Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10 4 kgm/s Sva: 1,8. 10 4 kgm/s G5. Röelsemängd p Elektonens massa m 9,1. 10 31 kg och dess hastighet v 1. 10 6 m/s p 9,1. 10 31. 1. 10 6 kgm/s 1,1. 10 3 kgm/s Sva: 1,1. 10 3 kgm/s G6. a) Vid en kollision mellan två koppa bevaas inte deas hastighete. Två koppa kan t.ex. komma akt mot vaanda med samma fat. Om kollisionen ä fullständigt oelastisk och koppana ha samma massa komme de att stanna vid kollisionen. Altenativ a ä inte koekt. b) Röelseenegi kan oandlas till bland annat fiktionsväme vid kollisione. Altenativ b ä inte koekt. c) Totala öelsemängden bevaas vid alla kollisione. Altenativ c ä koekt. Sva: c G7. Röelsemängden bevaas vid alla stöta, dvs altenativen c och d ä koekta. Röelseenegin bevaas endast vid fullständigt elastiska stöta, vilket innebä att altenativ a ä koekt. Sva: a, c och d G8. Pucken ges en hastighet åt höge. Efte tillslaget ha pucken således dels en hastighet akt uppåt, dels en hastighet åt höge. Dessa hastighete addeas till en esulteande hastighet snett uppåt höge, dvs. figu. Sva: Figu
G1.Geväet få hastigheten v. Den totala öelsemängden hos systemet "kula-gevä" ä noll innan skottet avlossats och ä dämed noll även efte det att skottet avlossats. Lagen om öelsemängdens bevaande ge: 4,0 v + 0,0075 450 0 v 0,84 m/s Att hastigheten ha negativt tecken innebä att geväets öelseiktning ä motsatt kulans. Sva: 0,84 m/s G. Vagnanas gemensamma hastighet efte kollisionen betecknas med v. Vi bestämme denna hastighet med lagen om öelsemängdens konstans: 6,0. 5,0 +,0. ( 8,0) (6,0 +,0). v 30 16 8v 8v 14 v 1,75 m/s Sva: 1,8 m/s G3. Bilens hastighet föe kollisionen ä 36 v 1 36 km/h m/s 10 m/s 3,6 Lastbilens hastighet föe kollisionen ä v 0 m/s Bilens massa ä m 100 kg. Lastbilens massa ä M 5300 kg Kollisionen ä helt oelastisk. Bilana ha gemensam hastighet v efte kollisionen. Lagen om öelsemängdens bevaande ge då: 1 + Mv (m + M)v v + Mv 1 100 10 + 5300 0 m/s m + M 100 + 5300 1,846 m/s 1,846. 3,6 km/h 6,6 km/h Sva: 6,6 km/h (1,8 m/s) G4. Att stöten ä fullständigt oelastisk innebä att vagnana fastna i vaanda och fotsätte som ett enda ekipage med hastigheten v efte kollisionen. Lagen om öelsemängdens bevaande ge: 4,0. 6,0 + 8,0. 0 (4,0 + 8,0). v 4 + 0 1. 4 v v m/s,0 m/s 1 Sva:,0 m/s V6.Om vi sätte hastigheten efte studsen till v 11 m/s, ä hastigheten föe studsen v 1 1 m/s, eftesom hastighetens iktninga ä omkastade. Röelsemängd föe studsen: 1 0,018. ( 1) kgm/s 0,16 kgm/s Röelsemängd efte studsen: 0,018. 11 kgm/s 0,198 kgm/s. Ändingen av öelsemängd bli då 1 (0,198 ( 0,16)) kgm/s 0,414 kgm/s Sva: 0,41 kgm/s
V7. Impulslagen F. t o. v o 0, m,0 kg Impulsen F. t epesenteas av aean unde gafen i figuen. N F 6 4 Vi få F. t (. 4 + 4 6 4 4 46,0. v v Sva: 3 m/s +. 6 + 8 10 1 t s 6 6 ) Ns 46 Ns 46 m/s 3 m/s V8. Vi vill beäkna kulans hastighet v då den nå stålplattan. Vi beäkna däfö föst falltiden t. gt s 1,0 s Detta ge t s 0,451 s g 9,8 Kulan ha då fått hastigheten v gt 9,8. 0,451 m/s 4,43 m/s Kulans öelsemängd p 1 m. v 0,010. 