, inte på att

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

Bildförbättring av registreringsskyltar i stillbilder med hjälp av super-resolution

Bildförbättring av registreringsskyltar i stillbilder med hjälp av super-resolution LiU-ITN-TEK-A-15/009-SE Bildförbättring av registreringsskyltar i stillbilder med hjälp av super-resolution Martin Bengtsson Emil Ågren 2015-02-27 Department of Science and Technology Linköping University

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att

Läs mer

2F1120 Spektrala transformer för Media Tentamen

2F1120 Spektrala transformer för Media Tentamen F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad

Läs mer

Fingerprint Matching

Fingerprint Matching Fingerprint Matching Björn Gustafsson bjogu419 Linus Hilding linhi307 Joakim Lindborg joali995 Avancerad bildbehandling TNM034 Projektkurs Biometri 2006 1 Innehållsförteckning 1 Innehållsförteckning 2

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007)

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007) Laboration 1 Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått S. Gooran (VT2007) Syfte: Denna laboration är till för att öka förståelsen för olika rastreringstekniker

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Histogram över kanter i bilder

Histogram över kanter i bilder Histogram över kanter i bilder Metod Både den svartvita kanstdetekteringen och detekteringen av färgkanter följer samma metod. Först görs en sobelfiltrering i både vertikal och horisontell led. De pixlar

Läs mer

BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA

BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA Author: Stefan Olsson Published on IPQ website: April 10, 2015 Föreliggande uppfinning avser en metod för bildbehandling

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

Laboration 2: Filtreringsoperationer

Laboration 2: Filtreringsoperationer Skolan för Datavetenskap och Kommunikation, KTH Danica Kragic DD2422 Bildbehandling och Datorseende gk: Laboration 2: Filtreringsoperationer Målet med denna laboration är att du skall få bekanta dig med

Läs mer

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing Grafiska system Signalbehandling och aliasing Gustav Taxén gustavt@nada.kth.se Processor Minne Frame buffer 2D1640 Grafik och Interaktionsprogrammering VT 2006 Färgblandning Pigmentblandning för f att

Läs mer

Igenkänning av bilddata med hjälp av Kohonen-nätverk, samt beskrivning av program

Igenkänning av bilddata med hjälp av Kohonen-nätverk, samt beskrivning av program Igenkänning av bilddata med hjälp av Kohonen-nätverk, samt beskrivning av program Jerker Björkqvist September 2001 1 Introduktion I detta arbete undersökts hur klassificering av bilddata kan göras med

Läs mer

Inledning. Initiering av miljön. Att köra MatLab. Labrapporten

Inledning. Initiering av miljön. Att köra MatLab. Labrapporten Inledning Initiering av miljön För att få rätt miljö är det enklast att aktivera kursen TSDT06 Signalteori i programmet kurstool. Kurstool kan man starta i bakgrundsmenyn. Alternativt räcker det med att

Läs mer

Tentamen i Signaler och kommunikation, ETT080

Tentamen i Signaler och kommunikation, ETT080 Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

Signalbehandling Röstigenkänning

Signalbehandling Röstigenkänning L A B O R A T I O N S R A P P O R T Kurs: Klass: Datum: I ämnet Signalbehandling ISI019 Enk3 011211 Signalbehandling Röstigenkänning Jonas Lindström Martin Bergström INSTITUTIONEN I SKELLEFTEÅ Sida: 1

Läs mer

SMS047 Mediakodning. Introduktion. Frank Sjöberg. Introduktion. Introduktion

SMS047 Mediakodning. Introduktion. Frank Sjöberg. Introduktion. Introduktion SMS047 Mediakodning Frank Sjöberg Email: frank@sm.luth.se Rum A3207 Kursen behandlar kodning av fyra olika typer av media Text & annan data Bild Ljud (ej tal) Video Vi kommer i första hand att studera

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

Mätningar med avancerade metoder

Mätningar med avancerade metoder Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare

Läs mer

Laboration ( ELEKTRO

Laboration ( ELEKTRO UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker ohansson ohan Pålsson 21-2-16 Rev 1.1 $.7,9$),/7(5 Laboration ( ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering

TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik

Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik Grunderna i programmeringsteknik 1. Vad är Känna till nämnda programmering, begrepp. Kunna kompilera högnivå språk, och köra program i det i kompilering, kursen använda tolkning, virtuella programmeringsspråket.

