Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor
|
|
- Thomas Strömberg
- för 7 år sedan
- Visningar:
Transkript
1 F4 Modell-anpassnng: Mnsavadra-polno olno: nerpolaon Kurvor: scevs polno, Here, splne Bézer-urvor DN40 nu3 HT
2 Eepel: Mnsavadraeoden V Mnsavadra-approaon ed polno f, [0,] 0.4 f s poler lgger vd z V ar n = 00 puner jän fördelade [0,] polf ed grad d ger d:e grads polnoe,d. För d = 0,,,N ploa felurvan och därefer och 0, e, d, d f log RMS e och c, d RMSe e, d/ RMS e e., d sfa. och d DN40 nu3 HT / n högsagradsoeff.,
3 Mnsavadraeoden VI n = 00; = lnspace0,,n'; % ocenrera! f =./.^++0.4*; N = 0; eab = zerosn+,; cab = eab; = zeroslengh,n+; % sa bl e sfa & d subplo for deg = 0:N c = polf,f,deg; e = polvalc, - f; RMSe = nore/sqrn; eabdeg+ = RMSe; :,deg+ = e/rmse; cabdeg+ = absc; % högsagradsoeff plo,e,'' le['d ',nusrdeg,' enor ',... nusrrmse],'fonsze',4 pause0. end hold on label'','fonsze',4 label'p,d - f','fonsze',4 e, d, d f RMS e e., d / n DN40 nu3 HT 3
4 Mnsavadraeoden VII e, d, d f RMS e e., d / n DN40 nu3 HT 4
5 Mnsavadraeoden VIII Vad händer ed öa gradal? rova 0, 40,.. Illaondíonera proble Fele > 0 - nsar ne grad > 5 Sora fel = Förbärng ed cenrerng : Fel ner ll 0-6 Mnsar ll grad DN40 nu3 HT 5
6 Kurvor, nerpolaon, ec. I Tabell-represenaon av funoner: Gve {, f f },,..., n där f är en snäll funon, ofas anar v a den har ånga onnuerlga dervaor. Beräna e närevärde ll f och en uppsanng av öjlg fel.. Använd polno av gradal. Sas GKN p 35 O alla är ola, så fnns precs e polno av gradal so uppfller f,,..., är lnjär funon av alla f an srvas på flera ola sä so ger ola algorer och änslghe DN40 nu3 HT 6
7 Kurvor, nerpolaon, ec. II olno-represenaoner a Nav b Cenrerad ed a = edelvärde av alla. c Newon s so ger e dre bevs för sasen ovan DN40 nu3 HT 7... c c c c c a b a a a a
8 Kurvor, nerpolaon, ec. III olno-represenaoner, fors. d Lagrange L är e -e gradspolno ed så DN40 nu3 HT 8 /......,, j j j j j j L L 0,, L f
9 Kurvor, nerpolaon, ec. IV Fele vd polno-nerpolaon GKN p 37 O f har + onnuerlga dervaor hela nervalle [, + ] gäller f R, R! f..., n{ j } R = 0 =,,+ R = 0 o f är -egradspolno R lnar DN40 nu3 HT 9
10 Kurvor, nerpolaon, ec. V. Tabell-slagnng Inerpolaon ed hög gradal är ce änslg, nerpolanen enderar a slngra sg ce ellan daapunerna. Man använder scevs polno ed gradal eller 3 sälle Lnjär nerpolaon: Gve, välj nervall så a.då blr f f f MATLAB p = nerpab,fab,, lnear DN40 nu3 HT 0
11 Kurvor, nerpolaon, ec. VI Den lnjära nerpolanen har dsonnuerlg dervaa. Glaare urva ed högre-gradspolno, vanlgen ubsa Here-nerpolan, Splnes, Bézer-urvor, B-splnes, NURBS,, +, DN40 nu3 nu HT
12 DN40 nu3 HT Here Konsruon av nervalle -, so nerpolerar ll - och och har dervaor - och -, Se GKN 4:E-3! Ansasen ger sersa urc och hänger hop ed Bézer-Bernsen polnoen vsa Kurvor, nerpolaon, ec. VII 0-0- DN40 nu h r h l r l h 0,,, h h +, +, + 0
