En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff."

Transkript

1 atematk tattk Stockholm uvertet E ämförade tude av GL, Jug metod och Teede-modell för premeättg av multplkatv tarff. El Laro Eamearete 4:

2 Potal addre: atematk tattk Dept. of athematc Stockholm uvertet SE-6 9 Stockholm Sede Iteret:

3 atematk tattk Stockholm uvertet Eamearete 4:, E ämförade tude av GL, Jug metod och Teede-modell för premeättg av multplkatv tarff. El Laro Augut 4 Atract Iom kadeföräkrg f det olka metoder för att katta relatotale e multplkatv tarff. I det här eamearetet har Jug margalummemetod, GL och e Teede-modell uderökt. Syftet med aretet var att ämföra metodera tre aveede: kattade relatotal, varaer amt kofdetervall. Jämförele har gort del på verklga data, del på mulerade data. I de olka mulergfalle har olka förhållade uderökt, om tll eempel att kadedata har mulerat frå gamma- amt ormalfördelg. Reultate har te vart etydga, me de metod om ät klarade av de förhållade om uderökte det här aretet var GL och adra ät var Teede-modelle. Potal addre: atematk tattk, Stockholm uvertet, SE-6 9, Stockholm, Sede. E-mal: Hadledare: Rolf Suderg

4 E ämförade tude av GL, Jug metod och Teede-modell för premeättg av multplkatv tarff. El Laro, augut 4 Eamearete matematk tattk vd Stockholm uvertet 4: Sammafattg Iom kadeföräkrg f det olka metoder för att katta relatotale e multplkatv tarff. I det här eamearetet har Jug margalummemetod, GL och e Teede-modell uderökt. Syftet med aretet var att ämför metodera tre aveede; kattade relatotal, varaer amt kofdetervall. Jämförele har gort del på verklga data, del på mulerade data. I de olka mulergfalle har olka förhållade uderökt, om tll eempel att kadedata har mulerat frå gamma- amt ormalfördelg. Reultate har te vart etydga, me de metod om ät klarade av de förhållade om uderökte det här aretet var GL och adra ät var Teede-modelle. Summary There are everal dfferet method ued o-lfe urace to etmate the ratg factor a multplcatve tarff. I th paper three method are eamed: method of margal total Jug method ad method aed o multplcatve GL ad Teede model. The am to compare ho thee method etmate ratg factor, ther a ad preco, ad ther cofdece terval. Comparo have ee made o oth real data ad mulated data. I the mulato, dfferet codto have ee eamed, ad for eample the clam amout have ee mulated from oth the gamma ad the ormal dtruto. The reult ere ot uamguou, ut overall, GL a the method that performed et relato to the factor eamed th paper. The Teede method a udged ecod et. Hadledare: Rolf Suderg, atem. tattk, Stockholm uvertet, Rolad Svek, Föräkrgolaget Trygg-Haa

5 Iehåll Sammafattg. Iledg 4.. Prolemtällg och yfte Avgräg Bakgrudteor.. Begrepp..... odellatagade ultplkatv modell etodera Jug margalummemetod LF-Waa-metode otverg tll LF-Waa-metode GL Skadefrekvee edelkada Skattgar GL Teede-modelle SAS proc gemod Fördelar och ackdelar med metodera Verklga data Reultat frå verklga data Smulerade data.. Smulergfall ; Stadardmodelle..... Smulergfall ; Felpecfcerad kadefördelg Smulergfall 3; Felpecfcerad kadefördelg och varafukto Smulergfall 4; Avvkele frå multplkatvtet Hur ka ma uderöka metodera mot varadra utfrå det mulerade materalet? Vlke av metodera ger met vätevärderktga kattgar? Vlke metod ger mt vara/tadardavvkele? Beräkar metodera kofdetervall och varaer korrekt? Hur ofta lycka metodera detfera kllader mella klaer? Vad ka uderöka geom mulergara? Duratoe verka Relatotale verka... 7

6 7. Reultat av mulergara Reultat av mulergfall ; Stadardmodelle Reultat av mulergfall ; Felpecfcerad kadefördelg Reultat av mulerg 3; Felpecfcerad kadefördelg och varafukto Reultat av mulerg 4; Avvkeler frå multplkatvtet Slutater och dkuo Refereer 4. Apped 4 3

7 . Iledg Ett akföräkrgolag eruder kuder att erätta evetuella framtda kadekotader mot e avgft, preme. Preme kall täcka föräkrgolaget åtagade mot kude, rkpreme, amt dera admtratva kotader och vt. Hur tor rkpreme kudera etalar för e föräkrg eror del på hur tor rke är att de råkar ut för e kada, del på hur tort det evetuella kadeeloppet lr. Olka föräkrgtagare motvarar olka tora rker. är rkpreme eräka uderök därför olka premeargumet varaler om ka täka påverka rke för föräkrgolaget. Ofta ata e multplkatv modell för vätevärdet av kadekotade. De rkpreme om kudera etalar ka motvara de förvätade kadekotade för de kategor av kuder... Prolemtällg och yfte I e tarff etäm preme med hälp av premeargumet, där rke olka klaer om ett premeargumet ätt relato tll varadra. Det f olka metoder för att etämma relatotale e multplkatv tarff. E metod om tdgare vart valg är margalummemetode, om äve kalla Jug metod. umera har metoder aerade på geeralerade lära modeller, GL, lvt alltmer valga. Teede-modellera, om är ett pecalfall av GL, ger upphov tll äu e metod. Syftet med eamearetet är att ämföra dea metoder tre aveede: kattade relatotal med tllhörade varaer och kofdetervall. Jämförele gör del på verklga data, del på mulerade data. Frågor om ag hoppa kua evara med aretet är vlke metod om är met tllförltlg. Vad häder om va modellatagade te är uppfyllda, t e om medelkada har e aa fördelg ä vad metodera utgår frå. Är det ågo av metodera om klara detta ättre ä de övrga?.. Avgräg Både GL- och Teede-modellklaera efattar måga olka modeller. Iom GL kommer de modell att uderöka där atalet kador är Poo-fördelat och kadeeloppet är gammafördelat. För att kla dea modell frå övrga GL kallar ag de för Stadard-GL. Iom Teede-modellera uderök de ammaatta poofördelge drekt på rkpreme. Se apped för taell över de uderökta metodera. är det gäller kattade varaer och kofdetervall alutg tll Jug metod kommer ag att aväda de LF-Waa metod om Stg Roelud krver om Evaluato of GL o-lfe urace. otvarade eräkgar om GL kommer ag att göra elgt de metod om Eör Ohlo och Bör Johao tar upp Prättg om akföräkrg med Geeralerade lära modeller. 4

8 . Bakgrudteor.. Begrepp Iom akföräkrgmatematke defera fölade egrepp: Rkpreme,, total kadekotad per föräkrgår. edelkada,, total kadekotad dvderat med atal kador. Skadefrekve, S, atal kador per föräkrgår. Durato,, är de td om föräkrge gällt. Rkpreme edelkada _ Skadefrekvee.. odellatagade Iom akföräkrg f det tre modellatagade, om gör det mölgt att utforma teorer för rkpreme. För olka föräkrgavtal är utfalle atal kador och kadekotader oeroede av varadra. I dukta tdtervall är utfalle oeroede av varadra. Utfalle för två föräkrgavtal, med amma epoerg atal kador och durato, amma tarffcell, har amma fördelg. Det ma vll åtadkomma vd delge av föräkrgara är att kllade mella olka tarffceller ka vara tor ämförele med om tarffcellera. [4].3. ultplkatv modell Rkpreme ka motvara de för föräkrgolaget förvätade kadekotade. Vd eräkg av rkpreme har ma olka premeargumet varaler om ma tror påverkar olaget rk eller förvätade kadekotad. Vare premeargumet är tur delat olka klaer. ålet är att dela föräkrgavtal med lka tor rk amma grupp. På å v etalar var och e av föräkrgtagara för ege rk/förvätade kotad. Det valga är att ma aätter e multplkatv modell för de förvätade kotade för e föräkrg med rkpreme k. De multplkatva modelle aväd äve vd aaly av kadefrekvee och medelkada. odelle parameterera valge å att ma har e acell och de övrga parametrara uttrycker hur rke avvker frå acelle. E där k K 3k L är apreme och är relatotale för premeargumet. 3 L är a för repektve premeargumet. E multplkatv modell är rmlg efterom de eär att förädrgar av rkpreme lr relatva. Detta ka lätt e med ett ekelt eempel. Om ma har två

