2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00

Storlek: px
Starta visningen från sidan:

Download "2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00"

Transkript

1 (5) B6 Ingenjörsetod för IT och ME, HT 006 Otentaen Måndagen den 5:e jan, 007, l. 5:00-0:00 Nan: Personnuer: Srv tdlgt! Srv nan och ersonnuer å alla nlänade aer! Ma ett tal er aer. Ansvarg lärare: Gunnar Mal, Följande hjäledel är tllåtna: Koendu (KP), lnjal och nränare, sat engelst-svenst leon. Tentaen består av 8 ugfter so är udelade å följande sätt: st 8 -ugfter (, ), 4 st 0 -ugfter (-6), sat st -ugfter (7, 8), vlet ger totalt 80. Ungefär 40 oäng behövs för godänt. Läs geno alla tal nnan n börjar räna. Talen är nte nödvändgtvs ordnade efter svårghetsgrad. Inforaton från er än ett atel an behövas för att lösa ett tal. Studenter so nte larat tentan och so bedönngsässgt lgger nära gränsen för godänt erbjuds en öjlghet tll oletterng. Möjlgheten tll oletterng nnebär att studenten geno denna an få godänt å atuell tentaen (betg ) en ej högre betg. Ugft (8 ) Ett stort vattenraftver eller en stor ärnraftsreator avger en eletrs effet å c:a GW. Gör en usattnng av storlesordnngen hos energängden so genosntt går från ett sådant raftver tll varje nvånare Sverge under ett år. Uttrc svaret dels lowattar (Wh), dels rätt SI-enhet. Ugft (8 ) Laddade artlar an accelereras ett eletrst fält och få en secf rörelseenerg. Hur snabbt jonerna rör sg vauu beror bland annat å det accelererande eletrsa fältet och assan hos jonerna. Tden det tar för joner att färdas en bestäd sträca vauu beror å jonernas hastghet. Detta ger oss öjlghet att searera jonerna efter vt geno att äta tden från att jonerna accelererades tlls de når fra tll en detetor ( te-of-flght, TOF). I nedanstående tabell anges jonassa,, so funton av td, t. Bestä ed hjäl av dvderade dfferenser vlen grad n so behövs hos ett olno n f n(t) a 0 + a t + a t + a t a n t för att besrva sabandet ellan och t.

2 B6 OMTEN (5) Te-of-flght, t (µs) Massa, (u) Ugft (0 ) V har bggateral so an räca tll att bgga en 0 eter lång vägg tll ett etra ru anslutet tll ett bggt hus. Ruet sa ha en vanlg retangelfor, vlet nnebär att v bara behöver bgga väggar och den ssta väggen oer att delas ed det redan bggda huset. Detta vsas scheatst nedanstående fgur. Med ateralet vll v bgga ett ru ed den största arean. a) Uttrc arean so funton av och, d.v.s. A(,). ( ) b) Beräna hur sdorna och sa väljas för att tan A sall bl aal? (6 ) c) Beräna A a! ( ) A

3 B6 OMTEN (5) Ugft 4 (0 ) Den eletrsa ondutvteten σ anger hur väl ett ateral leder eletrs strö. Den äts A - s g -. I en vanlg aroaton an σ uttrcas ed hjäl av eleentarladdnngen e C, eletrontätheten n (antalet rörlga eletroner er ubeter), den s.. relaatonstden τ och den effetva assan *. (I en rstall rör sg en eletron nästan so vauu en so o den hade en effetv assa * stället för den vanlga eletronassan). Bestä ett densonsenlgt uttrc för σ uttrct e, n, τ och *! Ugft 5 (0 ) Ett selrov bobarderas ed cesujoner ett vauusste. Joner ed högre energ oer att tränga djuare n selrovet nnan de stannar. Det sannolaste djuet so cesujonen stannar å, R, selrovet so funton av jonens energn, E, an aroeras ed följande saband ( energ ntervallet tabellen): R E b E (ev) R (Å) I tabellen ovan fnns data för R so funton av E. a) Gör en lälg foreltransforerng för att vsa att ovanstående saband an besrvas ed en rät lnje. (4 ) b) Bestä och b grafst (glö nte enheten för ). Marera tdlgt grafen hur och b bestäts. (6 ) Ugft 6 (0 ) En satellt, so rör sg en bana rng jorden, hålls var sn olosbana av gravtatonen. Ett uttrc för raftens storle ges av sabandet: v F r För den nternatonella rdstatonen ISS, so nlgen fått besö av en änd f.d. KTH-student, an v anta v 7685± 50 /h och r 67± 50 a) Bestä raften F och det saansatta felet F, betrata so en onstant. (8 ) b) Jäför resultatet ugft a) ed det ända värdet å tngdacceleratonen g - är dtt svar rlgt? ()

