Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade lanetbanona antogs att lanetena öde sig unt minde cikla (Eicykle) som i sin tu öde sig längs banan unt joden (Defeent). Allt me komliceade föklainga esenteades. Det gällde att " ädda fenomenen"
Keles laga Johannes Kele (57-630) utgick fån den heliocentiska väldsbilden och analyseade unde me än 0 å data fån Tycho Bahe vilket esulteade i de te "Keleska Lagana" som i sin tu låg till gund fö Newtons teoetiska abete. Aogeum Keles laga:. Planetena ö sig i ellitiska bano, med solen i ena bännunkten.. Lägesvekton fö en lanet elativt solen svee öve lika sto yta å samma tid. Peigeum Excenticitet e 3. Kvadaten å omlostiden ä ootionell mot kuben av medeldistansen till solen. 3 P k med
Tolkning av Kele Kele. Lägesvekton fö en lanet elativt solen svee öve lika sto yta å samma tid. Svet yta A ytan av den gåa tiangeln = (/) dq da/dt dq dt Enligt Kele- ska denna vaa konstant Nu ä lanetens öelsemängdsmoment elativt solen: θ L mv ˆ m( ˆ q ˆ) q m q zˆ d.v.s. da L m konstant dt Kele- ge alltså att öelsmängdsmomentet konseveas, vilket bevisa att kaften mellan laneten och solen ä cental (dvs. veka genom koanas sammanbindningslinje). 3
Gavitationens avståndsbeoende Kele-3 kan uttyckas som P = k 3 dä P ä lanetens eiodtid, medelavstånd till solen och k en konstant. Fö secialfallet cikelöelse ä det lätt att visa att gavitationens avståndsbeoende kan häledas u detta. Då centietalacceleationen fö cikelöelse ä a N = v / ehålles F = m a n =m v / (Newton II) Då faten v = /P ehålles: F = 4 (m/p ) Använd Kele-3: P = k 3 ->F = 4 (m/ k 3 ) = k (/ ) F k Gavitationskaftens avståndsbeoende 4
Newtons lag om allmän gavitation ˆ I vektofom: F ˆ G = 6.6730 Nm kg "Gavitationskaften ä alltid attaktiv och ä omvänt ootionell mot kvadaten å avståndet mellan koana" 5
Newtons lag om allmän gavitation Newton kontolleade sin lag med hjäl av data fö månens bana. Antag att vi vet avståndet till månen, månens eiodtid P samt jodadien R. Centietalacceleationen a måne beo å jodens dagningskaft å månen ( F() ) vilket ä den kaft som hålle månen I en cikulä bana unt joden. Vi kan säga att månen acceleea mot joden med en tyngdacceleation a måne som ä minde än g jod = 9.8 m/s ga det stöe avståndet. R Jod F() måne v 4 3 a måne g( ).70 m/ s P P Gavitation vid jodensyta g( R) 9.8 3600 (60) 3 Jodensgavitation vidmånen g( ).70 Om Newtons lag om allmän gavitation gälle: F( R) mg( R) R g( R) (60) F( ) mg( ) g( ) R (Om det ä OK att anta jodens massa ä koncentead till en unkt i centum) 6
Newtons lag om allmän gavitation Cavendish utustning fö att studea gavitationen mellan koa å joden. Käve god noggannhet då kaftena ä små Exemel: 7
Gavitationens otentiella enegi Eftesom gavitationen ä en centalkaft ha vi ett konsevativt kaftfält vilket innbä att vi kan definea en otentiell enegi E. ˆ E Den totala enegin fö två koa med massa m, hastighet v esektive massa M, hastighet V: E E F de k E d MV de F d mv Om M >> m kan vi anse att massan M stå still i ett inetialsystem så att fösta temen i högeledet fösvinne. (Denna aoximation ä OK fö Jod - Måne es. Solen och lanetena) E 0 de d de d Vi välje E ( ) 0 Exemel: 8
Relation mellan enegi och banöelse E E k E mv Om vi anta att banan ä cikulä ä kaften in mot centum F N = ma N = mv / F n Esätt med F N med gavitationskaften (F N =GmM / ) G(mM/ ) = mv / Multilicea med / ehålls: GmM / =(/) mv = E k Följande uttyck fö E ehålls: E Slutsats: Fö en cikelbana ä totala enegin E alltid < 0, föutsatt att vi valt E = 0 nä atikeln ä stillastående å oändligt avstånd. Resultatet gälle även fö ellitiska bano, dvs. Bundna bano ha alltid negativ totalenegi 9
Relation mellan enegi och banöelse, fots. E < 0 E > 0 E=0 E E E Himlakoen bunden, ö sig i ellitisk bana unt solen, kan ej gå till oändligt avstånd. Banans fom (excenticitet ) beo å öelsemängdsmomentet. L > L > L 3 Samma E L 3 Himlakoen ej bunden, dvs. ha ändlig hastighet å oändligt avstånd. Komme den näa solen bli dess bana en hyebel. Avböjningsvinkeln beo av öelsemängdsmomentet. Himlakoen ej bunden, men banan bli en aabel. L L 0
Flykthastighet Genom att sätta totalenegin E = 0 ehålle vi den minsta hastighet v e som kävs fö att en ko skall lämna joden fö gott. Obsevea att detta inte ä den hastighet som kävs fö att sända u en satellit, som ju befinne sig i en bunden bana. E 0 mv e R v e GM R.0 4 ms 40.50kmh Flykthastigheten beo alltså av jodens massa M, men ej av ojektilens massa m. Den enegi som gå åt fö att acceleea en tung ko till v e, ä dock givetvis höge än fö en lätt ko.
Satellite Antag att satelliten föts u till höjden h öve jodytan och sen ehålle en injektionshastighet v 0 enligt figuen. Totalenegin E ges av: E mv 0 Rh Om E < 0 komme banan att vaa en ellis med jodens centum i fokus. Om banan ej skä jodytan ehålls en omlosbana.
Vafö ellise och inte cikla?? Teckna E k fö en lanet/satellit i lanoläa koodinate: mv m m m Ek ( q q ) L m q (Röelsemängdsmomentet fö centalkaft) E k m L m Vi ha gavitationskaft, så E = / vilket ge totalenegi: E m L Ek E m Eftesom öelsemängdsmomentet L ä konstant (centalkaft!) så ä denna tem endast beoende å, vilket innebä att det fomellt kan betaktas som otentiell enegi. Kallas centifugalotential. 3
Vafö ellise, fots. E m L Ek E m E, eff L m Hyebel h E h ellis E cikel 0 E 3 komme att oscillea mellan och, dvs. vi ha en ellis Exemel: 4-> 4