9 premeargumet, ålder och geografktområde, och preme ädra för ålder å lr de relatva förädrge deamma oeroede av var ma or. Om ma tället har e addtv modell och preme ädra för ålder å påverka preme procetuella förädrg av var ma or. 3. etodera 3.. Jug margalummemetod E av margalummemetode upphovmä är veke Ja Jug, om var med och utvecklade de uder lutet 96-talet. [] Det metode äger är att kattgara av tarffcellera förvätade kadekotad ka ha amma margalummor om de oerverade kadekotadera. Ekvatoytemet 4 eda var margalummemetode kattgar av relatotale. Edat två premeargumet är med för att få eklare otato. Ekvatoera fck Jug fram geom att mamera poofördelge lkelhoodfukto. Elgt Jug ger ekvatoera alltd vätevärderktga kattgar av margalummora äve om atagadet om poofördelg te gäller eller om modelle ma atagt te tämmer. Det är alltå e fördelgfr metod. [] X kadekotad tarffcell durato X Detta ger fölade ekvatoytem : K p Kq Om ma ummerar de förta ekvatoe över ka ma eda löa ut. löer ma ut ur de förta ekvatoe om fukto av K p Kq Ekvatoytemet 3 löe teratvt. - a, och vce vera. 3 6

10 3.. LF-Waa metode Skattg av varaer amt eräkg av tllhörade kofdetervall har detta arete gort elgt LF-Waa metode, om utgår frå Jug metod. I LF-Waa metode aväd kvadratummora av kadekotadera vd ldadet appromatva kofdetervall för rkpreme relatotal. I metode ata get om kadekotade fördelg, uta de utgår frå att atalet kador är poofördelat och att de totala kadekotade då lr ammaatt poofördelad. [7] Eempel med två k atal kador varaler : är kadekotade för kada k,, 3,, ~Poofördelad ë tarffcell med durato tarffcell. me te på,, k 3,..., k. är oeroede och lka fördelade med e fördelg om får ero på, ~ Sammaatt Poofördelg för ferat. För att få fram varae för de ammaatta Poofördelge ka de kumulatgeererade fuktoe, Ψt, dervera. Se apped för motverg tll Ψt. För att otatoe ka l eklare har ag te tagt med de Ψt Ψ Ψ t Ψ Ψ t Ψ Ψ Ψ / Ψ t / / t Ψ / t Ψ t / W t Ψ Ψ / t Ψ / eda. t E Ψ Ψ Ψ / Ψ / Ψ Ψ / E E / λe / E λe Var Ψ Ψ Ψ λ E / Ψ Var Ψ Ψ / / Ψ Ψ λe / / Var E / Ψ Ψ / Ψ / / E Var / Var λe / 4 7

11 u har v fått fram varae för rkpreme,, e tarffcell. Efterom de totala kadekotade vare del av tarffcelle ka ata vara ammaatt poofördelad, ka ma elgt LF-Waa metode katta varatokoeffcete, v r, för oerverad rkpreme premeargumet r och kla, geom att dvdera kadekotade kvadratummor med ammalagd kadekotad kvadrat. Dea varatokattgar aväd äve om varakattg för rkpreme relatotal, r. [7] v r Summerar över kadekotader om tllhör premeargumet r och kla. [7] u ka ma elgt LF-Waa metode lda appromatva kofdetervall för de kattade relatotale, r,, geom att utgå frå att artme av r är appromatvt ormalfördelad då duratoe är tor. [7] Rkpreme, r, är appromatvt ormalfördelad efterom de har ldat av e umma. Äve rkpreme relatotal, k, och artme av r ka ata vara appromatvt ormalfördelade efterom dvo- och artmfuktoe är, för korta tervall, appromatvt lära. V får här ett 9 procetgt kofdetervall för de förvätade kadekotade premeargumet r kla. r ±,96 v ep ± r r {,96 v } 6 r Kofdetervall för relatotal med kla ett om a får ma geom att ata att artme av r / r är appromatvt ormalfördelad med varae v rv r. [] ep { ±,96 v r v r} 9% 7 r r otverg tll LF-Waa metode. Vd motverge tll varakattge har Eör Ohlo Härledg av ad hoc kofdetervall avät. Fört uderök fallet med edat ett premeargumet. Då motvara rkpreme relatotal av vätevärdet av rkpreme tarffcellera. a ka därför katta varae för rkpreme 4 är ma ka katta relatotale varaer. För att katta varae ekvato 4 ehöv äve kattgar för poofördelge parameter, λ, och adra mometet för kadekotade. 8

12 λ E u får ma frå E λe Var λe förutatt katta med att och katta med λ E katta med / katta med λ 8 att det ara f ett premeargumet. och De emprka kattge,, av de förvätade kadekotade för e föräkrg uder ett år,, är appromatvt ormalfördelad. Geom att aväda felfortplatgformlera e apped får ma fram vätevärde och vara för artme av. De kattade varae dea appromato ger LF-Waa metode varakattg och kofdetervall. Om är appromatvt ~, σ, å är appromatvt ~, σ /. I vårt fall kattavar Var/E med vlket överetämmer med varatokattge, v, 6. Geom tarffcellera oeroede få kattade varaer för relatotale. k ~, k k ν ν k 9, V er ekvato 9 att då v edat har ett premeargumet får v amma varakattg för relatotale om LF-Waa metode. De krtk om rktat mot LF-Waa metode är att de te är fullt motverad då ma har fler ä ett premeargumet. Om ma föröker att katta varae för relatotale då ma har två premeargumet er det ut på fölade ett: Om ma har fölade multplkatva modell Skattar ma och..... elgt Jug modell får ma :.... p... q margale av rkpreme kla med aveede på premeargumet 9

13 Fört uderök om kattge ekvato är kotet. Se apped för defto av kotet. uttryck får ma Om ma artmerar detta kla ett. är fem får ma fölade kattgar av relatotale premeargumete åda Om aklae koteta. Aymptotkt är kattgara de rätta och alltå är de är två ekvatoer dea Löge tll går mot fölade : att ekvatoera vlket leder tll vätevärde då formatoe väer, kovergerar mot a och E E E E

14 Om duratoe har e multplkatv truktur å lr de förta terme ekvato oll. Det va eda 3 för e två gåger två taell. Då duratoe har e multplkatv truktur är det därför eklare att eräka vätevärde och vara för uttrycket. Fört eräka vätevärdet för ekvato. Varae för ekvato katta på fölade ätt då duratoe har e multplkatv truktur. 4 multplkatv truktur om duratoe har e E E E E 3 ekvato högerledet terme edat de förta Uderöker kotat premeargumet kla duratoe kla premeargumet duratoe tarffcell duratoe,, taell - oervatoer per cell, ultplkatv truktur för atal.. c c c c c c c c c c

15 Var Var. ed amma motverg om då Var Var katta u med katta därför med Var Var E Då duratoe har e multplkatv truktur ka ma orte frå förta.. om duratoe har e multplkatv truktur. k k. k v hade om är ν Var ett premeargumet lr :. terme ekvato. ν ν... k. k. Ekvato 4 var att om ma har e multplkatv truktur på duratoe å lr kattgara av relatotale vätevärderktga. Då ma har fler ä ett premeargumet lr varakattge korrekt uder multplkatv durato GL I de lära modelle har ma y,, y om är oervatoer av de tokatka varalera,,. Dea är oeroede och har gemeam vara. Vätevärdea,, ka uttrycka lärt med hälp av ett mdre atal modellparametrar. Och det är detta om är det fudametala de lära modelle. [] ε ka alltå krva ε. Geeralerade lära modeller är e utökg av de lära modelle. Här tllåter ma att vätevärdet lära truktur kapa geom e läkfukto, g. I detta arete har ma e artmk läk på vätevärdet efterom ma utgår frå e multplkatv modell. Då data är på ltform tället för på taellform eär de artmka läkfuktoe fölade: E där är yckeltal för tarffcell är e dkator varaelom talar om är ka vara med. 6 E aa kllad, frå de lära modelle, är att de tokatka varalera te ehöver vara ormalfördelade uta ka komma frå de faml av aolkhetfördelgar om kalla för epoetella dperomodeller, ED. Eempel på fördelgar om tllhör ED är ormal-, poo-, gamma-, ormaloch paretofördelge. Alla täthetfuktoer och aolkhetfuktoe, om tllhör ED, ka ekrva geom frekvefuktoe om va 7. Vlke EDfördelg det är etäm etydgt av varafuktoe. [4] Efterom ma har e hel faml av fördelgar ka ma ta fram modeller om gäller geerellt för alla fördelgar om tllhör ED.