4 B6 OMTEN (5) Ugft 7 ( ) För en vanlg MOSFET transstor an an äta u ett saband ellan strö I DS och anallängd L å foren: W I DS µ eff COX ( VG VT ) VDS L där µ är den effetva oblteten, är gateodens tjocle, W är analvdden, eff C OX VG är gatesännng, V T tröselsännng och V DS atnngssännng. För att bestäa oblteten µ srver an evatonen å foren: I DS L eff och beränar sedan lutnngsoeffcenten ed nsta vadratetoden. Kanallängd L Strö I DS (µa) (µ) a) Använd nsta vadratetoden för att beräna. Anta att den anassade lnjen nte går geno orgo. Redovsa dna utränngar noga, för n delresultat en tabell. Svara ed orreta enheter. (6 ) b) Rta grafen ed era beränade värden för. Plotta även ätdata från tabellen saa fgur. ( ) c) Urea ugft a) en anta att lnjen går eat geno orgo, (använd saa värden från tabellen). ( ) Ugft 8A ( ), Studenter so följde ursen under höstternen 005 eller tdgare (B5) löser denna ugft. En student sarar 000 r ånaden för att unna öa en bl. Blen ostar r och ånadsräntan å sarandet är 0.5 %. Efter hur ånga ånader an studenten öa blen? (6) Hur cet tdgare an studenten öa blen geno att få ränta å engarna jäfört ed o engarna saras utan ränta? (6)

5 B6 OMTEN (5) Ugft 8B ( ), Studenter so följt nnevarande läsårets urs (B6) löser denna ugft. Enlgt deala gaslagen blr trc P, vol V och teeratur T relaterade. Sssa scheatst: a) soterer (.e. P-V urvor vd onstant T) för ola teeraturer T; b) soorer (.e. P-T urvor vd onstant V) för ola voler V; c) sobarer (.e. V-T urvor vd onstant P) för ola trc P. (6 ) ( ) ( ) Ange ocså lutnngen och eventuella särnngsunter ed oordnatalarna för satlga fall.

6 (7) B6 Ingenjörsetod för IT och ME, HT 006 Otentaen Måndagen den 5:e jan, 007, l. 5:00-0:00 Lösnngsförslag Ugft GW 0 9 W. Antalet tar er år h. Det bor c:a 9 ljoner 0 7 nvånare Sverge. Energn er nvånare och år blr däred c:a / Wh 0 Wh. Efterso Wh 600 Ws 600 J får v SIenheter svaret J, d.v.s. storleordnngen blr 0 9 J. Ugft Konstruera en tabell ed :a, :a och :e ordnngens dfferensvoter för den gvna ätseren Td, t µs Massa, u t t t Jfr sd 59 :a dvderade dfferensen: osv. :a dvderade dfferensen: osv.

7 B6 OMTEN (7) :e dvderade dfferensen: osv. Efterso negatva och ostva tecen föreoer :e dvderade dfferensen, bestäer v oss för en vadrats odell: f (B) a + a B + a B n 0 An. Rörelseenergn E v E L t v E, sträcan L v t, där E och L är onstanter onst t Ugft a) A; b) Enlgt besrvnngen har v +0 so ger 0- och A(0-)0-. da/d0 ger 0-40 och slutlgen 7.5 och 5. c) A a Ugft 4 Densonen för σ blr I L - T M -. Laddnng uttrcs C As, eletrontäthet -, td s och assa g. V ansätter att förhållandet ellan ondutvteten och de ngående storheterna är å foren σ e a n b τ c (*) d där är en densonslös onstant och eonenterna a, b, c och d sa bestäas. Däred blr högerledets denson (IT) a L -b T c M d I a L -b T a+c M d Jäförelse ed densonen för σ ger evatonsssteet a - b - a + c d - Detta ger a, b, c och d -. En öjlg relaton är däred σ e n τ /*