4,43 kgm/s 0,0443 kgm/s. Efte studsen ha kulan öelsemängden p 0,0443 kgm/s. Röelsemängdsändingen p. 0,0443 kgm/s 0,0886 kgm/s Impulslagen: F. t p ge F. 0,05 0,0886 0,0886 F N 1,77 N 0,05 Sva: 1,8 N V9. Innan kulan avfyats ä den totala öelsemängden fö båt och kula lika med noll. Enligt lagen om öelsemängdens bevaande ä den totala öelsemängden noll även efte avfyandet. Båtens hastighet efte skottet ä v. Kulans hastighet sätts till 100 m/s. Efte avfyandet av kulan väge båten (450 6,5) kg 443,5 kg Vi få: 443,5. v + 6,5. ( 100) 0 443,5v 650 v 650 m/s 1,47 m/s 443,5 Sva: 1,5 m/s
V10. Vi vill beäkna den påköande bilens hastighet v 1 i kollisionsögonblicket och beäkna däfö föst tiden t fån stat till kollision. Vi ha s Detta ge t s a 80 1,5 at s 10,3 s Vi få då v 1 at 1,5. 10,3 m/s 15,5 m/s 15,5. 3,6 km/h 55,8 km/h Låt vaje bils massa vaa m och låt v vaa deas gemensamma hastighet efte kollisionen. Lagen om öelsemängdens bevaande ge: m. 55,8 + m. 30 m. v v 85,8 85,8 v km/h 4,9 km/h Sva: 43 km/h V11. Vi sätte puckens hastighet till 1 m/s nä den näma sig klubban. Efte slaget fån klubban ha den hastigheten v. Puckens massa ä m. Impulslagen ge:,50 m. ( 1),50 0,160. v + 0,160. 1 0,160. v 0,58 v Sva: 3,6 m/s 0,58 0,160 m/s 3,65 m/s M1.Vi välje höge som positiv öelseiktning. Vagnanas sammanlagda öelseenegi föe kollisionen ä 5,0 ( 1) 5,0 ( + ) J 1,5 J Enegipincipen ge att den totala öelseenegin inte kan vaa stöe efte kollisionen. I altenativ D ä vagnanas sammanlagda öelseenegi 5,0 ( ) 5,0 3 ( + ) J 3,5 J Altenativ D ä således omöjligt. I samtliga öviga altenativ ä vagnanas totala öelseenegi lika med elle minde än 1,5 J. Röelsemängden bevaas vid alla stöta. Röelsemängden föe kollisionen ä 5 + 5 ( 1) 5 kgm/s Röelsemängden efte kollisionen ä A: 5 ( ) + 5 1 5 kgm/s B: 0 + 5 1 5 kgm/s C: 5 ( 1) + 5 5 kgm/s E: 5 0,+ 5 0,8 5 kgm/s F: 5 0,5 + 5 0,5 5 kgm/s Vi finne att öelsemängden bevaas i B, C, E och F. Sva: B, C, E och F
M. Vi beäkna föst den hastighet v 1 med vilken bollen täffa golvet. Vi utnyttja enegipincipen. Bollens lägesenegi oandlas till öelseenegi stax innan studsen mot golvet. Bollen falle fån höjden h 1,5 m. Vi få: 1 mgh 1 v 1 gh 1 9,8, 5 m/s 7,0 m/s Diekt efte studsen ha bollen hastigheten v och nå sedan höjden h,0 m. Detta ge mgh v gh 9,8, 0 m/s 6,3 m/s Efte studsen ha bollen motsatt öelseiktning, vafö vi sätte v 6,3 m/s. Impulslagen F. t 1 : F. 0,15 (0,10. ( 6,3) 0,10. 7,0) Ns ( )1,59 Ns 1,59 F N 10,6 N 0,15 Sva: 11 N M3. a) Efte det att bollen ha studsat upp ha den föloat (4,0,8) m 1, m i höjd. Detta innebä en fölust av lägesenegi mgh 0,080. 9,8. 1, J 0,94 J. Denna enegi ha oandlats till väme vid studsen. b) Vi beäkna föst bollens hastighet v 1 stax innan den nå golvet. Bollen släpps fån höjden h 1 4,0 m. Dess lägesenegi ha oandlats till öelseenegi då den nå golvet. 1 mgh 1 v 1 gh 1 9,8 4, 0 m/s 8,9 m/s Diekt efte studsen ha bollen hastigheten v och nå sedan höjden h,8 m. Detta ge: mgh v gh 9,8, 8 m/s 7,4 m/s Efte studsen ha bollen motsatt öelseiktning, vafö vi sätte v 7,4 m/s. Impulslagen F. t 1 ge F.0,075 (0,080.( 7,4) 0,080.8,9) Ns 1,30 Ns 1,30 F N 17,4 N 0,075 Sva. a) 0,94 J b) 17 N