16 Skadefrekvee I GL ka ma katta kadefrekvee och medelkada var och e för g. Geom att faktorera lkelhoofuktoe e faktor om är lkelhoode för frekvedata och e om är de av frekvedata etgade lkelhoode för kadedata, å ka ma eparera fereera för de två olka gruppera av parametrar. Atalet kador om träffar om e v tarffcell ata vara poofördelade. Att detta atagade är rmlgt ka ma e geom att ttta på modellatagadea kaptel två och deftoe av e Poo-proce e apped. Elgt modellatagadea är utfalle dukta tdtervall oeroede av varadra och två avtal med amma epoerg om amma tarffcell har amma fördelg för utfalle. Det ta atagadet eär att det om är av etydele är hur läge och te är ett avtal gällt. Detta eär att dea räkeproce har tatoära och oeroede kremet vlket är ett av vllkore för att det ka vara e Poo-proce. a ka ata att kadora träffar e och e vlket tämmer med äta vllkor för Poo-procee. [4] I e Poo-proce är atalet kador om träffar uder e v tdperod poofördelat. [8] Att atalet kador om träffar uder e v tdperod är Poofördelat är alltå ett rmlgt atagade. { } S v och Där Var S Var E S E P S P f Poo S λ λ φ λ λ λ λ λ λ φ / /! ep ; ~ med durato tarffcell kador atal 8 Skadefrekvee, m L L m L, är två gåger kotuerlgt derverar och verterar.,,, varafukto kalla där,, ep, : 7 frekvefuktoe f v Var E y c y y f φ φ φ φ φ >

17 3.3.. edelkada är ma kattar medelkada utgår ma frå att de eklda kadeeloppe är gammafördelade. Efterom varafuktoe etydgt etämmer vlke ED ma har är det e ra metod att uderöka om varafuktoe är rmlg, då ma etämmer fördelge. För gammafördelge varafukto är vätevärdet proportoellt mot tadardavvkele, vlket är ett rmlgt atagade. [4] Elgt Ohlo 3 at. är att alla ED är reproducerara vlket eär att om ma lår hop två tarffceller där medelvärdet te kler g mycket åt å taar ma om amma ED-faml. Äve detta är ett rmlgt atagade för kadefördelge. edelkada, X X f E ~ Gamma a, Var där kotad för kador tarffcell med durato m f a / a / φ / a X X och a m y Γ a v a a a a e m φ Skattgar GL Efterom åde poo- och gamma-fördelge tllhör ED-famle kommer kattgara att ekrva utfrå frekvefuktoe 7. I GL katta parametrara geom att mamera -lkelhoodfuktoe. För att göra detta dervera lkelhoodfuktoe med aveede på parametrara e apped. a ka e att kattgara av relatotale te eror på φ. - lkelhood fuktoe l è, φ, y φ l y ger L - ekvatoera : c y, φ, y v g är varaera katta aväd att L-kattgara är aymptotkt ormalfördelade och aymptotkt vätevärderktga. 4

18 â I E â, I H l E k φν g y g g ν ν k I er ma att varakattge eror på parameter φ. För kadefrekvee ehöv dock ge kattg av φ efterom de är ett. φ ka katta på tre olka ätt, geom L-kattg, Pearo och Deva. I det här aretet aväd Pearo kattg. Pearo χ χ y Var φχ φ -r r y v y v φ om är appromatvt χ - r - fördelad. ed hälp av de kattade parametrara ka kofdetervall lda. 3 var ett 9- procetgt kofdetervall för medelkada och kadefrekvee etavaraler. är ma vll ha kofdetervall för gammavaralera aväder ma amadet om va 3. 9% - gt KI för : 9% - gt KI för : ±,96 Se e,96 Se, e,96 Se 3 är varaer och kofdetervall för rkpreme eräka orter ma frå att kattgara av medelkada och kadefrekvee parametrar är eroede. Att detta ka göra motvera av att lkelhoofuktoe ka faktorera på det ätt om ekrv avtt Varae för rkpreme ka då eräka elgt 4. S atal kador durato umma av kadekotade atal kador S k k k S Var k Var k Var k 4

19 3.4. Teede-modelle De ED om har varafuktoe v p kalla för Teede-modeller. Dea modeller tllhör de geeralerade lära modellera. Det om är karaktärtkt med dea är att de är kalvarata. ed det mea att e tokatk varael, om tllhör ED, om multplcera med e kotat, tllhör fortfarade amma ED faml. Teede-modelle där <p< är de ammaatta Poofördelge. I dea ammaatta Poofördelg är kadeatalet Poofördelat och kadekotade Gammafördelad, vlket gör de lämplg tll att aväda drekt på rkpreme. Efterom ammaatt Poofördelge aväd föräkrgammahag, är det treat att koppla de tll ED å att geeralerade lära modeller ka aväda. Taell. ågra olka fördelgar för olka p p ormalfördelg p Poofördelg <p< Sammaatt Pooförd. p Gammafördelg p3 Iver ormal förd. ED-fuktoe för Teede-modelle med <p<. y f y,, φ ep c / λ p där λ, p Låt Parametraa få geom; [3] och y, λ, p y,, c y φ p /! Γ p p y aar Dea fördelg får ma geom fölade : I det här aretet har p, avät. p p p, p p λ vara kadekotadera och atal kador. Dea är oeroede av varadra. ~ Gamma, med täthetfukto λ > p m λ, - Γ - z p p y > e - - z och -p och ~ Poo m 6

20 3.. SAS proc gemod I det här aretet har SAS avät. I SAS f det färdga procedurer, proc gemod, för eräkg av relatotal, varaer och kofdetervall för geeralerade lära modeller. Att eräka kattgar av relatotale Jug metod är amma ak om att aväda g av proc gemod med Pooatagade. Se apped för ev. Proc gemod apaar data tll e geeralerad lär modell med hälp av mamumlkelhood metode. För att mamera lkelhoodfuktoe aväder SAS eto- Rapho algortme. Geom läkfuktoe, lk, ager ma vlke typ av modell ma vll ha, vårt fall där modelle är multplkatv ager ma artmfuktoe. Repoe ata ha e ED-fördelg. a får age de typ av ED-fördelg ma vll apaa data tll. Så här ka ma krva SAS är ma vll katta etaparametrara för medelkada med hälp av proc gemod. [] proc gemod datamedelkada; cla &var; model medelkada&var /dtgamma lk pcale; eght kador; od output ParameterEtmater_medelkada; ru; I SAS ka ma katta parameter φ geom mamum-lkelhood, Pearo ch-två och Deva. Om ma te ager ågo metod å aväd L- kattge då ma har gammafördelg, me för poofördelge fera φ vd ett. För att få å kallad överprdg då ma har poofördelg ager ma vlke metod φ ka katta med. 3 I det här aretet har ag avät mg av Pearo ch-två vd kattg av φ gammafördelge, och ge överprdg poofördelge. Då ma har överprdg Poofördelge er varafuktoe ut om förlade : V λ φλ där φ > Omφ < å kalla det för uderprdg [] 6 Det ma ka täka på är ma kattar relatotale för medelkada SAS är att det ör göra på cke-aggregerade data för att te ma varatoe om cellera. är det gäller kadefrekvee ka ma areta med aggregerade data är ma te atar ågo överprdg. 7

21 är det gäller Teede-modelle f det ge färdg procedur SAS om ka aväda. a får tället aväda g av programmergteg proc gemod, där ma älv talar om vad devae och varae ka vara. I 7 har ag eräkat devae för Teede-modelle. Beräkg av devae för Teede - modelle Deva, D lkelhood, l D φ Teede : [ l y l ] h è; φ, y y y h y h y y h h p h p D φ p p p p y p φ p p p p y p p p p c y,, φ Fördelar och ackdelar med metodera. Det f åde för och ackdelar med de tre olka metodera om kattar relatotale e multplkatv tarff. E fördel, med Stadard-GL och Teede-modelle, är att de utgår frå fördelgar vlket gör det mölgt att eräka varaer och kofdetervall. Det är äve e fördel att ma vet uder vlka förutättgar om metodera gäller efterom det gör det mölgt att avgöra är de ör aväda. I Stadard-GL aalyera kadefrekvee och medelkada eparat vlket gör det mölgt att ha olka kladelgar frekve- repektve medelkadeaalye. Detta gör det eklare att fa gfkata kladelgar. Att medelkada och kadefrekvee ata vara oeroede vd eräkg av rkpreme varakattg ka dock vara e ackdel. E aa fördel med GL är att det f färdga procedurer SAS om ma ka aväda g av. Det ka åde fa för- och ackdelar med att Jug metod är fördelgfr. Det om är egatvt är att ma te vet är ma ör eller te ör aväda metode. e å adra da är det e fördel att de alltd ger vätevärderktga margalummor oeroede av fördelg. är det gäller LF-Waa-metode, om aväd vd varakattg av Jug relatotal, å är det e ackdel att metode te är motverad då ma har fler ä ett premeargumet. 8