8 B6 OMTEN (7) En orret härlednng ger att, d.v.s. σ e n τ /* Ugft 5 Använd den naturlga logarten (alt. tologarten) vd foreltransforerng: ln( R ) ln() + b ln(e) (Jäför a + b där otsvarar ln(r ), a otsvarar ln() och otsvarar ln(e)) R (Å) ln( R ) E (ev) ln(e) Plotta ln(r ) so funton av ln(e) ln(r ) ln() (ln(e)) ln(e) Kurvans lutnng: b (ln(r )) ( ln(e) ) Särnng ed ln(r ) aeln (när ln(e) går ot noll) ger ln().94, e R b E dvs enheten för R är Å/(eV) 0.67 E R E där E ges ev och R fås Å

9 B6 OMTEN (7) Ugft 6 (0) Lösnngsförslag: Uttrcet för raften an srvas so: v F v r r V har alltså enlgt oendu det enla fallet: a b F A Det blr då lälgt att räna ut det relatva saansatta felet enlgt forel 4.4B KP: F v F v r + r ( enhetslöst) Med F.87 0 [/h ] Ovandlng tll SI enheter ger F [/s ] Här har v använt att 600 s otsvarar en te och fatorn 000 för att ovandla från tll. Tll slut får v då F Svar: a) F 8.79 ± 0.07 [/s ] b) Värdet är rlgt efterso gravtatonen avtar ed avståndet från jordtan, där v ju har g 9.8 [/s ]. Ugft 7 För att göra en nsta vadratanassnng tll den t av uttrc är det lälgt ed en varabeltransforaton. Sätt /L dvs I DS Med evatoner från oendet ( ) a) f a + b a +, lnjen går nte geno orgo så a 0.

10 B6 OMTEN (7) a ev. 6.A ev. 6.B Kanallängd L (µ) Strö I DS (µa) /L Σ Ger * * * 5.5 a [µa] * * *87. [µaµ] b) Se fguren /L (/µ) Strö (µa) anassad lnje ätvärden c) Med foreln för en otensfunton får v en lnje so sär går geno orgo n n ev. 6.6

11 B6 OMTEN (7) n dvs o v allar lutnngen ed denna etod för [µaµ] Ugft 8A (), Studenter so följde ursen under höstternen 005 eller tdgare (B5) löser denna ugft. Lösnng: Den sarade suan efter n+ ånader är a n+ r a n +b a) Månadsränta 0.6 % r.006 a 0 0 r b 000 r Sats och å KP s. 5-6 b a r c + r 0 b 000r c a r (.006) Efter ånader har studenten sarat ho r, d.v.s. a r 5 r Ugft 8B ( ), Studenter so följt årets urs (B6) löser denna ugft. PVnRT a) P nrt / V P/ V - nrt / V Lutnngen -nrt / V. Kurvan sär nte alarna en närar sg de då P eller V. b) P (nr / V) T Lutnngen (nr / V). Kurvan går geno orgo, d.v.s. den sär oordnatalarna då P 0 och T 0. c) V (nr / P) T Lutnngen (nr / P). Kurvan går geno orgo, d.v.s. den sär oordnatalarna då V 0 och T 0.