Centalöelse G m G1.Newtons gavitationslag F 1 m 11 4 30 6,67 10 6,0 10,0 10 F 11 (1,5 10 ) F 3,56 10 N ge N Sva: 3,6 10 N G m G13. Newtons gavitationslag F 1 m 11 4 6,67 10 6,0 10 7,3 10 F N 8 (3,8 10 ) F,0 10 0 N ge Sva:,0 10 0 N G14. I läge ha kulan hastighet akt uppåt i bilden. Tidigae ha öets ytte vägg tvingat kulan att öa sig i cikelbana. Eftesom öet upphö vid, komme kulan nu att öa sig utefte en ät linje åt samma håll som dess hastighet, dvs. i iktning B. Sva: B G15. Då ett föemål ö sig i cikelbana med adien och med konstant banhastighet v, ä acceleationen konstant till sin stolek. a Acceleationen ända däemot hela tiden iktning, eftesom den ständigt ä iktad in mot centum av banan. Sva: C G16.Båda pesonena otea med 6,0 vav/minut. De ha således samma vinkelhastighet ω. Ju länge man befinne sig fån kausellens axel, desto stöe hastighet ha man. A ha alltså stöe hastighet än B. Sva: a och d v G17. Fågeln ö sig i en cikel med omketsen π π. 1,30 m 8,17 m. Omloppstiden T 1 h 3600 s. 8,17 Fågelns hastighet v m/s 0,003 m/s 3600 Fågelns acceleation v 0,003 a 1,30 m/s 4,0. 10 6 m/s Sva: 4,0. 10 6 m/s
G18. Centipetalkaften kan skivas 0,045,5 F c N 0,9375 N 0,30 Sva: 0,94 N G19. a) Hastigheten v ä iktad akt famåt, tyngden mg ä iktad nedåt och nomalkaften F N ä iktad uppåt. mg ä stöe än F N eftesom den esulteande kaften skall vaa iktad nedåt (en centipetalkaft). F N v mg b) v 7 km/h 7 m/s 0 m/s 3,6 Centipetalkaften ä mg F N F N mg 00 N (1100. 9,8 1100 0 50 ) N Sva: b),0 kn V3.a) Den esulteande kaften på stenen ä en centipetalkaft, dvs iktad in mot cikelns centum. Dess stolek ä F 0,50,0 0,40 N 5,0 N b) Vi löse ut u uttycket ovan. F Om F ä oföändad och faten v öka till v få vi: m(v) 1 4, dvs 4 gånge stöe än tidigae. F F Sva: a) 5,0 N iktad mot cikelns centum b) A) 4
V4. På kulan veka tyngden mg och spännkaften F s fån snöet. Kulan otea i hoisontalplanet. Detta innebä att den esulteande kaften (centipetalkaften) till mg och F s ä iktad mot cikelbanans centum (åt höge i figuen). Den pil som epesentea spännkaften skall itas så lång så att spännkaftens lodäta komposant ä lika sto som tyngden. F s mg V5. Kulans massa ä m 0,055 kg På kulan veka två kafte, spännkaften S i tåden och kulans tyngd mg. Den esulteande kaften ä F, en centipetalkaft, som tvinga kulan att öa sig i en cikelbana. Se figu. 4 o S F mg tan 4 o F mg F mg. tan 4 o 0,055. 9,8. tan 4 o N 0,4 N Sva: 0,4 N V6. Centipetalacceleationen v 4π a, dä ä jodadien vid ekvaton och T ä omloppstiden. T 6,378. 10 6 m. T 4 h 4. 3600 s 86400 s. 4π 6 4π 6,378 10 a m/s 0,034 m/s T 86400 Sva: 0,034 m/s
V7. Bilens massa ä m och dess fat ä v. Eftesom bilen kö på en hoisontell väg ä nomalkaften lika sto som tyngden, dvs mg. Maximal fiktionskaft ä F 0,3. mg Denna fiktionskaft ä centipetalkaften F c v 0,3 g 0,3 9,8 56 m/s 11, m/s 11,. 3,6 km/h 40 km/h Sva: 40 km/h 0,3. mg V8. Det utföda abetet W F. s, dä F äknas i föflyttningens iktning. Eftesom kaften F unde hela öelsen ä vinkelät mot föflyttningen s, bli abetet lika med noll. Sva: 0 Nm V9. Centifugens adie 0,5 m. Fekvens f 400 vav/minut 6,67 vav/s. Den esulteande kaften på metallföemålet ä en centipetalkaft F 0,10. 4π. 6,67. 0,5 N 5,6 N På föemålet veka två kafte som båda ä iktade nedåt: 1) tyngdkaften mg 0,10. 9,8 N 1,18 N ) nomalkaften F N, dvs den kaft med vilken centifugen påveka föemålet. Summan av dessa båda kafte bli 5,6 N. 1,18 + F N 5,6 F N (5,6 1,18) N 51,46 N m. 4π. f. Metallföemål mg F N Sva: 51 N
M3.Fö att kunna beäkna centipetalkaften i banans lägsta punkt behöve vi bestämma hastigheten i denna punkt. Vi använde ett enegiesonemang. I banans högsta punkt ä tyngden lika med den nödvändiga centipetalkaften: o o (v o ä hastigheten i högsta punkten.) mg mg o mg I banans högsta punkt ha stenen öelseenegi E k o mg och potentiell enegi E p mg. dä höjden öve den lägsta punkten ä. Vi sätte således den potentiella enegin till noll i lägsta punkten. Total enegi E E p + E k mg. mg 5mg + Denna totala enegi övegå helt i öelseenegi i den lägsta punkten (v ä stenens hastighet i denna punkt): 5mg 5mg Den nödvändiga centipetalkaften i den lägsta punkten ä således 5 gånge så sto som koppens tyngd. I den lägsta punkten veka två kafte på koppen, tyngden mg iktad nedåt och spännkaften F i snöet iktad uppåt. Centipetalkaften F c ä esultanten till dessa kafte: F c F mg F c 5mg 5mg F mg F 6mg 6.. 9,8 N 118 N Sva: 10 N M4. På stenen veka två kafte, stäckkaften i tåden och tyngdkaften 1,5g. Vi låte kaften i tåden vaa 18 N. Eftesom stenen ö sig i en cikelbana med konstant banhastighet ä den esulteande kaften F iktad in mot centum. Se figu. 18 N 1,0 m 1,0 m F 1,5g Vi bestämme F med hjälp av Pythagoas' sats. F + (1,5g) 18 1,0 10,3 1,0 F N 10,3 N 18 18 F Radien i banan bestäms med hjälp av likfomiga tiangla. 1,0 18 1,0 10,3 1,0 F m 0,69 m 18 18 Låt f vaa fekvensen, dvs antalet vav pe sekund. Centipetalkaften F kan då skivas: F m. 4π. f. F vilket ge f m 4π vav/s 0,50 vav/s. Antal vav pe minut bli då 0,50. 60 30. Sva: 30 vav/minut 10,3 1,5 4π 0,69
M5. a) Två kafte påveka piloten, hans tyngd och nomalkaften fån sätet. Fö att tvinga piloten att följa cikelbanan måste den esulteande kaften vaa iktad mot cikelbanans centum. Nomalkaften måste vaa stöe än tyngden. Nomalkaft F N Tyngd mg b) Resulteande kaft ä en centipetalkaft. F N mg F c m v F N F c + mg + mg 70 v 70 km/h m/s 00 m/s 3,6 Vågen mäte nomalkaften F N, men ange massan M dä F N M. g M F N g m v + mg m v g g 86 00 ( + 86) kg 3 kg 400 9,8 Sva: 30 kg + m M6. Nä kulan befinne sig i det nede läget ä belastningen på tåden som stöst. Låt kaften i tåden i detta läge vaa S. På kulan veka då två kafte, kaften S i tåden iktad uppåt och kulans tyngd 1,5g iktad nedåt. Resulteande kaft ä S 1,5g, vilket ä en centipetalkaft och följaktligen kan skivas L 1,5 v, dä L ä tådens längd och v kulans hastighet i det nede läget. L S 1,5g 1,5 v L (1) L 60 o L cos 60 o 0,5L S h 0,5L 1,5g Vi bestämme hastigheten v med hjälp av enegipincipen. Fån utgångsläget till nede läget minska kulans lägesenegi med mgh 1,5. g. (L L. cos 60 o ) 1,5. g. (L 0,5L) 1,5. g. 0,5L 0,75. g. L Denna lägesenegi oandlas till öelseenegi 1,5 v 0,75v
Vi ha således: 0,75v 0,75. g. L, vilket ge v gl. Detta väde på v insättes i ekv. (1) ovan: S 1,5g 1,5 gl 1,5 g L S 1,5g + 1,5g 3g 3. 9,8 N 9,46 N Sva: 9 N