22 4. Verklga data Beräkgara har gort på kadetattk frå Trygg-Haa uföräkrgar mella åre 998 och 3. Tll att öra med uderökte vlka varaler om var mölga att ha med modell, alltå varaler om det fa uppgfter om de fleta av föräkrgara. Utav dea aväde fem varaler. Därefter gorde kladelg och de klaer om hade tört durato fck vara aklaer. Seda eräkade relatotal, varaer amt tllhörade kofdetervall elgt de tre metodera. 4.. Reultat frå verklga data För de kattade relatotale gav metodera lkartade reultat. är det gällde de kattade tadardavvkelera å var Teede kattgara ågot högre ä Stadard- GL och Jug kattgar för tort ett alla klaer. Se taell. I taell 3 er ma att äve om relatotale kler g ågot åt mella de olka metodera kattgar å är kattgara om varadra kofdetervall. E ackdel med att uderöka verklga data är att ma te har ågot fact att ämföra med, vlket gör det vårt att avgöra vlke av metodera om är ättre ä de adra.. Taell. Relatotal tadaravvkele Stadard-GL Jug Teede Stadard-GL Jug Teede Parameter kla frek m- r- r- r- frek m- r- r- r- kada preme preme preme kada preme preme preme varael,9,78,,98,,4,,3,,7 varael,,,,, varael 3,78,8,99,96,,,4,,,3 varael,69,,69,64,7,3,9,4,,7 varael,8,93,,96,98,3,3,4,, varael 3,,,,, varael 4,8,34,,98,6,,7,7,7,9 varael 3,,,,, varael 3,78,99,77,77,7,,,8,8,9 varael 3 3,44,94,4,4,4,,,6,,6 varael 4,,,,, varael 4,97,3,6,3,3,,3,3,, varael,,,,, varael,7,9,66,66,68,,,7,8,8 varael 3,97,8,78,76,79,3,,,8, 9

23 Taell 3. 9%-gt KI Stadard-GL Jug Teede Parameter Kla frekve medelkada rkpreme rkpreme rkpreme varael,,37,6,,78,3,78,3,73,4 varael varael 3,74,8,3,9,79,,76,,78,8 varael,63,7,7,4,48,,44,9,46, varael,,,7,,77,3,7,3,73,33 varael 3 varael 4,49,67,,7,6,7,,7,6,7 varael 3 varael 3,7,8,8,,64,9,6,94,9,9 varael 3 3,4,46,73,,3,3,3,,3, varael 4 varael 4,93,,7,8,3,4,,6,4,63 varael varael,68,7,7,4,3,8,3,83,4,87 varael 3,9,3,63,,6,99,6,94,9,6. Smulerade data äta teg, ämförele mella Jug metod, Stadard-GL och Teede-modelle var att mulera fram data. Här föler e ekrvg av hur det förta mulergfallet gck tll. För de övrga mulergfalle ekrv edat vlka förädrgar om gort. Se apped för taell över de olka mulergfalle... Smulergfall ; Stadardmodelle. Fört etämde hur modelle kulle e ut, det vll äga om de kulle vara fulltädgt multplkatv amt hur måga premeargumet, klaer och oervatoer per cell de kulle ha. Relatotale för kadefrekvee och medelkada ferade, del för att aväda dem vd mulerge, del om fact att ämföra de kattade parametrara med. I det förta mulergfallet hade vätevärdea för yckeltale rkpreme, kadefrekvee, kadeeloppet e fulltädgt multplkatv modell. E ã ã ã ã 3k 4l kl kl 3k 4l kadefrekvee tarffcell kl λ ã acell kk ã ã relatotal för de olka relatotal för de olka relatotal för de olka relatotal för de olka epâ För medelkada på motvarade ätt. ã ã ã â â â 3k â klaera för premeargumet. klaera för premeargumet. 4l klaera för premeargumet 3. klaera för premeargumet 4.,...,4,..., k,..., l,...,4 8

24 . äta teg var att etämma vlka fördelgar om atalet kador och kadekotader kulle mulera frå. I det förta fallet mulerade atalet kador frå poofördelge och kadekotade frå gammafördelge. Fört mulerade atalet kador. För vare kl tarffcell mulerade atalet kador, kl, kl atal gåger med vätevärdet frå 8. Dataättet hade u e oervato per föräkrgår och kl föräkrgår durato per tarffcell. Ett alteratvt ätt vd poofördelge är att mulera atalet kador vare tarffcell med vätevärdet frå 8 multplcerat med kl. Detta går att göra efterom umma av tycke poofördelade tokatka varaler med vätevärde λ är poofördelade med vätevärde λ. För vare kada mulerade eda kadeeloppet fram. För att få fram gammafördelge parametrar a, eräkade medelvärdet och de kattade tadardavvkele frå de rktga kadetattke, udataättet. Detta gorde för att få e rmlg kadefördelg och te för att få e fördelg om eakt motvarade det rktga udataättet. Parametrara kattade på fölade ätt. medelvärdet av kadekotade frå udata de kattade varae frå udata a gammafördelge vätevärde σ a gammafördelge vara Vlket ger kattgara och a Skattg av a och vare tarffcell: a kk kk där a 3k 3k K K ferat frå öra. u får ma e gammafördelg med fölade truktur på vätevärde och vara. σ kk kk a kk a a kk kk a 3k K 9

25 3. Relatotal, varaer och kofdetervall eräkade därefter utfrå Stadard- GL, Jug metod och Teede-modelle. 4. Smulerge upprepade k atal gåger. Av vare parameter, vara och kofdetervall fa det u k tycke kattgar. För att få ett haterart datamateral, om det gck att utföra eräkgar på, la efter vare mulerg alla kattgar på e eda rad. Detta gav ett dataätt med k tycke rader, med alla kattgar av amma parameter amma kolum... Smulergfall ; Felpecfcerad kadefördelg Här har amma mulergmöter fölt om för fall ett. Det om kler mulergara åt är att pukt två har fördelge, om kadekotade mulerat frå, ädrat frå gammafördelg tll ormalfördelg. Äve dea gåg aväde udataättet medelvärde och emprka vara vd eräkge av fördelge parametrar. Parametrara kattade på fölade ätt. 3 tarffcellera de olka lr olka att vätevärde och vara Apaar parametrara å a e e k k k k k a a k L L L L ormalfördelge a, Skattar parametrara udata tckprovvarae udata medelvärdet av kadekotade och varae, med vätevärdet, ormalfördelgea, e e e e e e e e a a a a σ σ

26 Vätevärdet och varae ormalfördelge lr σ k... k... e k... a k... e a k... 3k 3k k... k... a k... k... e e 3k e e e 3k e e a a e L e k... e Vlket ger amma varafuktoe om v hade mulergfall, v. L 3.3. Smulergfall 3; Felpecfcerad kadefördelg och varafukto Det om uderökte mulergfall tre, var hur ra metodera kattgar lev är kadekotade mulerat frå e fördelg med e aa varafukto ä v k. Här kattade parametrara ormalfördelge på fölade ätt. Apaar parametrara 3 å att vätevärde och vara lr olka de olka k... k... k... a k... Vlket ger fölade vara σ k... e e ak... e e k... a 3k a k... k... a k... k... k e e e e e... k... e 3 3k tarffcellera 3k.4. Smulergfall 4; Avvkele frå multplkatvtet. I det färde mulergfallet uderökte hur ra de tre metodera kattgar lev är modelle om mulergara gorde frå te lägre var fulltädgt multplkatv. De ferade relatotale kude te lägre aväda om fact. Itället uderökte hur ra kattgara tämde de olka tarffcellera. Fört ferade relatotale för kadefrekvee och medelkada, därefter eräkade vätevärdea de olka tarffcellera elgt ekvato 33. Därefter mulerade kadefrekvee och medelkada på amma ätt om mulergfall ett frå och med pukt två. E modellom te har fulltädgt multplkatv truktur,7 3k 4l, k kl Där k är ett vktade medelvärdet av tarffcellera ferade vätevärde. 33 3