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand

Läs mer

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad. SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen

Läs mer

Thomas Macks beräkning av standardfelet för reservavsättningar

Thomas Macks beräkning av standardfelet för reservavsättningar Thomas Macs beränng av standardfelet för reservavsättnngar Eva-Lena Tolstoy Rauto 008-05-09 1 Innehållsförtecnng 1. Inlednng...5. Teor...5.1 Resdualplottar...6. Thomas Macs modell...6.3 Svansfator...8.4

Läs mer

Biomekanik, 5 poäng Masscentrum

Biomekanik, 5 poäng Masscentrum Boekank, 5 poäng Masscentru Masscentru Tyngdpunkt Spelar en central roll no såväl statk so dynak. Masscentru tllhör de storheter an använder för att sna beräknngar beskrva en kropp sn helhet. Istället

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

Lösningsförslag, v0.4

Lösningsförslag, v0.4 , v.4 Preliinär version, 6 februari 28, reservation för fel! Högsolan i Sövde Tentaen i ateati Kurs: MA52G Mateatis analys MA23G Mateatis analys för ingenjörer Tentaensdag: 27-5-2 l 8:3-3:3 Hjälpedel :

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

Matematisk statistik

Matematisk statistik HF, repetitionsblad Mateatis statisti Uppgift Fördelningsfuntionen för en ontinuerlig stoastis variabel X är F ( x) cx x < x x > Bestä värdet på onstanten c, edianen och täthetsfuntionen för X a) Enligt

Läs mer

Mätfelsbehandling. Medelvärde och standardavvikelse

Mätfelsbehandling. Medelvärde och standardavvikelse Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKISKA ÖGSKOA I IKÖPIG Institutionen för ysi, Kei och Biologi Galia Pozina Tentaen i eani TYA6 -- l. 4-9 Tillåtna jälpedel: Physics andboo eller Tefya utan egna antecningar, avprograerad ränedosa enligt

Läs mer

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor F4 Modell-anpassnng: Mnsavadra-polno olno: nerpolaon Kurvor: scevs polno, Here, splne Bézer-urvor 0-08-06 DN40 nu3 HT Eepel: Mnsavadraeoden V Mnsavadra-approaon ed polno f, [0,] 0.4 f s poler lgger vd

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik KTH Meani 2013 05 23 Meani, SG1102, Lösningar till probletentaen, 2013 05 23 Uppgift 1: Längre slag i golf påeras raftigt a luften. För ortare chippar är däreot luftotståndet försubart. En golfspelare

Läs mer

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISK HÖGSKON I INKÖPING Institutionen ör Fysi, Kei och iologi Galia Pozina Tentaen i eani TFY6 Tillåtna Hjälpedel: Physics Handboo utan egna antecningar, avprograerad ränedosa enligt IFM:s regler. Forelsalingen

Läs mer

Partikeldynamik. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Dynamik är läran om rörelsers orsak. Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är

Läs mer

Massflödet genom en turbin följer approximativt det tidigare härledda sambandet: Med hjälp av allmänna gaslagen kan sambandet ovan omformas enligt:

Massflödet genom en turbin följer approximativt det tidigare härledda sambandet: Med hjälp av allmänna gaslagen kan sambandet ovan omformas enligt: Lrs Bäcströ 04-0-4, 6 Ångturner F7-F8 Mssflödet geno en turn följer roxtt det tdgre härledd sndet: Där är turnonstnten, den effet strönngsren ( ) ångns tryc före och efter turnen (P) ångns olytet före

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå

Läs mer

BILAGOR. till KOMMISSIONENS DELEGERADE FÖRORDNING

BILAGOR. till KOMMISSIONENS DELEGERADE FÖRORDNING EUROPEISKA KOMMISSIONEN Bryssel den 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 BILAGOR tll KOMMISSIONENS DELEGERADE FÖRORDNING o ändrng och rättelse av delegerad förordnng (EU) 2017/655 o kopletterng av

Läs mer

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U.

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U. Vecoblad 2 Kaptel 2 Matemats statst, Blomqvst U. ya begrepp: oberoende händelser, betngad sannolhet, Bayes formel.. är man sall lösa problem, där sntt mellan händelser ngår, an det ofta vara tll hjälp

Läs mer

SG1140, Mekanik del II, för P2 och CL3MAFY. Omtentamen

SG1140, Mekanik del II, för P2 och CL3MAFY. Omtentamen Otentaen 110610 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda

Läs mer

Centrala Gränsvärdessatsen:

Centrala Gränsvärdessatsen: Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar

Läs mer

Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen i Dataanalys och statistik för I den 5 jan 2016 Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. n. Om O betecknar origo och T masscentrum då gäller ===========================================================

Armin Halilovic: EXTRA ÖVNINGAR. n. Om O betecknar origo och T masscentrum då gäller =========================================================== rin Halilovic: EXTR ÖVNINGR Masscentru MSSCENTRUM Låt P P P n vara punkter ed otsvarande assor n O O betecknar origo och T asscentru då gäller OT OP OP n * där n närkning: Uttrcket OP OP n kallas viktade

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.

Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden. Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

Tentamen Elektronik för F (ETE022)

Tentamen Elektronik för F (ETE022) Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:

Läs mer

Karlstads Universitet Maskinteknik /HJo

Karlstads Universitet Maskinteknik /HJo Karlstads Unverstet asnten 9-4-7/Ho orsonssvängnngar I roterande masner nns rs ör torsonnvängnngar, dvs vrdsvängnngar som överlagras på rotatonen. Perodsa störnngar som excterar dessa svängnngar an t.ex.

Läs mer

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2007

ETE115 Ellära och elektronik, tentamen oktober 2007 (0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är

Läs mer

x(t) =A cos(!t) sin(!t)

x(t) =A cos(!t) sin(!t) Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)

Läs mer

Upphandlingsbarometern

Upphandlingsbarometern Upphandlngsbarometern 2017 www.opc.com/upphandlngsbarometer Vsma Upphandlngsbarometern 2017 Sd 1 Förord Som Nordens största leverantör av nöps-, upphandlngs- och anbudstjänster änner v ansvar att vera

Läs mer

b) När den brutna strålen fortsätter och nästa gång når en gränsyta mot luft kommer den att ha infallsvinkeln

b) När den brutna strålen fortsätter och nästa gång når en gränsyta mot luft kommer den att ha infallsvinkeln Lösnngar t tentaen 089 ysk de för asåret. a) örst ehöer an äta upp och eräkna nfasnke och rytnngsnke. O an är osäker på trgonoetrn får an uppskatta nkarna och anända det. Geno att räkna rutor fguren får

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet:

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet: LEDNINAR TILL PROBLEM I KAPITEL 3 LP 3. Systeets asscentru ligger hela tiden id aeln. Krafteationen för hela systeet: F = a P = M+ LP 3. Anänd definitionen a inetis energi. Varje ula har en cirelrörelse.

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Tentamen (TEN2) Maskininlärning (ML) 5hp 21IS1C Systemarkitekturutbildningen. Tentamenskod: Inga hjälpmedel är tillåtna

Tentamen (TEN2) Maskininlärning (ML) 5hp 21IS1C Systemarkitekturutbildningen. Tentamenskod: Inga hjälpmedel är tillåtna Intellgenta och lärande system 15 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen (TEN2) Masknnlärnng (ML) 5hp 21IS1C Systemarktekturutbldnngen Tentamenskod: Tentamensdatum: 2017-03-24 Td:

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-03-01 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)

Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI) STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen

Läs mer

Variansanalys ANOVA. Idé. Experiment med flera populationer. Beteckningar. Beteckningar. ANOVA - ANalysis

Variansanalys ANOVA. Idé. Experiment med flera populationer. Beteckningar. Beteckningar. ANOVA - ANalysis Varansanalys ANOVA ANOVA - ANalyss Of VArance Stcprov från flera populatoner ( ) analyserar varansen (sprdnngen) varje stcprov för att dra slutsatser om medelvärden Har alla populatoner samma medelvärden?

Läs mer

KONTROLLSKRIVNING 2 Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic Datum: 14 apr 2014 Skrivtid: 13:15-15:00

KONTROLLSKRIVNING 2 Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic Datum: 14 apr 2014 Skrivtid: 13:15-15:00 KONTROLLSKRIVNING Kurs: HF atematis statisti Lärare: Armin Halilovic Datum: ar Srivtid: :-: Tillåtna hjälmedel: iniränare av vilen ty som helst. Förbjudna hjälmedel: Telefon lato och alla eletronisa medel