13 Kurvor, nerpolaon, ec. VIII Eepel araeerurva =, = Q, 0, vars enhescrel försa vadranen: cos, Q sn : Q 0, 0, 0 0, 0 0 g g 0, c : 8 / Q/ / /8 6 r Q DN40 nu3 nu HT 3 c
14 Kubsa Splnes Fnn den glaase urva so passerar,, =,,N n N Kurvor, nerpolaon, ec. IX d s..,,..., N Man an vsa, a v = 0 ellan punerna, dvs. scevs redjegradspolno,, onnuerlga överall Kubs splne, Sv. R-funon O an väljer lunngarna, = N så ger Herenerpolanen e scevs redjegradspolno ed och onnuerlga överall. Välj så a även blr onnuerlg! så får an lösnngen ll * * DN40 nu3 nu HT 4
15 DN40 nu3 HT 5 Kurvor, nerpolaon, ec. X 0-0- DN40 nu 5,...,, : 4, 4 0, N r l h d d h r l h d d h h r h l r l h Tr-dagonal evaonssse för Sanar evaoner: Randvllor Naurlga splnes: = N = 0 No-a-no : onnuerlg, N- Föresrven lunng:, N gvna erods: N = rad och N-
16 Kurvor, nerpolaon, ec. XI Föresrven lunng:, N gvna Hur göra perods splne ed MATLAB? Två obeana, N, vå evaoner f = - N = 0 f = N - = 0 dvs. en lnjär evaon N - = a + b = 0 - forà la 4 c c,5, MATLABed pp, c ;, 6c splne.,.,, h DN40 nu3 nu HT 6
17 Bézer Bernsen urvor I Kurvor so används rprogra är scevs polnoella paraeerurvor. Bernsen / Bézer polnoen av gradal n: n n n B,0, 0,,..., n Dessa har revlga egensaper B n >= B n n n 0, 0 0, B 0, 0 n B n 0, n, n B erre Bézer, Renaul Bézer-polno grad DN40 nu3 nu HT 7
18 Bézer Bernsen urvor II En Bézerurva defneras av n+ srpuner D eller 3D n B.5 0 n,0 De gäller 0 = 0, = n Tangenen 0 pear 0.5 på, n på n- En rä lnje sär urvan högs la ånga gånger so den sär 0 polgonåge 0 n Kubs Bézer-urva DN40 nu3 nu HT
SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.
SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen
DEL I. Matematiska Institutionen KTH
1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.
TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att
Allmänt om korttidsplanering. Systemplanering 2011. Allmänt om korttidsplanering. Allmänt om vattenkraft. Det blir ett optimeringsproblem!
Sysemplanerng 2011 Allmän om kordsplanerng Föreläsnng 8, F8: Kordsplanerng av vaenkrafsysem Kapel 5.1-5.2.4 Innehåll: Allmän om kordsplanerng Allmän om vaenkraf Elprodukon Hydrologsk kopplng Planerngsprobleme
Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen
Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
Inversa matriser och determinanter.
rmn Halloc: EXTR ÖVNINGR a TILLÄMPNINGR V DETERMINNTER Tllämpnngar a determnanter Inersa matrser och determnanter. En adrats matrs är nerterbar om och endast om det Eftersom matrsen är nerterbar om och
Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6
ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.
Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176
FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.