27 Ige av metodera ka katta relatotale rätt efterom de utgår frå e multplkatv modell. För att få ett mått på hur ra metodera parameterkattgar var vktade fele om metodera gav de olka tarffcellera med duratoe. Detta gorde efterom det är ättre att modellera kattar fel är duratoe är lte ämfört med då duratoe är tor. etodera kattgar uderökte geom att kvadratumma av kattgara fel ämförde. 34 kl kl kl 3k Summerg över alla mulergar och celler. 4l LF-Waa metode har te ågot ätt att katta varaera för de kattade parametrara tarffcellera och därför har te varakattgara ämfört här. 6. Hur ka ma uderöka metodera mot varadra utfrå det mulerade materalet? 6.. Vlke av metodera ger met vätevärderktga kattgar? Fört ämförde de kattade parametervärdea frå Jug metod, Stadard-GL och Teede-modelle med de rktga parametervärdea, de om ferat frå öra. Efterom kattgara åg ymmetrka ut htogram ämförde medelvärdea av kattgara med de rktga värdea. Här åg ma om det fa ågot ytematkt fel dv om parameterkattgara var vätevärderktga, alltå om vllkoret 3 var uppfyllt. har tagt om eempel, amma eräkgar har utfört för alla varaler. Ε kattg frå mulerg, Kk k 3 För att uderöka om de kattade varalera var vätevärderktga lade kofdetervall för medelvärdet av parameterkattgara. edelvärdet av varalera är, elgt cetrala grävärde ate e apped, appromatvt ormalfördelat. k E Var σ är appromatvt k atal kattgar, σ k för tora k. 36 4

28 Efterom det var måga kattgar av vare parameter kude äve varae katta med tckprovvarae, S. Skattgara aåg vara vätevärderktga om tetet 37 te kude htta att kattgara te var vätevärderktga, alltå om H te kude förkata. S H : KI : k k ±,96 rktga parametervärdet S k H : Summerg över mulergara, med kofdegrad 9% Kk Vlke metod ger mt vara/tadardavvkele? Skattgara emprka vara tckprovvarae, om är e kattg av de aa varae, uderökte för att e vlke metod om gav mt vara. S k Summerg över mulergara, Kk 6.3. Beräkar metodera varaer och kofdetervall korrekt? De emprka tadardavvkele ämförde med kvadratrote ur medelvärdet av de kattade varaera för att e om de kattade varaera eräkat korrekt. S ämförde med Se var mulerg,... k k 38 För att uderöka om kofdetervalle eräkat korrekt eräkade kofdetervall för de kattade parametrara med hälp av de kattade varaera, alltå de varaer om eräkat elgt metodera formler med de kattade parametrara atta. Därefter uderökte om de rktga parametervärdea låg om tervallet. För att hålla reda på är vllkoret var uppfyllt kapade e eroull varael om var ett om vlkoret var uppfyllt och oll aar.

29 det aa parametervärdet kattg av parameter elgt Jug eller GL metode,om ì,aar lgger om det procetga kofdetervalletför ì. Smulerg, Kk är Beroullfördelad / 39 Efter att k tycke mulergar gort, och frå dea hade k tycke kattgar av vare parameter eräkat, å hade ma k tycke Beroullvaraler. Summa av dea är Bomalfördelade. Uder hypotee att metode 9 procetga kofdetervall eräkat korrekt lev: omalfördelad k,.9 mulerg Kk För att uderöka om kofdetervalle eräkat korrekt, eräkade fört medelvärdet av -varalera och eda kofdetervall för dea. edelvärdet vade hur ofta de rktga varalera låg om metodera kattade kofdetervall. mulerg Kk k k,9,9 ±,96 för 9% gt kofde tervall k Hur ofta lycka metodera detfera kllader mella klaer? Hur ofta förkatar metodera e cke a hypote? Ett edgt kofdetervall för de kattade varalera eräkade för att uderöka hur ofta metodera förkatade att det te fa e kllad mella varael och acelle. Därefter kapade e eroullvarael om höll reda på hur ofta hypotee förkatat. H : H : < 9% gt KI : z där â är acell <,,6449Se om f kofdetervallet aar mulerg,... k 4 6

30 6.. Vad ka uderöka geom mulergara? Vd mulerg av data f det mölgheter att uderöka hur ra metodera fugerar uder olka omtädgheter. I de olka mulergfalle uderökte olka apekter om kude täka påverka metodera kattgar. I mulergara aväde fyra premeargumet, med fyra klaer två av dem och fem de adra två, vlket ear 4 tarffceller. Vare mulerat dataätt motvarade ett föräkrgår och vare föräkrgår fa det tycke ettårga föräkrgar. Atal kador om träffade lad dea var ugefär 3 tycke. Samma ferade relatotal och lka tor durato de olka tarffcellera aväde de olka mulergfalle. Däremot hade premeargumete varerade möter vad gäller relatotal och durato Duratoe verka Duratoe påverka, på hur ra metodera kattgar lev, uderökte. Det om främt uderökte var om LF-Waa: varaeräkg påverkade av att duratoe te hade e multplkatv truktur. För att uderöka detta hade två premeargumet, och k, eakt lka relatotal åde för kadefrekvee och för medelkada, meda atalet föräkrgår klde g åt. För premeargumetet k var det lka tor durato de olka klaera me för varerade atalet. Alla premeargumet, utom för och l, hade e multplkatv truktur är det gällde duratoe. De ummerade duratoe över premeargumete och l åg ut på fölade ätt. taell 4 Taell 4 Duratoe per cell tuetal, kl..l l..l 3 7,, 3,.3.l, 7,,.4.l 7, 4,,..l 6... Relatotale verka Äve relatotale uteede varerade för att e om ågo av metodera ättre klarade av va omtädgheter ä vad de adra gorde. Hur ofta modellera förkatade att två relatotal var lka, är de var lka uderökte, elgt 4. För detta ädamål hade premeargumet två klaer med lka relatotal och två klaer där relatotale edat klde g lte åt frå varadra. 7

31 7. Reultat av mulergara 7.. Reultat av mulergfall ; Stadardmodelle Fört uderökte hur ära medelvädera av parameterkattgara var de aa värdea. För Stadard-GL var medelvärdea av kadefrekvee parameterkattgar väldgt ära de aa värdea. Däremot för Stadard-GL: kattg av medelkada och rkpreme var kllade ågot törre. är Jug parameterkattgar av rkpreme uderökte, åg ma att kattgara var gaka ära de rktga parametervärdea, me att de var ågot ämre ä Stadard-GL: kattgar. edelvärdea av Teede-metode parameterkattgar var väldgt lka Stadard-GL: och alltå ära de aa värdea. Se taell är vätevärderktghet uderökte, elgt tetet 37, kude tetet te förkata att ågra av kattgara var vätevärde rktga. Taell. Smulerg.. medelvärdet av parameterkattgara Rktga etavärdea dffere mella r-preme och rktga Stadard-GL Jug Teed arg kla frek m- r- r- r- frek m- r- kada preme preme preme kada preme Stad-GL Jug Teede -, -,34 -,4 -, -,4 -, -,37 -,7,3,,3 -, -, -,33 -,33 -,33 -, -,8 -,8 - -,, -, 3 -,, 4 -,46 -,469 -,874 -,87 -,874 -,46 -,467 -,873 -, - -, -,88 -,4 -,78 -,7 -,78 -,88 -,46 -,73 - -,, -, 3 -,8 -,47 -,89 -,89 -,89 -,8 -,46 -,88 -, - -, 4 -,88 -,7 -,9 -,6 -,6 -,87 -,69 -,6 - -,3, -,4 k -,46 -,464 -,87 -,87 -,87 -,46 -,467 -,873,3,3,3 k -,88 -,4 -,73 -,7 -,7 -,88 -,46 -,73,, k 3 -,8 -,44 -,86 -,8 -,86 -,8 -,46 -,88,,3, k 4 -,87 -,69 -, -,6 -, -,87 -,69 -,6,, k l -,69 -,8 -,7 -,6 -,7 -,69 -, -,3,3,4,3 l -,368 -,367 -,73 -,734 -,73 -,368 -,368 -,73, l 3 -,67 -,66 -,433 -,433 -,433 -,67 -,6 -,49 -,4 - -,4 l 4 Hur ra metodera varakattgar var uderökte geom att medelvärdea av de kattade varaera ämförde med tckprovvaraera. Efterom varaera var må uderökte rote ur medelvärdet av varakattgara och tckprovvarae för att ämförele kulle l eklare. För Stadard-GL tämde medelvärdea av de kattade varaera ra övere med tckprovvaraera. Detta reultat tyder på att 8