Läs mer

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m LÖSNINGSFÖRSLAG 007 KVALIFICERINGS- OCH LAGTÄVLINGEN 1 februari 007 SVENSKA FYSIKERSAMFUNDET UPPGIFT 1. Enelspaltsproblem. Med sedvanliga betecningar erhålles: λ v / f 340/ 680 m 0,50 m Om α är vineln

Läs mer

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-07-0 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

Tentamen (TEN1) TMEL53 Digitalteknik

Tentamen (TEN1) TMEL53 Digitalteknik ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à

Läs mer

Denna vattenmängd passerar också de 18 hålen med hastigheten v

Denna vattenmängd passerar också de 18 hålen med hastigheten v FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd

Läs mer

6 Vägledning till övningar

6 Vägledning till övningar 6 Vägledning till övningar Deforation 1.2 Tag reda på längden, L, avdcefter deforationen. Använd att töjningen =(L L o )/L o. Ibland underlättar det att använda L =(1+ )L o. Studera den rätvinkliga triangeln

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Leton 6: Vämevälae onduton o onveton Gas IN Gas U Vatten U Vatten IN KP400/M406 Stömnng o vametanspot/ vameoveføng Vämevälaö ä en vtg del av vämevälaen, som sn tu ä en enet som används fö effetv vämeöveföng

Läs mer

-rörböj med utloppsmunstycke,

-rörböj med utloppsmunstycke, S Rörböj 80 Givet: Horisontell 80 kpa at 80 -rörböj ed utlosunstycke A 600 (inlo) A 650 (fritt utlo) at 00 kpa volyflöde V 0475 /in vatten 0 C hoogena förhållanden över tvärsnitt friktionseffekter kan

Läs mer

Bofakta. Brf Äppelblom Hildedal

Bofakta. Brf Äppelblom Hildedal Bofakta ldedal 2 Välkommen hem Att flytta tll ett nytt hem är alltd lka spännande. Att dessutom flytta tll ett helt nybyggt hem, där ngen bott tdgare, är extra specellt. ldedal Park förenar både grönska

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk

Läs mer

Beställningsintervall i periodbeställningssystem

Beställningsintervall i periodbeställningssystem Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t) Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd

Läs mer

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:

Läs mer

www.olr.ccli.com Introduktion Online Rapport Din steg-för-steg guide till den nya Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduktion Online Rapport Din steg-för-steg guide till den nya Online Rapporten (OLR) Online Rapport Onlne Rapport Introdukton Onlne Rapport www.olr.ccl.com Dn steg-för-steg gude tll den nya Onlne Rapporten (OLR) Vktg nformaton tll alla kyrkor och organsatoner som har en CCLI-lcens Inga mer program som

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08 Sruvörband ar Bar MdH/IDT 1 Innebär att: - olla att ruvarna håller - olla att örbandet håller hop vd pålagd lat ar Bar MdH/IDT 2 Sruven - σ = a / A - a : p.g.a. lat och örpännng - A E : pännngarea nn bland

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

gymnasievalet 2019 Dags att välja gymnasium

gymnasievalet 2019 Dags att välja gymnasium gymnasevalet 2019 Dags att välja gymnasum Botkyrka A5 Gymnasevalet 2019.ndd 1 2018-10-26 15:26 Vad gllar du? Vad vll du göra nästa höst? Det börjar bl dags att välja program och gymnaseskola tll hösten

Läs mer

Mos. Statens väg- ochtrafi V" NationalRoad&Traffic Research Institute- $-58101Li: Lä & t # % p. i E d $ åv 3 %. ISSN

Mos. Statens väg- ochtrafi V NationalRoad&Traffic Research Institute- $-58101Li: Lä & t # % p. i E d $ åv 3 %. ISSN f y ä M f ; * I) > t ; + Mos -2'2 2 42/9 halkat :4 11980) S l a,th 4. VD /-/ N =0O0U% 2 ISSN 0347-6049 S 3 ä at HP 3 TP Fa e s % Statens väg- ochtraf V" NatonalRoad&Traffc Research Insttute- $-58101L:

Läs mer

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström UPPSALA UNIVERSITET Matematisa institutionen Anders Källström Prov i matemati Fristående urs Analys MN1 distans 6 11 Srivtid: 1-15. Hjälpmedel: Gymnasieformelsamling. Lösningarna sall åtföljas av förlarande

Läs mer

SG1140, Mekanik del II, för P2 och CL3MAFY

SG1140, Mekanik del II, för P2 och CL3MAFY Tentaen 101218 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

Inversa matriser och determinanter.

