TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

Relevanta dokument
TENTAMEN Datum: 11 feb 08

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

TENTAMEN HF1006 och HF1008

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN HF1006 och HF1008

Allmänt om korttidsplanering. Systemplanering Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem!

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

TENTAMEN HF1006 och HF1008

Differentialekvationssystem

MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

Ansvarig lärare: Helene Lidestam, tfn Salarna besöks ca kl Kursadministratör: Azra Mujkic, tfn 1104,

TENTAMEN HF1006 och HF1008

Program: DATA, ELEKTRO

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

TENTAMEN HF1006 och HF1008

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2

TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014

Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Reglerteknik AK, FRT010

AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år.

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Kontrollskrivning KS1T

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god

Signal- och bildbehandling TSBB14

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor

TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

Föreläsning 19: Fria svängningar I

Elektronik. Strömmar, Spänningar, Motstånd, Kretsteori. Översikt. Varför elektricitet? Genast ett exempel

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

AMatematiska institutionen avd matematisk statistik

Om exponentialfunktioner och logaritmer

Repetitionsuppgifter

FREDAGEN DEN 21 AUGUSTI 2015, KL Ansvarig lärare: Helene Lidestam, tfn Salarna besöks ca kl 15.30

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:

TENTAMEN HF1006 och HF1008

uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a

AMatematiska institutionen avd matematisk statistik

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Signal- och bildbehandling TSBB14

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Elektronik. Inledning. Översikt. Varför elektricitet? Genast ett exempel

Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic

Tentamensskrivning i Matematik IV, 5B1210.

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00

Förklaring:

TISDAGEN DEN 20 AUGUSTI 2013, KL Ansvarig lärare: Helene Lidestam, tfn Salarna besöks ca kl 9

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Om exponentialfunktioner och logaritmer

Fyll i ett konvolut (återanvänds tills uppgiften godkänd) Han har sitt rum bredvid mitt

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Anm 3: Var noga med att läsa och studera kurslitteraturen.

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP

Lösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl

Dugga 2 i Matematisk grundkurs

Bandpassfilter inte så tydligt, skriv istället:

TENTAMEN I MATEMATISK STATISTIK 19 nov 07

SF1625 Envariabelanalys Lösningsförslag till tentamen

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

Lösningar till Matematisk analys IV,

Transkript:

TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels. Lärare: Armn Hallovc Denna enamensla får ej behållas efer enamensllfälle uan lämnas n llsammans med läsnngar. Poängfördelnng och beygsgränser: Tenamen besår av 8 ugfer á 4 och ger mamal oäng. Beygsgränser: För beyg A, B, C, D, E krävs 0, 4, 0, 6 resekve oäng. Komleerng: 0 oäng å enamen ger rä ll komleerng (beyg F). Vem som har rä ll komleerng framgår av beyge F å MINA SIDOR. Komleerng sker c:a vå veckor efer a enamen är räad. Om komleerng är godkänd raoreras beyg E, annars raoreras F. Ugf. (4 oäng) a) () Besäm den magnära delen Im(z) om z = ( ) 4 6. b) () Besäm alla lösnngar med avseende å z ll ekvaonen z =, 50 där z är e komle al. c) () Ra de komlea allane den kurva som defneras av z = z Lednng: Sä z = y och förenkla ekvaonen. Ugf. ( 4 oäng) Besäm alla lösnngar då 5z z 0z = 0. z = är en lösnng ll ekvaonen Var god vänd.

Ugf. ( 4 oäng) a ) () Lös följande dfferenalekvaon (y ) y = (y )( y )( 5). b) () Ange lösnngen å elc form. c) () Besäm även evenuella sngulära lösnngar. Ugf 4. ( 4 oäng) Besäm den lösnng ll följande dfferenalekvaon ( ( =, > 0 som sasferar vllkore ( ) =. Ugf 5. ( 4 oäng) Lös följande dfferenalekvaoner med avseende å y () a) () y 6 y 5y = 0 7 b) () y y 5y = 8 c) () y y = (resonansfall ). Ugf 6. (4 oäng) Besäm srömmen ( nedansående LRC kres om L= henry, R= ohm, C= farad och u( = e vol då (0)=0 amere och ( 0) = amere/s. Var god vänd.