32 det går att katta varaera för kadefrekvee och medelkada var och e för g, trot att de är eroede, är ma katta varae för rkpreme, vlket ekräftar reoemaget För Jug metod tämde medelvärdet av de kattade varaera ra övere med tckprovvarae för de premeargumet om hade e multplkatv truktur på duratoe, ock k. Däremot för premeargumet och l var medelvärdet av de kattade varaera lägre ä tckprovvarae. Detta reultat eror på att LF- Waa metode orter frå e del av varae då duratoe te har e multplkatv truktur. är Teede metode kattade varaer uderökte var medelvärdet av dem gaka lka tckprovvaraera. Se taell 6 Taell 6. Smulerg. Rote ur medelvärdet av de kattade S emprk varaera, m-td Stadard-GL Jug Teede Stadard-GL Jug Teede arg. kla frek m- r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada kada,,9,93,,9,,9,9,,9,6,7,7,78,7,6,7,74,78,73 3,4,6,63,69,6,4,6,63,68,63 4,8,8,83,73,8,8,8,83,84,83,9,86,88,79,88,8,87,89,9,88 3,,9,94,86,9,,9,93,94,9 4,3,,8,,,3,,8,,7 k,8,83,8,9,83,8,84,87,9,87 k,8,8,8,87,8,8,77,8,8,8 k 3,7,78,8,84,8,7,7,77,8,77 k 4,7,76,78,8,7,6,74,76,79,76 k l,9,87,89,7,87,9,88,9,9,9 l,8,83,8,77,84,9,8,84,87,84 l 3,7,76,78,76,77,6,77,8,8,79 l 4 Alla tre metodera gav parameterkattgar om var ära de rktga värdea, me Teede och Stadard-GL: kattgara var ågot ättre ä Jug e taell 6 & 7. Äve de emprka varae var lka för alla metodera, me de metod om hade lägt emprk vara var Teede och de om hade högt var Jug e taell 6. Stadard-GL var de metod var kattade varaer ät överetämde med de emprka varaera e taell 8. Taell 7. Kvadratumma av rktga - medelvärdet av de kattade, delat med atal - 7 Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme,37 6,98 7,96 8,79 73,6 9

33 Taell 8. Kvadratumma av kvote mella m-td och S Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme,,,8,98,98 Taell 9 eda var huruvda de 9 procetga kofdetervalle eräkat korrekt. De kurva värdea taelle markerar de om te eräkat korrekt elgt vllkoret 4. Alla tre metodera eräkade tort ett alla kofdetervalle korrekt, ortätt frå där duratoe te hade e multplkatv truktur Jug metod. Teede modelle eräkade de 9 procetga kofdetervalle korrekt för alla premeargumet. Se taell 9 Hur ofta modellera te förkatade att parametrara te klde g frå acelle uderökte elgt tetet 4. För premeargumet klde g de rktga parametrara kla ett och två edat lte åt och kla tre och fyra var de eakt lka. a kude e att för kla tre förkatade te metodera att det te fa e kllad ugefär 9 procet av falle, vlket tämde efterom det var 9 procetga kofdetervall om ag hade utgått frå. För kla ett och två däremot, fa det u e lte kllad mella klaera och där förkatade te metodera att det te fa e kllad ofta. Äve för kla tre premeargumete och k förkatade te metodera lad att det te fa e kllad trot att det fa e kllad. Ju mdre kllad mella klaera det var deto törre rk var det att metodera te förkatade det te fa ågo kllad. Detta är dock ett rmlgt reultat och alla tre metoder gav lka reultat. Se taell 9 Taell 9. Smulerg. Beräka de 9%-ga KI korrekt? Hur ofta förkata te att parameter te kler g frå acelle? Stadard-GL Jug Teede Stadard-GL Jug Teede arg. kla frek m- r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada kada,946,948,947,96,9,76,9,868,89,86,9,944,947,96,94,87,93,883,88,878 3,94,946,99,9,948,943,94,947,93,943 4,9,98,9,9,94,,,,,,96,947,948,9,9,,,,, 3,94,93,9,97,99,,4,,, 4,99,949,94,93,939,,84,86,6,68 k,96,94,94,944,938,,,,, k,946,9,9,97,94,,,,, k 3,9,98,964,96,96,,,,, k 4,93,9,96,94,94,,774,339,384,33 k l,93,96,97,877,94,,,,, l,94,9,9,93,947,,,,, l 3,9,94,94,93,937,,9,,, 3

34 Att Stadard-GL metode gav äkra kattgar det förta mulergfallet är te kotgt med take på att ag utgått frå att atalet kador var poofördelat och att kadeeloppet var gammafördelat. 7.. Reultat av mulergfall ; Felpecfcerad kadefördelg Stadard-GL: kattgar av kadefrekvee, medelkada och rkpreme parametrar var äve här väldgt ra, medelvärdet av parameterkattgara var ära de rktga värdea. Samma reultat gäller äve för Jug metod och Teede metode e taell. är vätevärde rktghet uderökte, elgt tetet 37, åg ma att alla kattgara var vätevärde rktga, dv att tetet te förkatade att de var vätevärde rktga, med ett udatag för Stadard-GL: kattg av kadefrekvee för premeargumet kla två. Taell. Smulerg. medelvärdet av parameterkattgara rktga etavärdea dffere mella r-preme och rktga Stadard-GL Jug Teed e arg. kla frek m -kada r- r- r- frek m- r - Stadpreme preme preme kada preme GL Jug Teede -, -,37 -,8 -,9 -,9 -, -,37 -,7 -, -, -, -, -,7 -,7 -,8 -,7 -, -,8 -,8,, 3 -,,,,,, 4 -,46 -,467 -,873 -,87 -,873 -,46 -,467 -,873, -,86 -,46 -,73 -,7 -,7 -,88 -,46 -,73,, 3 -,8 -,47 -,89 -,89 -,89 -,8 -,46 -,88 -, -, -, 4 -,87 -,73 -,6 -,6 -,6 -,87 -,69 -,6 -,4 -,4 -,4 k -,46 -,468 -,874 -,874 -,874 -,46 -,467 -,873 -, -, -, k -,88 -,48 -,76 -,76 -,76 -,88 -,46 -,73 -,3 -,3 -,3 k 3 -,8 -,4 -,84 -,8 -,84 -,8 -,46 -,88,4,3,4 k 4 -,87 -,67 -,4 -, -,4 -,87 -,69 -,6,,, k l -,69 -,4 -,33 -,34 -,34 -,69 -, -,3 -,3 -,4 -,4 l -,368 -,37 -,738 -,74 -,739 -,368 -,368 -,73 -,3 -, -,4 l 3 -,67 -,6 -,49 -,43 -,49 -,67 -,6 -,49 -, l 4 edelvärdet av de kattade varaera klde g te mycket frå tckprovvarae för Stadard-GL: kattgar. Äve här tyder reultatet på att det går att katta varaera för kadefrekvee och medelkada var och e för g trot att de är eroede, vlket ekräftar reoemaget är det gällde kattgara av varaera för Jug metod å var de te lka ra, medelvärdet av dem var lägre ä tckprovvarae alla olka klaer. Skllade var dock törre för de klaer där 3

35 duratoe te hade e multplkatv truktur. För Teede var medelvärdea av de kattade varaera lägre ä tckprovvaraera äta alla klaer. Se taell Taell. Smulerg Rote ur medelvärdet av de kattade varaera S emprk, m-td Stadard-GL Jug Teede Stadard-GL Jug Teede arg. kla frek m-kada r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada,,84,86,94,84,,83,86,99,88,6,6,66,7,6,6,68,7,8,7 3,4,7,8,67,7,4,7,8,68,9 4,8,74,76,7,7,7,76,77,83,79,9,79,8,76,8,8,78,8,86,8 3,,84,87,8,87,,83,84,9,8 4,3,97,,93,96,3,9,97,3,98 k,8,76,78,86,76,9,77,79,88,8 k,8,73,76,83,74,8,7,74,8,7 k 3,7,7,73,8,73,7,73,74,8,76 k 4,7,7,7,8,68,7,7,74,83,7 k l,9,8,8,7,8,8,8,8,87,8 l,8,76,79,7,77,7,78,79,8,8 l 3,7,7,7,73,7,6,7,7,77,73 l 4 I dea mulerg var medelvärdet av parameterkattgar ära de aa värdea för alla tre metodera, kllade var dock mt för Stadard-GL och tört för Teede. Stadard-GL var de metod om gav lägt tckprovvara och det var äve de metod där de kattade varaer tämde ät övere med tckprovvaraera. Jug däremot var de metod om gav högt emprk vara och äve de metod där de kattade varae ämt överetämde med de emprka varae. Se taell och 3 Taell. Kvadratumma av rktga - medelvärdet av de kattade, delat med atal -7 Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme 3,88 43,46 46,6 4,8, Taell 3. Kvadratumma av kvote mella m-td och S Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme,7,98,997,89,9 3