Supplementary File 3
Supplementary Material The Open Applied Informatics Journal, 2009, Volume 3 i Supplementary File 3 >SYD_THETN C MGEQLGGLKRTHMCGELGVKDVGKSVVVMGWVNSRRDHGGLVFIDLRDRTGIVQIVFSEQ VSKEVFEKVQSVRSEYVLAVEGEVVKRLPENVNPKIPTGEIEIYAKNLKILSKSETPPFP
Älvåker Strandhagagatan Skogaholm Högforsgatan
en äg n sv all Re nv ce nt ru m nd a Sk IP år ek yrk a öp Ila ak nd en er åk jor Älv Älvåker Strandhagagatan Skogaholm Högforsgatan MJÖLNARTORPET ar öln Mj te ite t g. ett rin an Kla at ttg go Fa ha nd
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn
1 av 13. Armin Halilovic: EXTRA ÖVNINGAR
Armn Hlloc: EXTRA ÖVNINGAR Vetorprodt VEKTORPRODUKT OCH TILLÄMPNINGAR Kompln etorer. Defnton: V säger tt... n är ompln etorer om etorern lgger ett pln när de stts från smm pnt. Med ndr ord ompln etorer
LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER
ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder LINJÄ VBILDNING V PUNKE OCH PUNKMÄNGDE vildig v e puk Vi hr defiier lijär vildigr ell vå vekorru Vi k forell erk puker so orsvekorer och däred erk vildigr
F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i
L L L L V Hm l är blek VSpel man n är HårgaLåt L L L mar nat t, n g matt, L Text: Carl Peter Wckström Sats: Robert Sund (.2) L L # Ljus L nans vat t sg be satt L # Hm l är blek Spel man L n L är V mar
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl
KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand
Sammanfattning, Dag 1
Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma
Test av anpassning, homogenitet och oberoende med χ 2 - metod
Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna
Opp, Amaryllis (Fredmans sång nr 31)
Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso
Barn i Guds tid. Nattvardsmässa för barnkör, diskantkör och instrument. Församlingsagenda
Barn Guds td Nattvardsmässa för barnkör dskantkör och nstrument Församlngsagenda Barn Guds td Nattvardsmässa för barn Text: Eyvnd Skee Sv. text: Chrstna Lövestam Musk: Johan Varen Ugland 1. Processon med
LE SOMMEIL DE L ENFANT JÉSUS
LE SOMMEIL DE L ENFANT JÉSUS GUD BLIR EN AV OSS TEXT: Folklg fransk l text från 100talet. D kommer trolg från provns Anjou Loredal. 180 kom dna provns att tllhöra Frankrke. Sång Le mel de l fant Jésus,
Optikerprogrammet -Grundläggande Optometri 1 Ht 15
Schema GRO 1 Ht 15 ny mall Ht 15 ny 1(6) Version 6 150622 Kal v. 2015-08-31 Föreläsning: Upprop Välkommen till Karolinska Institutet 36 Obs på KI Campus Måndag Termin Föreläsare: UB/ RB / JJ 1 Sal: St
TNK049 Optimeringslära
TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk
Blåsen nu alla (epistel nr 25)
lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
AID:... Lisa börjar spara 1000 per månad från och med nästa månad. Hon sparar under 35 år tills hon fyller 67 år.
Lösnngar: Akedelen Tena 4-5-5 Uppgf (4 poäng) Defnera ydlg följande begrepp a) APV och skaesköld b) IRR, som bland har lösnngar, när uppsår dessa? c) Asse Bea d) Yeld curve Se exbook and web sources. Uppgf
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg
Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet
2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00
(5) B6 Ingenjörsetod för IT och ME, HT 006 Otentaen Måndagen den 5:e jan, 007, l. 5:00-0:00 Nan: Personnuer: Srv tdlgt! Srv nan och ersonnuer å alla nlänade aer! Ma ett tal er aer. Ansvarg lärare: Gunnar
på fråga 6 i tävlingen för matematiklärare. 'l.
påståendet nte gäller för alla Betrakta sdan AB och dagonalen D ;~var på fråga 6 tävlngen för matematklärare. 'l. Jag böjar med att vsa att antalet dagonaler en n-hömng är n(n-3)/2.. 2..j ' :., Bevs: Frän
Tentamen i mekanik TFYA16
TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen
Älvåker Strandhagagatan Skogaholm Högforsgatan
e äg sv all Re v ce t r Ila um d a Sk IP år ek yrk a öp ak d e äg sv te äg et åk Älv Älvåker Stradhagagata Skogaholm Högforsgata MJÖLNARTORPET ar öl Mj rp et te ite t Olas väg g. ett ri Kla a at ttg Fa
Strömning och varmetransport/ varmeoverføring
Leton 6: Vämevälae onduton o onveton Gas IN Gas U Vatten U Vatten IN KP400/M406 Stömnng o vametanspot/ vameoveføng Vämevälaö ä en vtg del av vämevälaen, som sn tu ä en enet som används fö effetv vämeöveföng
KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.
Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST
STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,
TFYA16: Tenta Svar och anvisningar
160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
på två sätt och därför resultat måste vara lika: ) eller ekvivalent
Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas
Förklaring:
rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas
Logistikoptimering för kostnadseffektivt underhåll eller Opportunistisk underhållsplanering
Logskoperng för kosnadseffekv underhåll eller Opporunssk underhållsplanerng he nforaon conaned n hs docuen s Volvo Aero Corporaon Propreary Inforaon and shall no eher n s orgnal or n any odfed for n whole
Personer: Psykiatern Oskar Melatonin, ca 45 år. Snygg karl, en aning feminin.
1 DENFÖRÄLSKADETERAPEUTEN enkammarkvartettavclaesandersson Personer: PsykiaternOskarMelatonin,ca45år.Snyggkarl,enaningfeminin. OIR,Oskarsinreröst,sompatientenintehörmenpublikenhör.Oskars undermedvetna.
II
II III IV V VI VII VIII IX X XI XII Skolverket: En formativ bedömningsprocess kännetecknas av att målet för undervisningen tydliggörs, att information söks om var eleven befinner sig i förhållande till
Elektronik. Strömmar, Spänningar, Motstånd, Kretsteori. Översikt. Varför elektricitet? Genast ett exempel
Elekronk Öersk Srömmar, Spännngar, Mosånd, Kreseor Pero Andrean Insuonen för elekro- och nformaonseknk Lunds unerse Sröm, spännng, energ, effek Krchhoffs srömlag och spännngslag (KCL och KL) Serekopplngar
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet
Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
Långfredagens högtidliga förböner
Långfdagens högtidliga ner Varje nsavsnitt inleds av en diakon eller sånga, som stående vid ambonen eller på annan lämplig plats sjunger upp maningen till n. Så håller man en stunds tystnad n, vafter huvudcelebranten
Sjung och läs nu Bacchi böner (sång nr 57)
Sung läs nu Bacchi öner (sång nr 57) ext musik: Carl Michael Bellman Arr: Eva oller 009 Soprano 1 Soprano. Alto 1 Alto enor 1.Sung läs nu 1.Sung läs nu 1.Sung läs nu Bac - chi ö - ner, Bac - chi Bac -
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc
BILAGA. till. förslaget till rådets beslut
EUROPEISKA KOMMISSIONEN Bryssel den 22.1.2016 COM(2016) 18 final ANNEX 3 PART 1/4 BILAGA till förslaget till rådets beslut om ingående av det ekonomiska partnerskapsavtalet mellan Europeiska unionen och
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
I enskilda fall och om särskilda skäl föreligger kan styrelsen avvika från riktlinjerna ovan.
Styrelsen för Lagercrantz Group AB:s förslag till beslut på årsstämma den 28 augusti 2012 samt yttranden enligt 18 kap 4 och 19 kap 22 aktiebolagslagen 9 Disposition beträffande bolagets vinst enligt den
Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y
F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v
Tullverkets författningssamling
Tullverkets författningssamling ISSN 0346-5810 Utgivare: Chefsjuristen Charlotte Zackari, Tullverket, Box 12854, 112 98 Stockholm Tullverkets föreskrifter och allmänna råd om uniform och annan personlig
TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls
ENKEL LINJÄR REGRESSION
Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende
a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
www.olr.ccli.com Introduktion Online Rapport Din steg-för-steg guide till den nya Online Rapporten (OLR) Online Rapport
Onlne Rapport Introdukton Onlne Rapport www.olr.ccl.com Dn steg-för-steg gude tll den nya Onlne Rapporten (OLR) Vktg nformaton tll alla kyrkor och organsatoner som har en CCLI-lcens Inga mer program som
Startsidan. Startsida. Snabbguide Mobile Referral for Trio Enterprise 5.0
D anv ända namnf öt o D l ös eno df öt o oapp. hb. s e Sasdan Sasda På Sasdan fnns flea åkomlga funkonalee. Hänvsnng Skapa e fånvaobesked hänvsnng. Hänvsa Navgea ll sdan fö a skapa e ny fånvaobesked. Fånvaobesked
Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9.45. Kursadministratör: Azra Mujkic, tfn 1104, azra.mujkic@liu.