Läs mer

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling

Läs mer

Digital signalbehandling Digitalt Ljud

Digital signalbehandling Digitalt Ljud Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1

Läs mer

TSDT15 Signaler och System

TSDT15 Signaler och System TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys

Läs mer

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen

Läs mer

Signalbehandling och aliasing. Gustav Taxén

Signalbehandling och aliasing. Gustav Taxén Signalbehandling och aliasing Gustav Taxén gustavt@csc.kth.se 2D1640 Grafik och Interaktionsprogrammering VT 2007 Grafiska system Processor Minne Frame buffer Färgblandning Pigmentblandning för f att åstadkomma

Läs mer

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ

'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ 'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En

Läs mer

Tillämpad Fysik Och Elektronik 1

Tillämpad Fysik Och Elektronik 1 FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4 IHM Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 4 Datum 213-11-7 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare Linjal

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Institutionen för hälsovetenskap och medicin Kod: Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Datum 2013-08-19 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Spektralanalys - konsten att hitta frekvensinnehållet i en signal

Spektralanalys - konsten att hitta frekvensinnehållet i en signal Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013

Läs mer

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2) LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj

Läs mer

Datorövning: Fouriertransform med Python

Datorövning: Fouriertransform med Python Datorövning i Elektromagnetism och vågor (FK5019) Övningsledare: bart.pelssers@fysik.su.se & ashraf@fysik.su.se Datorövning: Fouriertransform med Python Skicka in individuellt skrivna rapporter på engelska

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer

Laboration 1: Aktiva Filter ( tid: ca 4 tim)

Laboration 1: Aktiva Filter ( tid: ca 4 tim) 091129/Thomas Munther IDE-sektionen/Högskolan Halmstad Uppgift 1) Laboration 1: Aktiva Filter ( tid: ca 4 tim) Vi skall använda en krets UAF42AP. Det är är ett universellt aktivt filter som kan konfigureras

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

Signaler & Signalanalys

Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla

Läs mer

Ett enkelt OCR-system

Ett enkelt OCR-system P r o j e k t i B i l d a n a l y s Ett enkelt OCR-system av Anders Fredriksson F98 Fredrik Rosqvist F98 Handledare: Magnus Oskarsson Lunds Tekniska Högskola 2001-11-29 - Sida 1 - 1.Inledning Många människor

Läs mer

Inledning. Kapitel 1. 1.1 Signaler och system

Inledning. Kapitel 1. 1.1 Signaler och system Kapitel 1 Inledning 1.1 Signaler och system Temat för denna kurs är signaler och system. En kvantitativ behandling av signaler och system och deras växelverkan utgör grunden för den del av informationstekniken

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Tentamen i Medicinsk teknik EEM065 för Bt2. 2008-05-31 kl. 8.30-12.30 Tillåtna hjälpmedel: Valfri formelsamling. Formelsamling i Elektromagnetisk fältteori Formelsamling i Elektriska kretsar, Valfri kalkylator

Läs mer

Labbrapport. Isingmodel

Labbrapport. Isingmodel Labbrapport Auhtor: Mesut Ogur, 842-879 E-mail: salako s@hotmail.com Author: Monica Lundemo, 8524-663 E-mail: m lundemo2@hotmail.com Handledare: Bo Hellsing Göteborgs Universitet Göteborg, Sverige, 27--

Läs mer

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra

Läs mer

Flervariabelanalys, inriktning bildbehandling, datorövning 3

Flervariabelanalys, inriktning bildbehandling, datorövning 3 Matematiska institutionen, LTH, December 2, 2004 Flervariabelanalys, inriktning bildbehandling, datorövning 3 Matlab Gå till underkatalogen matlab (skapa den om den inte redan finns) av din rotkatalog.

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Faltningsreverb i realtidsimplementering

Faltningsreverb i realtidsimplementering Faltningsreverb i realtidsimplementering SMS45 Lp1 26 DSP-system i praktiken Jörgen Anderton - jorand-3@student.ltu.se Henrik Wikner - henwik-1@student.ltu.se Introduktion Digitala reverb kan delas upp

Läs mer

Procedurell 3D-eld på grafikkortet

Procedurell 3D-eld på grafikkortet Procedurell 3D-eld på grafikkortet TNM084 Procedurella metoder för bilder Anders Hedblom, andhe893@student.liu.se 2012-04-04 1. Bakgrund 1.1. Procedurella metoder Procedurella metoder har ett stort användningsområde

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Tentamen, Programmeringsteknik för BME, F och N

Tentamen, Programmeringsteknik för BME, F och N LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, Programmeringsteknik för BME, F och N 2015 06 03, 14.00 19.00 Anvisningar: Preliminärt ger uppgifterna 7 + 11 + 16 + 11 = 45 poäng.

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen

Läs mer

A N D E R S 2 0. En liten informationsbroschyr om RASTRERING VÄND

A N D E R S 2 0. En liten informationsbroschyr om RASTRERING VÄND A N D E R S 2 0 En liten informationsbroschyr om RASTRERING VÄND Varför används rastrering? Inom nästan all tryckeri- och skrivarteknik idag används någon form av rastrering för att göra tryckningen möjlig.

Läs mer

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion?

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Ett problem med Fourier- och Laplacetransformen är att de kräver att signalen som skall transformeras kan skrivas som en

Läs mer