36 I taell 4 eda, om var om de 9 procetga kofdetervalle eräkat korrekt, eteckar de kurva värdea de fall där kofdetervalle te eräkat korrekt. Stadard-GL eräkade alla kofdetervall korrekt med ett udatag för rkpreme premeargumet kla ett. är det gällde Jug metod åg ma amma möter om för mulergfall ett. För de premeargumet om te hade e multplkatv truktur för duratoe eräkade te kofdetervalle korrekt. För de övrga två argumete var det edat på ett tälle om metode te eräkade kofdetervallet korrekt. Teede, om förra mulerge eräkade kofdetervalle korrekt, gav här ett mycket ämre reultat. etode gav e lägre kofdegrad ä vad de kulle göra. Sälvklart f det ett amad med att metode kattade tadardavvkeler var för låga och därmed lev kofdetervalle för mala. Se taell 4 är hur ofta modellera lyckade detfera kllader mella klaer uderökte, kude ma e lkade reultat om för mulergfall ett. För premeargumet kla tre, där det älva verket te var ågo kllad, accepterade Jug och Teede mer älla ä vad Stadard-GL att det te fa e kllad. Vlket etyder att Jug och Teede a att parameter hade etydele för ofta. är det gällde kla ett och två, där det fa e lte kllad mella klaera och acelle, accepterade Stadard-GL oftare att parameter te klde g frå acelle ä vad Teede och Jug gorde. Se taell 4 Taell 4. Smulerg Beräka de 9%-ga KI korrekt? Hur ofta förkata te att parameter te kler g frå acelle? Stadard-GL Jug Teede Stadard-GL Jug Teede Arg. Kla frek m- r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada kada,9,94,94,934,939,7,89,84,79,84,9,94,93,936,9,8,9,897,867,87 3,944,94,948,947,93,949,93,9,939,93 4,963,94,9,894,94,,,,,,98,9,9,98,94,,,,, 3,94,946,9,9,94,,4,,4, 4,9,939,94,99,934,,83,494,4,46 k,94,9,9,9,933,,,,, k,944,93,96,98,94,,,,, k 3,9,948,948,943,96,,3,,, k 4,9,94,943,946,9,,74,89,3,78 k l,98,94,96,86,99,,,,, l,964,944,9,97,933,,,,, l 3,99,9,947,93,93,,8,,, l 4 33

37 7.3. Reultat av mulerg 3; Felpecfcerad kadefördelg och varafukto edelvärdet av Stadard-GL: parameterkattgar tämde mycket ra med de rktga parametrara för kadefrekvee. För alla adra parameterkattgar tämde medelvärdea ämre övere med de rktga parametrara om ma ämför med de adra mulergfalle. De metod om var ågot ättre ä de övrga var Teede e taell. är vätevärde rktghet uderökte, elgt formel 37, å var det måga parametrar om te var vätevärde rktga e taell 6 där e etta etyder att tetet 37 te kude förkata. Jug var de metod om hade flet vätevärde rktga parameterkattgar. Taell. Smulerg 3. medelvärdet av parameterkattgara rktga etavärdea dffere mella r-preme och rktga Stadard-GL Jug Teede arg. kla frek m- kada r- r- r-preme frek m- r- Stadpreme preme kada preme GL Jug Teede -, -,44 -,64 -,7 -,6 -, -,37 -,7 -,7 -,3 -,8 -, -,9 -,9 -,3 -,3 -, -,8 -,8 -, -,7 -, 3 -, -,3 -, -, -,3 -, 4 -,47 -,46 -,868 -,876 -,87 -,46 -,467 -,873, -,3, -,88 -,4 -,699 -,77 -,7 -,88 -,46 -,73,4 -,4, 3 -,83 -,43 -,86 -,93 -,88 -,8 -,46 -,88, -, 4 -,88 -,73 -,6 -,6 -,6 -,87 -,69 -,6 -, -,9 -,6 k -,4 -,47 -,86 -,87 -,866 -,46 -,467 -,873,,3,7 k -,87 -,4 -,688 -,69 -,69 -,88 -,46 -,73,,,3 k 3 -,83 -,39 -,7 -,79 -,77 -,8 -,46 -,88,3,9, k 4 -,87 -,8 -,46 -,47 -,46 -,87 -,69 -,6,,9, k l -,69 -, -, -,9 -, -,69 -, -,3,9,, l -,367 -,364 -,73 -,738 -,734 -,368 -,368 -,73,4 -,3, l 3 -,67 -,6 -,46 -,43 -,48 -,67 -,6 -,49,3 -,, l 4. 34

38 Taell 6. Är parameterkattgara vätevärde rktga? Stadard-GL Jug Teede arg. kla frek m-kada r-preme r-preme r-preme k k k 3 k 4 k l l l 3 l 4 edelvärdet av Stadard-GL: kattade varaer tämde mycket ra med tckprovvarae för kadefrekvee, däremot för medelkada var kllade törre. För rkpreme, premeargumet och l, tämde te varakattgara ra övere med tckprovvarae. För Jug metod var medelvärdet av de kattade varaera lägre ä tckprovvaraera för alla premeargumet. Samma reultat gällde för Teede kattgara av varaera, de var lägre ä tckprovvarae för alla premeargumet. Se taell 7 3

39 Taell 7. Smulerg 3. Rote ur medelvärdet av de kattade S emprkt varaera, m-td Stadard-GL Jug Teede Stadard-GL Jug Teede arg. kla frek m- r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada kada,,6,8,6,4,,8,9,84,36,6,97,99,36,87,6,4,,, 3,4,86,87,7,77,4,88,89,36,96 4,8,,3,3,,8,,3,3,9,9,9,,7,8,9,4,6,3, 3,,7,9,6,7,,,3,4,9 4,3,46,48,6,8,4,,8,98,6 k,8,4,6,44,,9,,6,8, k,8,,,47,99,8,4,,8, k 3,7,7,9,4,98,7,,3,8,9 k 4,7,,6,7,9,7,3,,73,3 k l,9,,,,7,,9,,,8 l,8,,7,33,3,8,,8,63,36 l 3,7,6,7,4,9,7,,,6,3 l 4 Alla tre metoder parameterkattgar var gaka lka varadra, me Teede kattgar var met och Stadard-GL var mt lka de rktga parametrara e taell 8. De metod om gav lägt emprk vara var Stadard-GL och de om gav hög var Jug e taell 7. är det gällde kattgara av tadardavvkelera var Stadard-GL: kattgar met lka och Tede mt lka de emprka tadardavvkele e taell 9. Taell 8. Kvadratumma av rktga - medelvärdet av de kattade, delat med atal -7 Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme Taell 9. Kvadratumma av kvote mella m-td och S Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme,983,983,98,78,694 För Stadard-GL eräkade kofdetervalle lad korrekt. För Jug åg ma amma möter om tdgare, att för de argumet där duratoe te hade e multplkatv truktur var kofdetervalle lägre ä de kulle vara. Teede 36

40 modelle 9 procetga kofdetervall hade egetlge lägre kofdegrad ä vad de kulle ha. Se taell Taell var äve hur ofta metodera lyckade detfera att det fa e kllad mella klaera. Stadard-GL och Jug metod lyckade oftare te förkata att det te fa e kllad mella aklae och kla tre premeargumet, ä vad Teede metode gorde. Teede a att parameter hade etydele för ofta. För kla ett och två, där det fa e lte kllad, var Jug och Teede de metoder om oftat a att det fa e kllad. Taell. Smulerg 3. Beräka de 9%-ga KI korrekt? Hur ofta förkata te att parameter te kler g frå acelle? Stadard-GL Jug Teede Stadard-GL Jug Teede arg. kla frek m- r-preme r-preme r-preme frek m- r-preme r-preme r-preme kada kada,96,948,946,99,98,74,99,89,789,8,9,94,937,94,87,836,9,97,878,846 3,948,97,98,94,877,939,9,949,9,97 4,94,99,96,93,93,6,4,,94,96,967,96,939,4,4, 3,9,967,976,97,944,,3,3,7 4,944,934,93,887,88,,83,669,8,68 k,94,94,94,947,89,,,, k,944,944,94,94,878,9,9, k 3,98,938,936,944,89,3,3,3,4 k 4,946,98,94,949,834,8,6,674,49 k l,94,93,9,8,896,8 l,93,9,9,89,868,6,,8,3 l 3,937,98,93,939,84,8,,79,6 l Reultat av mulerg 4; Avvkeler frå multplkatvtet är avvkeler frå multplkatvtet uderökte kude te amma uderökgar göra om de adra mulergfalle, efterom ämförele u gorde tarffcellera. Fört uderökte de kattade parametervärdea elgt formel 34. Reultatet lev att alla tre metodera kattade vätevärdet tarffcellera lka ra eller lka dålgt, e taell. För att kua ämföra tckprovvarae tog ett medelvärde av dem över alla tarffcellera. a ör täka på att parameterkattgara har ytematka fel om påverkar tckprovvarae. Detta eror på att parameterkattgara te ka katta rätt då v utgått frå e modell om te är fullt multplkatv. Teede var de metod om gav lägt tckprovvara och Jug de om gav högt, e taell. Hur ra varakattgara tämde övere med tckprovvarae uderökte för 37