Inversa matriser och determinanter. rmn Halloc: EXTR ÖVNINGR a TILLÄMPNINGR V DETERMINNTER Tllämpnngar a determnanter Inersa matrser och determnanter. En adrats matrs är nerterbar om och endast om det Eftersom matrsen är nerterbar om och

Läs mer

Deltentamen. TMA044 Flervariabelanalys E2

Deltentamen. TMA044 Flervariabelanalys E2 Deltentamen godäntdelen, del TMA44 Flervariabelanalys E 4-9-7 l. 8:3-:3 Eaminator: Peter Hegarty, Matematisa vetensaper, Chalmers Telefonvat: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

KINESISKA RESTSATSEN OCH STRUKTURSATSER

KINESISKA RESTSATSEN OCH STRUKTURSATSER Matematsa Insttutonen, KTH Algebra D2, VT 2002 Anders Björner KINESISKA RESTSATSEN OCH STRUKTURSATSER I vssa fall an algebrasa utränngar delas upp på flera mndre utränngar som an utföras parallellt och

Läs mer

Lösningar till tentamen i Kärnkemi ak den 22 januari 2000 kl

Lösningar till tentamen i Kärnkemi ak den 22 januari 2000 kl Lösningar till tentaen i Kärnkei ak den januari 000 kl 0845-145 Del A 1 Sönderfall av 1Pb leder till sönderfallskedjor so slutar på 08Pb a) Vilka grundänen förekoer i dessa korta kedjor? (3p) Svar: Po,

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

gymnasievalet 2019 Dags att välja gymnasium

gymnasievalet 2019 Dags att välja gymnasium gymnasevalet 2019 Dags att välja gymnasum Vad gllar du? Vktga datum Vad vll du göra nästa höst? Det börjar bl dags att välja program och gymnaseskola tll hösten 2019. Våga välja program och skola efter

Läs mer

Finansiell Riskhantering: Derivatinstrument och portföljvalsteori

Finansiell Riskhantering: Derivatinstrument och portföljvalsteori L I N K Ö P I N G S U N I V E R S I T ET H T 1 1 I N S T I T U T I O N E N F Ö R E K O N O M I S K O C H I N D U S T R I E L L U T V E C K L I N G G Ö R A N H Ä G G O C H I N G E R A S P Fnansell Rskhanterng:

Läs mer

IN1 Projector. Snabbstart och referenshandbok

IN1 Projector. Snabbstart och referenshandbok IN Projector Snabbstart och referenshandbok Läs häftet med säkerhetsanvsnngar nnan du nstallerar projektorn. Packa upp kartongen Detta fnns med: Ljud- och vdeokablar är nte nkluderade. Du kan köpa dem

Läs mer

26 medlemmar, representerande 25 röstberättigade fastigheter, deltog i föreningsstämman.

26 medlemmar, representerande 25 röstberättigade fastigheter, deltog i föreningsstämman. Td: 2014-03-06 kl. 19.00 Plats: Fjällenskolan, Röd matsal 26 medlemmar, representerande 25 röstberättgade fastgheter, deltog förenngsstämman. 1. Stämmans öppnande. Styrelsens ordförande öppnade mötet och

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

1. För en partikel som utför en harmonisk svängningsrörelse gäller att dess. acceleration a beror av dess läge x enligt diagrammet nedan.

1. För en partikel som utför en harmonisk svängningsrörelse gäller att dess. acceleration a beror av dess läge x enligt diagrammet nedan. 1 Uniersitetet i Linköping Institutionen för Fysik och Mätteknik Arno Platau Lösningsförslag Tentaen för "BFL 110, Tekniskt Basår, Fysik el 3" Tisagen en 27 Maj 2003, kl. 8:00-12:00 1. För en partikel

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer