we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska metoder ta atagade om de derlggade fördelge!,,5,,5, -5, -,5,,5 5, 7,5
parametrsk ckeparametrsk -Sample t-test: kräver ormalfördelg för de derlggade poplatoera Oe-ay NOV: kräver ormalfördelg för alla grpper, ordalskalor (storleksordg fs, me dffereser sakar betydelse: t.ex. storlek av T-tröjor) dessa data ka dock ragordas styrka ka vara mdre jämfört med parametrska test
poplato ormalfördelad -Sample t-test (-Sample z-test) Pared t-test poplato te ormalfördelad -Sample Sg test -Sample lcoxo test lcoxo-sged ak test allmä fördelg symmetrsk fördelg -Sample Sg test på dfferesera -Sample lcoxo på dfferesera -Sample t-test Ma- -test : wlcox.test Oe-ay NOV Krskal-alls test : krskal.test
p P( X H H a : p.5 ~ : p.5 eller ) p.5 eller p.5 Testvarabel: M atalet värde som är större ä ~ M krt (,.5) der : mycket stora eller mycket små värde för M p värdet elgt bomalfördelge p P( H X M ) P( X M ) sdgt 5 6 7 8 9 5 6 med x x x ta x x x x x x x x x x x x x Sherw, C.M.. Mrrors as potetal evrometal erchmet for dvdally hosed laboratory mce. ppl. m. ehav. Sc. 87: 95-.
H : p.5 H stckprov : M M 6,.5 der H p P M P M P M P.6.989. a : p.5 M tvåsdgt tvåsdgt test test Dstrbto Dstrbtoder Plot H omal; =6; p=,5,,5.6 +.6 =. Probablty,,5,,6,6 Det värdet v fck är alltså mycket osaolkt der H P-värdet: det observerade värdet, eller ä mera
M M z (,, p N M ~ p), sn N, der H p, p p der H z måste därför vara N(,) -fördelad krt z tvåsdgt v förkastar H om z verkar te vara N(,)-fördelad.
prövar om medae för e fördelg är lka med ett hypotetskt värde gör detsamma som Sg test, me fördelge av de derlggade poplatoe måste vara symmetrsk ragordg räkas t, som för måga cke-parametrska test Exempel: V har följade värde: -, -6,, -, -, -7, 5,6, -, -, -5, -, -, Om v t.ex. testar om = smmeras alla rag värde abs rag -,, 6-6, 6, 9,, -,, 6 8 9 5 6 7 75 -,, -7, 7, 5,6 5,6 8,, 5 krt m, 6 lower tal pper tal tabell tvåsdgt -,, -,, -5, 5, 7 -,, -,,
H : Om medae av e symmetrsk fördelg var borde + - vara gefär lka stora. H förkastas är t.ex. OS!: H lågt värde!... eftersom =m( +, - ) =5 osaolkt att det blr så om fördelge är symmetrsk =
sn E, V der H totala ragsmma E z V E V krt z tvåsdgt större ä stämmer, v testar j + två parade stckprov (t. ex före/efter) är de detska (H ) praktskt taget detsamma som Oe-Sample lcoxo test, se ere Exempel: agst måad Lareyses, I.,. lst, L. De Temmerma, C. Lemmes ad. Celemas.. Cloal varato metal accmlato ad bomass prodcto a poplar coppce cltre. I. Seasoal varato leaf, wood ad bark cocetratos. Evro. Pollto : 85-9.
g Nov Dff abs rag 8,, -,, 6, 6, -6, 6, 9 6,5 5,,,,6 5,6 -,, 9,5,5 -,, 8, 5,5-7, 7, 8,,7 5,6 5,6 8,,,, 5 7,9 9,9 -,, 8,, -,, 8,9, -5, 5, 7,6,7 -,,, 6,8 -,,
rag 6 6 8 9 5 6 7 75 9 8 krt m, 6 lower tal pper tal tabell tvåsdgt 5 7 a : 5 6 7 : 8 9 5
värde 5 6 7 8 9 5 sample bdrag tll eller eller värde 5 6 7 8 9 5 sample bdrag tll
mella fördelgara för poplato respektve poplato tabell P med taled oe tabell P med taled two o krt o krt :, m :
värde 5 6 7 8 9 5 sample bdrag tll rag 5 6 7 8 6 5 7 8 6 v tgår frå lcoxos ragsmma 6 6 som fört z m N, m ( ta"tes" ) krt z tvåsdgt
a k
k V H smma av alla rag k V testvarabel lkar V: medelvärdet över alla rag för motsvarar SST k stckprov medelvärdet över alla rag NOV för grpp Smma över alla rag H gäller alla gefär lka V lte V H k V motsvarar k SST NOV testvarabel H förkastas om H (alltså äve V) är stor, så fall avvker j grppmedelvärdea frå det gemesamma medelvärdet. Om gäller är testvarabel H gefär - fördelad, om alla är desstom tllräcklgt stora ( 5 stor: krt H ( f ) f k pper tal
Expermet: flytade på fskaras vkt: Vkte av fsk 8 6 5 5 7 8 8 6 6 8 6 9 9 5 7