41 Stadard-GL och Teede. I taell 3 er ma att åda varakattgar är ra me att Teede är ågot ättre. Taell Kvadratumma av de oerverade värdea mu de kattade, vktat med duratoe Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme 4 9,7E4,7E3,7E3,7E3 Taell edelvärdet av tckprovvarae över alla celler Stadard-GL Jug Teede frek m-kada r-preme r-preme r-preme,4,9,,4, Taell 3 Kvadratumma av tckprovvarae dvderat med medelvärdet av de kattade varae dvderat med atal celler. Stadard-GL Teede frek m-kada r-preme r-preme,977,97,969,98 Alltför tora avvkeler frå multplkatvtet har te uderökt efterom det är rmlgt att ata att ma te aätter e multplkatv modell om ma te tror att det är multplkatvtet om råder. 38

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.

LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar. LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.

081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de. 1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

FACIT OCH KOMMENTARER

FACIT OCH KOMMENTARER STUDIEAVSNITT FACIT OCH KOMMENTARER 0 a) Multiplikationen går fört: 0 + = Parenteen fört:. = c) Diviionen fört: + = d) /( + ) = /0 = 0, 0 a) 0. = 0 - = c) - = d) Totalt tre terer,. oc /. Beräkna fört varje

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s. Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller

Läs mer

Sammanfattning formler och begrepp, första delen av två

Sammanfattning formler och begrepp, första delen av två Ekoomsk sask, del kurs 6 ael agwall;, vårerme 5 ockholm chool of Ecoomcs ammafag formler och begre, försa dele av vå amle sckrov objek,,,...,, av oulaoes N. Om Varje objek har lka sor saolkhe a väljas

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen.

HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen. HPOTESPRÖVNING De tatitika metodera om aväd för att fatta dea typ av belut baera på två komplemetära atagade om populatioe. Partiet produkter har atige de utlovade kvalitete eller å har de de ite. Atige

Läs mer

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13. HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

Delårsrapport 2 2014. Miljö- & hälsoskyddskontoret

Delårsrapport 2 2014. Miljö- & hälsoskyddskontoret Delårrapport 2 Mljö- & hälokyddkontoret 1 Sammanfattnng en för att nämnden kommer att nå de atta verkamhetmålen är god. Kontoret atar under året på att påbörja flera kvaltethöjande projekt för att få effektvare

Läs mer

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket? Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08 Sruvörband ar Bar MdH/IDT 1 Innebär att: - olla att ruvarna håller - olla att örbandet håller hop vd pålagd lat ar Bar MdH/IDT 2 Sruven - σ = a / A - a : p.g.a. lat och örpännng - A E : pännngarea nn bland

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Ur KB:s samlingar Digitaliserad år 2013

Ur KB:s samlingar Digitaliserad år 2013 Ur KB:s samlgar Dgtalserad år 2013 v Te/egrafadrfeás ré%dr/(sos LÖöfe?I org,i,u I 1-1 A1 1 r m I 1 j»»l m rl 5% m» se GÖTEB0RG, å, Om lmstgjorda,?gödslgsäme m 111 L Sveske _ L Ladthshållares, Å 0C Säüer

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;

Läs mer

Betong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater

Betong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater Nvåmätg Betg Cemet Guv Pappe & Cellula Afalt Gu Kem Plat Läkemedel Lvmedel Avlpp & Vatte Vätk Pulve Sluy Flg Gaulate Nvåmätg fö pcedut Nvåktll fö: Övefylladkydd Batchktll Pduktmätg Lagektll Säkehetlam

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Välkommen in i konfirmandens egen bibel!

Välkommen in i konfirmandens egen bibel! L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs

Läs mer

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker (5) PM till Nämde för KPI [205-05-8] PCA/MFO Kristia tradber Aders Norber Utvärderi av tidiarelad start av prismätiar i ya radio- och TV-butier För iformatio Prisehete har atait e stevis asats av implemeteri

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, fri övergåg iom 1 tim till stadsbussara (valfritt atal resor

Läs mer

Flexibel konkursriskestimering med logistisk spline-regression

Flexibel konkursriskestimering med logistisk spline-regression Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Kombinatoriska nät. Kombinatoriska nät. Kodomvandlare - 1/2 binäravkodare. Kodomvandlare - 2/4 binäravkodare

Kombinatoriska nät. Kombinatoriska nät. Kodomvandlare - 1/2 binäravkodare. Kodomvandlare - 2/4 binäravkodare Grndläande datorteknk Komnatorka nät Daen örelänn: Lärooken kaptel 4 Aretoken kaptel 4-7 Ur nnehållet: Kodomvandlare Don t are vd mnmern Väljare (Mltpleer Fördelare (Demltpleer Sktoperatoner Adderare n

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03 Tentamen del 2 i kuren Elintallation, begränad behörighet ET1013 2013-06-03 Tentamen omfattar 60 poäng. För godkänd tentamen kräv 30 poäng. Tillåtna hjälpmedel är räknedoa amt bifogad formelamling Beräkningar

Läs mer

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX SKÄRATAREKOMMENATIONER UEHOLM NIMAX Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

SKÄRDATAREKOMMENDATIONER RAMAX HH

SKÄRDATAREKOMMENDATIONER RAMAX HH SKÄRATAREKOMMENATIONER Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som måste apassas

Läs mer

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition Iheritace Återavädig Två mekaismer Nedärvig av egeskaper (iheritace) Objekt kompositio A A +a +b B B Iheritace Återavädig geom att skapa subklasser kallas ofta white box reuse Ekelt att aväda Relatioe

Läs mer

Hårdmagnetiska material / permanent magnet materials

Hårdmagnetiska material / permanent magnet materials 1 Hårdmagnetika material / permanent magnet material agnetiera fört med tort magnetfält H 1 (ofta pulat), när det yttre fältet är bortaget finn fortfarande det avmagnetierande fältet H d och materialet

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

Ur KB:s samlingar Digitaliserad år 2013

Ur KB:s samlingar Digitaliserad år 2013 Ur KB:s samlngar Dgtalserad år 2013 EBI slista % (UTANFÖRBINDELSE) PÅ VEKLUNDHs_ STÅLPLOGÅB_ OCH LANDTBBUKSBEDSKAP -. SAMT Ä ÅKDON M. M. FRÅN yaprn;m5 (FÖRR A HJELMAFORST POSTADRESS: W115PRV DALSQTORP

Läs mer

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden. Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. OBSERVERA att översikte grudar sig på e iveterig, som ite är klar! Atalet ärede och urval av ärede ka komma att

Läs mer

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Dagordning. Pågående planering Information om kommunalt VA Hur påverkar VA utbyggnaden fastighetsägaren? Information om avgifter mm Frågor

Dagordning. Pågående planering Information om kommunalt VA Hur påverkar VA utbyggnaden fastighetsägaren? Information om avgifter mm Frågor Daordi Pååede plaeri Iformatio om kommualt VA Hur påverkar VA utbyade fastihetsäare? Iformatio om avifter mm Fråor Pååede plaeri yv ä V ä yv sb ä l v ä me sb y lv Ka a d ö T3 by rs kv ä E ä rsb å e l v

Läs mer

Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin

Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

Köp hela häftet på www.arrakmusik.se (16 sidor)

Köp hela häftet på www.arrakmusik.se (16 sidor) ftontankar vid ridas ruta + komp ad li. irger öerg rr: nders Öman opran lt aryton 5 c c c E 6 1. 5.. 7 E m G 7 C m 1. rida ro sig lagt, månen skiner mild vid sin tys ta vakt på hennes fönsterplåt. 5. rida

Läs mer

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också

Läs mer

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)

Läs mer

Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik

Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Formelamlg tll Geodetk och fotogrammetrk mätg- och beräkgtekk Vero 015-03-04 Geodetk och fotogrammetrk mätg- och beräkgtekk by Latmäteret m.fl. lceed uder a Creatve Commo Erkäade-Ickekommerell-Igaearbetgar

Läs mer