Ugf 7. 7a)( oäng) Säll u e ekvaonssysem med se ekvaoner för nedansående nä, med avseende å srömmarna (, (, (, 4 ( och 5 ( and laddnngen q ( ( den sjäe ekvaonen är e samband mellan q ( och ( ). Du behöver ne lösa syseme! 7b) ( oäng) I ankar A och B fnns 00 ler resekve 00 ler salvaen som nnehåller, 80g, resekve 90 g sal. Tanken A llförs 0 ler vaen er mnu som nnehåller 4 gram sal er ler. Vaen blandas ordenlg och 5 ler förs ll B och därefer 5 ler från B förs ll A och 0 ler rnner u, enlg blden nedan. Lå (,y( beeckna salmängden ( gram) A, B vd dsmomen. Säll u e ekvaonssysem för ( och y( och ange begynnelsevllkor. Du behöver ne lösa syseme! Ugf 8. ( 4 oäng) Använd subsuonen z ( ) = sn( y( )) för a lösa följande (cke-lnjära) ekvaon an( y) y = cos( y) π med avseende å y(), v anar a 0 < y ( ) <. Lycka ll!

Fac: Ugf. (4 oäng) a) () Besäm den magnära delen Im(z) om z = ( ) 4 6. b) () Besäm alla lösnngar med avseende å z ll ekvaonen z =, 50 där z är e komle al. c) () Ra de komlea allane den kurva som defneras av z = z Lednng: Sä z = y och förenkla ekvaonen. 6 a) z = ( ) 4. Efersom ( ) = = =. 6 4 4 6 6 4 = 4 = 4( ) = 4() ( ) = 4, = = = =, 6 7 har v z = ( ) 4 = 4 =. Därför Im(z)=. Svar a: Im(z)=. π π ( kπ ) 4 50 4 50 b) z = e z = e k = 0,,,..., 49 k π ( kπ ) 4 50 Svar b: zk = e k = 0,,,..., 49 c) z y = = y = y z y y = 4 = 4 och - y = 0 = och y = 0 z = z Alernav lösnng: = z = z z = 4 z = z Svar c: Endas en unk z = sasferar ekvaonen (se blden ovan).

Ugf. ( 4 oäng) Besäm alla lösnngar då 5z z 0z = 0. z = är en lösnng ll ekvaonen (Ekvaonen har reella koeffcener och z = är en lösnng ) z = är också en lösnng ll ekvaonen och därför är ekvaonen delbar med ( z z )( z z ) = ( z )( z ) = z 4 = z 4. Polynomdvsonen ger (5z z 0z ) /( z 4) = 5z En lösnng får v ur 5z = 0 z = 5 Svar: z =, z =, z = 5 Ugf. ( 4 oäng) a ) () Lös följande dfferenalekvaon (y ) y = (y )( y )( 5). b) () Ange lösnngen å elc form. c) () Besäm även evenuella sngulära lösnngar. a) (y ) y = (y )( y )( 5). ( Anmärknng: V kan dela ekvaonen med (y )( y ) om urycke är skl från 0. Urycke (y )( y ) är 0 om y = /.Subsuonen y = /, y = 0 ekvaonen vsar a den konsana funkonen y = / är också en lösnng. En sådan lösnng kallas sngulär om den ne kan fås ur den allmänna lösnngen.) Om y / har v y dy dy = 5 = ( 5) d = ( 5) d y y y arcan y = 5 C ( den allmänna lösnngen å mlcform). b) V löser u y och får: arcan y = ( 5 C) y = an( 5 C) y = an( 5 C) ( den allmänna lösnngen å elcform). c) Oavse hur v väljer konsanen C den allmänna lösnngen kan v INTE få den konsana lösnngen y = /. Därför är lösnngen y = / en SINGULÄR lösnng ll ekvaonen.

Ugf 4. ( 4 oäng) Besäm den lösnng ll följande dfferenalekvaon ( ( =, > 0 som sasferar vllkore ( ) =. V använder formeln ( = e P( d ( C Q( e P( d d Förs beräknar v P( d = d = ln = ln ( anagande >0) Formeln ger ( = ln ln e ( C ( ) e d = ( C ( ) d = ( C ( ) d = ( C ln = C ln Vllkore ( ) = ger C 0 = C = och därför ( = ln Svar: ( = ln Ugf 5. ( 4 oäng) Lös följande dfferenalekvaoner med avseende å y () a) () y 6 y 5y = 0 7 b) () y y 5y = 8 c) () y y = (resonansfall ). 5 Svar a: y( ) = C e C e Svar b: y ( ) = C e sn Ce cos Lösnng c: Den karakersska ekvaonen: r r = 0 r( r ) = 0 r = 0, r = och därför har v homogena delen: YH = C Ce Ansas: y = ( A B) y = ( A B) y = (A B) y = A Subsuonen ekvaonen y y = ger A A B =, 8 5

Härav A=, B=0 och därför Svar c: y = C Ce y = Ugf 6. (4 oäng) Besäm srömmen ( nedansående LRC kres om L= henry, R= ohm, C= farad och u( = e vol då (0)=0 amere och ( 0) = amere/s. Från kresen får v följande dff. ekv. d( L R ( q( = U d C V derverar ekvaonen och subsuerar ( = q ( och får L ( R ( ( = U C ( ( ( = e (ekv ) Härav H ( = C e Parkulärlösnng : ( = Ae ( = 4Ae ( = 6Ae C e Subsuon ekv. ger 6Ae ( 4Ae ) Ae 6Ae = e A = ( = e = e Härav: ( = Ce Ce e ( och ( = Ce Ce 8e ) Begynnelse vllkoren: (0)= 0 och ( 0) = ger C C = 0 och C C 8 =. Därför

C = och C = 5. Allså ( = e 5e e Svar: Ugf 7. ( = e 5e e 7a)( oäng) Säll u e ekvaonssysem med se ekvaoner för nedansående nä, med avseende å srömmarna, (, (, ( och ( ) and laddnngen q ( ( den sjäe ( 4 5 q ( och ( ekvaonen är e samband mellan ) Du behöver ne lösa syseme! ). Svar a: ekv: ( = ( ( ekv: ( = 4( 5 ( ekv: L ( R ( R ( L ( = u( ekv4: q( R ( R44 ( R ( = 0 C ekv5: L 5( R44 ( = 0 ekv5: q ( ) ( ) 7b) ( oäng) I ankar A och B fnns 00 ler resekve 00 ler salvaen som nnehåller, 80g, resekve 90 g sal. Tanken A llförs 0 ler vaen er mnu som nnehåller 4 gram sal er ler. Vaen blandas ordenlg och 5 ler förs ll B och därefer 5 ler från B förs ll A och 0 ler rnner u, enlg blden nedan. Lå (,y( beeckna salmängden ( gram) A, B vd dsmomen. Säll u e ekvaonssysem för ( och y( och ange begynnelsevllkor. Du behöver ne lösa syseme!

Svar: y( ( ( = 0 4 5 5 00 00 ( y( y( y ( = 5 5 0 00 00 00 Begynnelsevllkor: ( 0) = 80, y ( 0) = 90 Ugf 8. ( 4 oäng) Använd subsuonen z ( ) = sn( y( )) för a lösa följande (cke-lnjära) ekvaon an( y) y = cos( y) π med avseende å y(), v anar a 0 < y ( ) <. z ( ) = sn( y( )) z = cos( y( )) y Om v mullcerar DE med cos y får v sn y y cos y = (*) Subsuon ekvaonen (*) ger en lnjär DE med avseende å z. z z = (**) P( ) d P( ) d V använder formeln z( ) = e ( C Q( ) e d) och får z ( ) = C Efersom z ( ) = sn( y( )) har v y = arcsn( z( )) dvs y = arcsn( C )

Svar: y = arcsn( C )