Teknska högskolan vd LU Insuonen för ekonomsk och ndusrell uvecklng Produkonsekonom Helene Ldesam TENTAMEN I TPPE PRODUKTIONSEKONOMI för I,I TISDAGEN DEN 7 APRIL 25, KL 82 Sal: TER, TER4 Provkod: TEN Anal
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 4
Kopletterande lösningsförslag och ledningar, Mateatik 3000 kurs B, kapitel 4 Kapitel 4.1 4101 Eepel so löses i boken. 410 Triangelns vinkelsua är 180º. a) 40º + 80º + = 180º b) 3º + 90º + = 180º = 180º
!"# $%&'! "#$ '!"# $%&'! ()*+,-%&./%&01 $%& 2! :$+(; "#!$%&!$%& ) $+%& <=$>% <A0$%&!$%&BC DE 8FGBH IJKL MN0OF 4 PQRS T 056U) $%&VW<A$%&U"
!"# $%&'! "#$ '!"# $%&'! ()*+,-%&./%&01 $%& 2!0345678 9 :$+(; "#!$%&!$%& ) $+%& % &?@
Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
Var är tvålen. o dk sj jz kkk. um ba - um. um um um um 2 4 j. stan - na upp ett tag och grub - bla, är det nå n som sett min tvål?
är våle Pver Rel rr. Erc Srby Spr Al1 Al 2 Ter Bss 1 Bss 2 Spr f f D G =80 Al f f D 1 Al f f D 2 Ter f f D l M Bss 1 jz d sj jz u b - u u - j u b - u u j s j jz u b - u u s j jz f f f N s v-drr ge- l-ve
..c( ~J ()f;..~c4-- l)o1/\jk) -=t~ AG 7, iv"/--'. e E" .LeA. --'-( ~ /', I AD AD AD AD H H H. AD ' AD H H 0 0 V V. o DOH H H o V V H.
2015 - AG 7, 5.30-6.00 6.00-6.30 6.30-7.00 7.00-7.30 7.30-8.00 8.00-8.30 8.30-9.00 10.00-10.30 10.30-11.00 11.00-11.30 50m-es medence A A A A A A A A ' A A A A A A A A. 13.00-13.30 13.30-14.00 14.00-14.3
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Elektronik. Inledning. Översikt. Varför elektricitet? Genast ett exempel
Elekronk Öersk Inlednng Pero Andrean Insuonen för elekro- och nformaonseknk Lunds unerse Sröm, spännng, energ, effek Krchhoffs srömlag och spännngslag (KCL och KVL) Serekopplngar och parallellkopplngar
Arturo Art Systems Tel 00 46 739 74 13 99 E-mail arturomont@hotmail.com Website www.arturo.se Stockholm - Sweden
Au A Ssems Tel 46 739 74 3 99 E-mal aumn@mal.cm Webse www.au.se Scklm - Sweden Aumasen Au A ssems Paenen 986 C Au Mnalv Bel +46 73 974 3 99 aumn@mal.cm Scklm - Svee www.au.se Aumasen Blnfann (Saned Glass)
Attitudes Toward Caring for Patients Feeling Meaninglessness Scale
Atttudes Toward Carng for Patents Feelng Meannglessness Scale Detta frågeformulär handlar om olka exstentella känslor, tankar, förståelse samt stress som kan uppstå vården av patenter lvets slutskede.
2010-01-08 Antavla Catharina Olofsdotter - 1 -
2010-01-08 Antavla Catharina Olofsdotter - 1 - Proband Catharina Olofsdotter (24267). Född 1778-01-20 i Gransjö, Helgum (Y) (Genline p 2048.2.100500, Genline p 2048.5.46900). Döpt 1778-01-25 i Helgum
BILAGA. till. förslaget till rådets beslut
EUROPEISKA KOMMISSIONEN Bryssel den 22.1.2016 COM(2016) 8 final ANNEX 2 PART 1/8 BILAGA till förslaget till rådets beslut om undertecknande och provisorisk tillämpning av det ekonomiska partnerskapsavtalet
Mätfelsbehandling. Medelvärde och standardavvikelse
Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger
INSTRUKTION AVSEENDE MUTA OCH BESTICKNING
INSTRUKTION AVSEENDE MUTA OCH BESTICKNING Innehållsförteckning 1. DEFINITIONER... 3 2. BAKGRUND OCH SYFTE... 3 3. TILLÄMPLIGHET... 3 4. GIVANDE OCH MOTTAGANDE AV ALLA TYPER AV FÖRMÅNER... 3 4.1 Godkännande
Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126
Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något
Fajansfiske i Bredsjön
hembygdsbok_ver11 2007/7/8 21:03 page 129 #1 Fajansfske Bredsjön V Vänge Fajansfske Bredsjön Krsto:er Hellsng Det jag skall berätta nu är en hstora, som n knappast kommer att tro. I varje fall hade jag
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
5.4 Feluppskattning vid lösning av ekvationssystem.
Vetenskaplga beräknngar III 58 5.4 Feluppskattnng vd lösnng av ekvatonssystem. V har tdgare påpekat, att pvot -elementen bör vara olka noll, för att man skall kunna tllämpa Gauss elmnerngsmetod. Men det
1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.
Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma
Ur KB:s samlingar Digitaliserad år 2013
Ur KB:s samlngar Dgtalserad år 2013 W än;.wa äutttg Herta. $ftg. å., å AGENTUR FÖR NORRKÖPING OCH OMNEJD: G. Ng Edgnham Drottnnggatan 27 NORRKÖPING. Strum pstcknngs-maskn Prsbelönt Pars, Amsterdam, Cassel,
Lösningsförslag, v0.4
, v.4 Preliinär version, 6 februari 28, reservation för fel! Högsolan i Sövde Tentaen i ateati Kurs: MA52G Mateatis analys MA23G Mateatis analys för ingenjörer Tentaensdag: 27-5-2 l 8:3-3:3 Hjälpedel :
Experimentella metoder 2014, Räkneövning 5
Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och
Andragradskurvor. ax 2 + 2bxy + cy 2 + dx + ey + f = 0. Trots att ekvationen nu är betydligt mer komplicerad
Andragradskurvor Den allmänna förstagradsekvationen i två variabler kan skrivas: ax + by + c = 0. Lösningsmängden till en given förstagradsekvation ges av en rät linje. Vi ska nu fortsätta och undersöka
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär
Måttabell för rundstickade benstrumpor Standardstorlek
Denna måttabell gäller för mediven elegance, mediven plus, mediven comfort, mediven for men. I II III IV V VI VII Lårstrumpa med häftband 43-48 45-52 49-56 53-60 56-64 60-68 64-72 Lårstrumpa häftband x-vid
Boverkets författningssamling Utgivare: Anette Martinsson Lindsten
Boverkets författningssamling Utgivare: Anette Martinsson Lindsten Boverkets föreskrifter om ändring i verkets föreskrifter och allmänna råd (2007:4) om energideklaration för byggnader; BFS 2018:11 Utkom
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.
Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller
CAMPUS. Campus. Duettgatan Klasmossen. Forest Hill. Universitetet. Klarinettgatan. Ö Gustavsbergsvägen. Kaprifolgatan Mor Märtas väg CENTRUM
SKUTBERGET n ata gg n ne tio nin ott ta ss or St sto en n ta a rge a K To t yrk rg og et a dr Sö sid Re äs xn n ta ns tte Jä g vä na en h Lå ags byt gla ga es nd tan pu nk Ra sga mg tan t Ka ata rls n
Stela kroppars rörelse i ett plan Ulf Torkelsson
Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )
Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd