Lösningsförslag Deltentamen i Uthållig energiteknik 15 hp Delmoment: Vindkraft
|
|
- Sebastian Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 UMEÅ UNIVERSITET Tillämpad fysi och ltoni as Bäcstöm ösningsföslag ltntamn i Uthllig ngitni 5 hp lmomnt: Vindaft Hjälpmdl: Valfi fomlsamling, ändosa och bifogat fomlblad. Tid: :00-8:00 Sal: Östa Pailjongna sal 8 finia anända btcninga, ang mättalns nht och motia antagandn och appoximation. Si sa. Fö full poäng äs att tangngn ä doisad i dtalj och att sat ha imligt antal ädsiffo. Endast n uppgift p inlämningsblad. Sull du mot fömodan öa fast i n bäning, gö tt imligt antagand och fotsätt. Glöm int att sia din od p aj lösningsblad du lämna in. yca till!
2 . Fölaa ot följand bgpp samt ang än imliga ädn p dm: (6p) a) Fullasttimma b) Gostofis ind c) Kapacittsfato d) Kubfato ) Totalhöjd f) Ölnadsind ösningsföslag: a) Fullasttimma: Kot mllan spodution och mäfft. Nomalt ca h (Ej att föäxla md antalt timma som gnaton g p full fft.) b) Gostofis ind: P hög höjd pas int indhastightn a mafitionn. n ind som int bomsas a mafitionn allas gostofis ind. Ett nomalt mdläd ä 8- m/s. c) Kapacittsfato: Vts mdlfft i föhlland till mäfft. Nomalt ca 0-0% d) Kubfato: EPF=Engy Pattn Facto. Fato som anänds fö att bäna indns ngiinnhll d mdlindn ä änd. n ä mdlädt a ubisa hastightn i föhlland till mdlhastightn i ubi. En typis fomfato p = g ubfaton EPF,9. ) Totalhöjd: Astndt fn maplan till bladsptsns högsta position und at. (50-50 m) f) Ölnadsind: n indstya som t sa tla utan att blsa sönd. (55-70 m/s). Fölaa otfattat md od och siss följand bgpp: (p) a) Pitchgling b) Stallgling c) Bacfft ösningsföslag: a) Pitchgling: Pitchgling ä n a mtodna att bgänsa fftuttagt s att int gnato och äxllda öblastas nä indstyan ösid mäind. Fö att bgänsa fftuttagt id stysystmt bladn s att attacinln minsa. n minsad attacinl g n mind lyftaftsofficint och tubinns idmomnt hlls a p önsad ni. (F sid 9, Wizlius sid ) b) Stallgling: Stallgling ä n a mtodna att bgänsa fftuttagt s att int gnato och äxllda öblastas nä indstyan ösid mäind. (F sid 9, Wizlius sid, 9) Om i ha tt fast atal s ä fatindn i stot stt obond a indhastightn. ämot s ä dn infalland indns hastight (-a) i sto gad bond a dn ostöda indns hastight. Vid öand indhastight öa och dämd pofilns attacinl. Vid n iss attacinl släpp luftstömmn p ingns öant, stall. t innbä att lyftaftofficintn minsa, samtidigt som luftmotstndsofficintn öa aftigt. Rsultatt fö n äl dsignad oto bli att idmomntt fn tubinn stabilisa sig och sdan minsa id öand indstya. c) Bacfft: (F sid 8, Wizlius fig 4.8) Vid mjut fomad höjd an indn accla. t innbä att toppn p n mju ull an aa n ba placing u indsynpunt.
3 . Ett indaft md n tubindiamt p 7 m sa onstuas. a) Vilt atal ä lämpligt id 8 m/s? b) Anta imliga ningsgad och bäna n uppsattning a mäindn om gnatons maximala fft ä 5 W. c) Anänd bladpofiln S84, as gnsap famg a bilaga, fö att bäna optimal bladutfomning id adina m spti m. Motia d antagandn som mst göas fö att lösa uppgiftn. (5p) ösningsföslag: a) Ett imligt antagand ä att anta tt löptal p 7, däfö att dt ä tt löptal som isat sig g ba ningsgad fö tbladiga tubin. Git ä diamt 7 m, ds R=,5 m och indhastightn =8 m/s R n n 5 pm R,5 Fn sambandn och an i lösa ut atalt nligt: b) uftns dnsitt bua man äna md =,5 g/m. Totalningsgadn,, som bgänsas a Btz gäns, 0,59, ä fö stoa masin som högst 0,4-0,5. Som hmmabygga an =0,5 aa alistist. n fia indns fft samt lpodutionn an d bänas md följand samband: P in P l P A in A R ös ut indhastight id lpodution nligt mäfft / P l mä 5000, mä, m / s,5 R 0,5,5 / c) Vi älj blad fö att dt ä anligast (had unnat älja ocs, ilt sull undlätta tillningn a oton) I bifogad figu s dt ut som att dt bästa glidtalt ä id =4,, s i älj dn attacinln. yftaftsofficintn aläss till 0, 84 och luftmotstndsofficintn 0, 09 Vi sa bäna bladutfomning id dina m spti m. loala löptaln bli: 7 4 Infalland indns inl äljs nligt: och 7 6 R,5 R,5 actan actan 9, 6 och actan actan 6, 4 6 Pitchinln bli d: 9,6 4, 5, 6 och 6, 4,, Bladbddn bänas nligt: c c 8 B 8 cos cos 9,6 0,65 m 0,84 8 B 8 cos cos 6, 0,8 m 0,84 och Sa:. a) atalt id 8 m/s bö aa 50 pm b) mäindn bli m/s c) Kodan sa aa 6 cm spti 8 cm och pitchinlana 5, spti,
4 4. Fötagt du jobba hos bli bjudn att lägga tt bud p tt fm gammalt indaft md n nahöjd p 98 m och n tubindiamt p 8 m. Vindaftt bänas hlla 5 till och poduca 5500 MWh/. ift och undhllsostnadn bänas aa ö/wh plus n noing a äxlldan fö M om fm. Vi äna md att unna sälja lngin fö 450 /MWh och lctifiatn fö 50 /ctifiat. t finns n 5 sgäns p lctifiatbättigand, s i ha baa 0 a md lctifiat. Raläntan ä 5%, dn nominlla äntan 8% och inflationn %. Bäna nuädt fö indaftt. (Obs du bhö int alla gina ädn) (5p) ösningsföslag: t ä aläntan som sa anändas i nuädsmtodn (altnatit alyläntan). Raläntan ä dn nominlla äntan minus inflationn. Nuädt a indaftt bänas som nuädt a föäntad inomst minus nuädt a föäntad utgift, s instingsostnadn pa int nuädt. N Vindaft N l N ctifiat N noing N dift Kapitalisingsfaton md gin alänta och 5 gs a: f n 5, 5,05 0,05 0,80 Vilt g nuädt a lpodutionn och diftostnadn nligt: Nl f, 5 Kl 0, , 69 M N f K 0, , M dift, 5 dift 85 Elctifiatn gs fö nya anläggninga baa fö 5, ilt g n annan apitalisingsfato: f n f K 0,05 7,7 0,05 0, , 0 N ctifiat, 0 ctifiat 0, 6 Rnoingn ä n nstaa ostnad om fm (x=5) N x 5 K,05, M noing x 57 M Sammantagt bli d nuädt nligt: NVindaft Nl Nctifiat Nnoing Ndift 5,69 0,6,57 6,85 7, 89 M Sa: Vindaftts nuäd ä 8 M
5 5. I tt soglätt omd ha man md n indmäta placad i n mobiltlfonmast 8 m ö man mätt upp n mdlindhastight p 5, m/s och n fomfato p,8. Bäna dn liga ngimängdn som an utinnas fn n idal tubin md tubindiamtn m och nahöjdn 40 m. Motia d antagandn som mst göas fö att lösa uppgiftn. (4p) ösningsföslag: Hä mst i göa fla antagandn: Sogns höjd an aa 6 m, ilt innbä att nollplansfösjutningn bli m (75% a höjdn) uftns dnsitt bua man anända,5 g/m i indaftsammanhang. Mdlindhastightn p 40 m höjd an uppsattas md hjälp a sambandt: ln h / z0 ln h / z 0 Fn tablln an i aläsa htslängdn fö sog till z 0 =0,5 m 40 ln 0, 0,5 40 5, 40 5,9 m/s altnatit 40 5, 6, ln 0,5 m/s Vid n Wibullfödlning md fomfaton =,8 an EPF bänas md hjälp a gammafuntionn nligt: EPF / / Md appoximation fö gammafuntionn:,667,556,667 x : (,667)(,667),556 x,667 ( x)( x) 0,605 0,58, x 0,605 0,58,,667,667,667,667,6670,9075 EPF,9,556 (,556)(,556) 0,8899 0,605 0,58,,556 n fia indns mdlfft p aanht p 40 m höjd an d bänas nligt: P in,5 40 EPF 5,9,9 77, 4 W/m A n maximalt utinnbaa ngin p bgänsas a otons spta yta, Btz gäns och ts timma Pin 6 nligt: E APmax 8760h 77, MWh/ A 7 Sa: Vi an maximalt utinna, GWh/ md n idal tubin p 40 m höjd
6 6. Vi ha tbladig tubin md diamtn 84 m. Vid adin 6 m ha bladn n oda p, m och pitchinln ä,0. Egnsap fö dn anända bladpofiln famg a bifogad figu. Vid tt tillfäll ä bladsptsanas hastight 75 m/s och indhastightn 9 m/s och luftns dnsitt, g/m. Bäna hu stot idmomnt som inglmntt mllan 5 m och 7 m bida md. Ta hänsyn till aotation och luftmotstnd. uftmotstndt an doc fösummas id analys a luftflödt. Bifoga bladpofilns diagam till lösningn md dina aläsninga samt KO (4p) ösningsföslag: 84 m R 4 m B 6 m c, m,0 9 m/ s spts R 75 m/ s, g m Gina data: 6 6 / Tubinns löptal id dt gina tillfällt an bänas nligt: spts 75 8, 9 t loala löptalt id adin 6 m bli d: R ,4 9 4 Fö att hitta bladpofilns abtspunt i dt bifogad lyftaftsdiagammt an i ita in ndanstnd samband i diagammt, dä, BEM 8 sin tan 8 6sin 7,4tan Bc tan, 7,4 tan Fö att f n fösta gissning an i utg fn iln attacinl som g bästa löptal, ds α=4 ilt innbä φ=α+β=4+=6. Bäna dtta fö nga attacinla och ita in i diagammt. Attacinl,BEM 4 6 0,56 5 0, ,695 Vi an aläsa n säningspunt id =,7 och =0,67 ilt g =+=,7+,0=4,7 U dt anda diagammt an i aläsa =0,0 Ringlmntts idmomnt an bänas fn: dm l sin a ä l sin cos Bcd dä dn axilla indutionsfaton an bänas nligt: a 8 sin Bc 8 6sin 4,7 / tan, 0,67 / tan 4,7 0,0 Md oanstnd samband insatta f i inglmntts idmomnt nligt: a dm sin sin cos Bcd 0,4095, 9 0,4095 dm 5578 sin 4,7 Sa: Ringlmntts idmomnt bänas till 56 Nm 0,67sin 4,7 0,0cos 4,7, 6 Nm
7 Fomlblad n fia indns fft: Wibullfödlningns fnsfuntion: P in f Wi A c c Wibull sannolihtsfuntion: p Mdlind id Wibullfödlning: Kubfaton: Wi c c c / / c EPF ä 6/ nä = Gammafuntionn: 0, 5 x x x x : x n fia indns mdlfft: A A EPF Höjdbond, xponntmodll logaitmis P in h lnh / z0 ln h z 0 h / 0 ( x)( x) 0,605 0,58, x Allmänt Rotons inlhastight: Axlfft: Elfft: Totalningsgad: Axill indutionsfato: Tangntilla indutionsfaton: öptalt: oalt löptal: Rlatia indns hastight: Rlatia indns itning: n [ad/s] om n [pm] 60 P M P in P P P l in P äxl gnato tubin a dä tubin indhastightn gnom tubinn a 8 sin 8 sin tan Bc tan Bc a dä ä luftns otationshastight a tan a a tan a tan tan R dä R otons adi id astndt fn tubinaxln R a l sin a actan a id attacinln och pitchinln
8 Optimal dsign fö fitionsfi tubin md hänsyn till aotation opt 8 c cos actan Analys a tubin 8 sin tan, BEM Bc tan BEM M: df 4a a d opt B M: dm 4a a d l B: dm l sin cos Bcd B: df cos sin Bcd cos Bcd Idal tubin Efftofficint: P l P, idal a Pin opt 4 a 6 Maximal fftofficint: P, max 0, 596 nä a / 7 m Atubin A a Massflöd gnom tubin: P A Vältaft: F A 4a a Efft: 4a a jud judfft P austis W 0 0 W P summa P P judtyc: p P Pa p summa p p Eonomi Ki Payofftid: T dä K i =insting, I = ligt intät, = lig diftsostnad I Ålig inst: Kapitalostnad: Annuittsfato: Spcifi podutionsostnad: V K I K a K i a = lig änta, n = asiningstid n K dä W l, ä dn liga lpodutionn W N l, x K Nuädt a nstaa utgift: x Nuädt a upppad intät: N f Kapitalisingsfato: f K n
9 Glidtal uftmotstndsofficint yftaftsofficint Pofildata fö S84 KO:,,,,0 0,9 0,8 0,7 0,6 0,5 0,4 0, ,08 0,07 0,06 0,05 0,04 0,0 0,0 0,0 0, Attacinl
Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft
UMEÅ UNIVERSITET -4-9 Tillämpad fysi och eletoni as Bäcstöm Exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa och bifogat fomelblad.
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudingsfgo oh öningsuppgift i indafttni. Hu myt indaft fanns dt i Sig spti äldn nligt snast sstatisti.. Hu myt ha installats oh poduats i Sig hittills i?. Nämn minst t typ a indaft, oh das anändningsomdn,
Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft
UMEÅ UNIVERSITET -4-4 Tillämpad fysi och eletoni as Bäcstöm Exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Physics
Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft
UMEÅ UNIVERSITET -4-9 Tillämpad fysi och eletoni as Bäcstöm ösningsföslag till exempel p: eltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp elmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudeingsfågo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste åsstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i å?. Nämn minst te type
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudeingsfgo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i?. Nämn minst te type
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudeingsfgo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i?. Nämn minst te type
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudeingsfgo oh öningsuppgifte i indaftteni. Hu myet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu myet ha installeats oh podueats i Seige hittills i?. Nämn minst te type a indafte,
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudeingsfågo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste åsstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i å?. Nämn minst te type
Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft
UMEÅ UNIVERSITET Tillämpad fysi och eletoni Las Bäcstöm Övningstentamen (med väl många fågo) Delmoment: Into med bänslen och Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Boyle, Renewable Enegy
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Problem
Institutionn fö Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-9 ntamn i 4 Mani II, 9 Inga hjälpmdl föutom: papp, pnna, linjal, passa. Lca till! Poblm ) L a En bhålla
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
laiablanals I Vintn Ösikt föläsninga läscka Dt tj kapitlt i ksn bhanla bbl- och tipplintgal. Dn intgaln i känn till fån naiablanalsn b a f kan j ofta ss som aan n f mllan a och b fnktion a tå aiabl och
Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft
UMEÅ UNIVERSITET 00-04-9 Tillämpad fysi och eletoni as Bäcstöm ösningsföslag till exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa
Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft
UMEÅ UNIVERSITET 0-04-4 Tllämpad fys och eleton as Bäcstöm ösnngsföslag tll exempel p: Deltentamen Uthllg enegten 5 hp och Enegällo 5 hp Delmoment: Vndaft Hjälpmedel: Ränedosa och bfogat fomelblad samt
Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft
UMEÅ UNIVERSITET Tillämpad fysi och eletoni Las Bäcstöm Öningstentamen (med äl mnga fgo) Delmoment: Into med bänslen och Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Boyle, Renewable Enegy och
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem
nsttutonn fö Man Ncholas pads tl: 79 78 post: nap@mch.th.s hmsda: http://www.mch.th.s/~nap/ S-85 ntamn S Man, 85 BS! nga hjälpmdl. Lca tll! Poblm ) En hosontll am ' md längdn l ota md n onstant nlhastght
SG enligt figuren. Helikopterns bakre rotor roterar med en konstant vinkelhastighet 1
nstitutionn fö Mani Nichoas paidis och Ei Lindbog hsida: http://www.ch.th.s/~nap/ S4-53 ) ) 3) 4) L b P Tntan i S4 Mani nga hjäpd. Lca ti! Pob En hiopt säa på onstant höjd ö an. Puntn på hioptn ä i ia
Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem
Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
Lösningar till Problemtentamen
KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll
Tentamen i EJ1200 Eleffektsystem, 6 hp
Elekto- och yteteknik Elektika akine och effektelektonik Stefan Ötlund 7745 Tentaen i EJ Eleffektyte, 6 hp Den juni, 4.-9. Räknedoa, foelaling och ateatik handbok (eta) få använda. Tentaen kan ge axialt
SG Armen OA med längden b roterar med en konstant vinkelhastighet
nstitutionn fö Mani Nicholas paidis tl: 79 748 post: nap@ch.th.s hsida: http://www.ch.th.s/~nap/ S4-74 Tntan i S4 Mani 74 BS! nga hjälpdl. Lyca till! Pobl ) Vagnn i figun bosa d n onstant acclation a längs
ρ. Farten fås genom integrering av (2):
LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt
GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:
Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
BMW i. Freude am Fahren. BMW i Wallbox. USB uppdateringsanvisning
BMW i Fud am Fahn BMW i Wallbox USB uppdatingsanvisning 5 SV BMW i Wallbox USB uppdatingsanvisning BMW i Wallbox USB uppdatingsanvisning Innhåll 8 Föbda stömladdningsstation Avtagning av höljt Ta av
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2018
Institutionn fö tillämpad mkanik, Chalms id och plats: Hjälpmdl: ENAMEN I FINI ELEMENMEOD MHA 6 APRIL 8 4 8 i M hust Odböck, lxikon och typgodkänd äkna. Lösninga Läa: Pt Möll, tl (77 55. Bsök sal 5 samt
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik- och partikeldynamik Lösningsförslag ( ) ( ) ( ) ( )
Utgåva Tntansskivning i Mkanik (FMEA30) Dl tatik- och patikldynaik 305 Lösningsföslag. a) Filägg stång + skylt! Infö spännkaftna = och = i linona, tyngdkaftn g = k ( 00g), angipand i skyltns asscnta G
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Tentamen i Energilagringsteknik 7,5 hp
UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince
r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:
Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä
Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on
S i da 1 (13 ) A n k o m s tdatum 2016-05 - 31 T y r é n s AB Ut f ä r dad 2016-06 - 08 A le xa n d e r G i r on P r o j e kt Ka b el v e r k e t 6 B e s tnr 268949 P e t e r M y nd es B ac k e 16 118
Hur tror du att det påverkar de politiska besluten? Hur tror du att det påverkar dig?
E N R A P P O R T F R Å N L S U O K TO B E R 2 0 0 9 a n n A ä N a t i n A v bl F oto: P E TT E R C O H E N llt a s g i Om Sv a politik fä ung L S U S V E R I G E S U N G D O M S O R G A N I S AT I O N
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
UNICA Ny skola F-6 Mariestad
T TU Y T TU T TU Ä UT/ÄT TÄÄ V V TT Unikon ä pd i tt vkt pkomåd tånd v - o övtäd, ny o gm. mådt ä n viktigt p fö dn ioogik mångfdn då dt innå mång inkt, fåg o dju. Tmt fö pojktt vit kog o idén vit tt v
Kap.7 uppgifter ur äldre upplaga
Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti
Arvika 2019_243 Stömne Bertil Persson Betongteknik AB DECIBEL - Huvudresultat Beräkning: VKV SWE99TM VKV typ Ljuddata
SVENSKA BESTÄMMELSER FÖR EXTERNT BULLER FRÅN LANDBASERADE VINDKRAFTVERK 2019-03-02 07:25 / 1 Beräkningen är baserad på den av Statens Naturvårdsverk rekommenderad metod "Ljud från landbaserade vindkraftverk",
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on
S i da 1 (14 ) A n k o m s tdatum 2018-07 - 09 M R M K on s u l t AB Ut f ä r dad 2018-07 - 16 P e r S a mu el s s on T a v as tg a t a n 34 118 24 S to ck ho lm S w e d en P r o j e kt B e s tnr S p å
Häng och sväng Hur gör man en mobil?
30 Enkla maskin 31 Enkla maskin Häng och sväng Hu gö man n mobil? Häng och sväng Ovanligt snygg mobil, om jag få säga dt själv. Du bhöv: någa kmtvättsgalga tunt snö avbitatång sak att hänga i mobiln som
Föreläsning 6 (kap i Optics)
23 öeäsig 6 (kap 3.7-3.10 i Optics) Avbidig i säisk gäsyta Hittis ha vi baa avbidat puktomiga objekt som igge på de optiska axe, me de esta objekt ha e stoek d.v.s. bestå av me ä e pukt. Otast ita ma objektet
Recept och inspiration
Rcpt ch ispirati Allrum da sapar ya, g möjlightr. Vi sm utvclar Allrum älsar it bara st sm smaar mr. Vi gillar mat i alla dss frmr där ritigt bra st a få lyfta sma. Så du blir särt it förvåad övr att smari
För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.
I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET
FYSIKTÄVLINGEN FINALTÄVLING 4 pil 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1. Dt om cceletionen ge en sttning v bilens effet. Kinetis enegi vid 1 m/h:, MJ. Denn enegi fås på 1 seunde vilet medfö tt
@Anticimex' Byg g n ad sb e skriv n i n g Bosfads bygg n ad. Stomme, material: Byggnadsår/ ombyggnadsår: 1963/ Hustyp/antal våningar:
BESI KT I GS PROTOKOLL - Antiimx Fösäkingsbsiktning v småhus Byg g n d sb skiv n i n g Bsfds bygg n d J I m '- ' uq I Byggndså/ mbyggndså: 193/ Hustyp/nt våning: 2-pns phus Tktyp, tkbäggning : Ppp, ågutnd
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
Rotation kring fix axel, cirkelrörelse. Rotation kring fix axel. Stel kropps rotation kring fix axel: kinetisk energi
05--07 otato x axl otato x axl clöls T z H z Töhtsmomt : m z Stl opps otato x axl Stl opps otato x axl: ts axl : ( ) 0 T m m m v v ω v 0 ω m v v ω ω T v a ( ) m Töhtsmomt : m m 3 4 Stl opps otato x axl:
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Vila vid denna källa (epistel nr 82)
Text oh musk: Carl Mhael Bellm Arr: Eva Toller 2004 opno Alto 1 1V - 2 Hm - 4 5 6 s -, kl - _ vår oh får ll - hngs - frs - så E - du ka ols mtt Alto 2 1V - 2 Hm - 4 5 6 tgt mel, f, n, lg s - kl -, vår
Arbetsbok 1 Jämna steg. o, s, m, a, r, i. Elisabeth Marx. Individuell lästräning för elever i förskoleklass och lågstadiet
Abtbk 1 Jämna tg m a p Elabth Max ö,, m, a,, vdull lätänng fö lv föklkla ch lågtadt nnhålötcknng -ljudt 2 -ljudt 8 m-ljudt 20 a-ljudt 29 -ljudt 40 -ljudt 50 Blaga: Lält (1:1 tll 1:8) 63 mpal fö Fölagdgng:
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Min cykel. 5 Cykelhjälm Det är viktigt att använda cykelhjälm när man cyklar. Men hur ska cykelhjälmen sitta på huvudet för att ge bäst skydd?
Min cykl Sidan Innhåll 4 På väg hm Ands och Osca ha båttom hm. Osca måst lämna matvaona han vait och handlat innan han och Ands kan cykla till täningn. 5 Cyklhjälm Dt ä viktigt att använda cyklhjälm nä
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
Boverket. Energideklarat LL_. IOfl DekLid: 195073. Byggnadens ägare - Kontaktuppgifter. Byggnadens ägare - Övriga
Smhusenhet, -...-. Boveket Enegideklaat Vesion 15 IOfl DekLid: 195073 Byggnadens ägae - Kontaktuppgifte Ägaens namn Pesonnumme/Oganisationsnumme Utländsk adess Adess Postnumme Postot Mötvätsvägen 21 62449
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
LE2 INVESTERINGSKALKYLERING
LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3
1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.
Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma
Utgångspunkter. Hushåll med värmeelement
söjd!) l, hl sjlfö (Pss! Ig få o ik! b sd. D o k s g i id p ö f S di upp i sll k s u i o s u h Poduk då oc sl. l k l o d g kici. l g li o g h b di u d dis D g. o s k i f p p if u d d i i i h f s ö f d
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Fallrörelse med luftmotstånd
Fallöls d lufosånd Fallöls d lufosånd Dnni G 00 Fallöls d lufosånd n ula alas av yngdafn F g g, dä ä ulans assa oh g ä yngdalaionns noalväd. Dssuo påvas ulan av lufosånd so g upphov ill fiionsafn F f..
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
From A CHORUS LINE. For SATB* and Piano with Optional Instrumental Accompaniment. Duration: ca. 2: 15 AKT TVÅ! ... I El>maj7 A
Aanged by ANTAKERR Fom A CHORUS LNE ( One ) Fo SATB* and Piano with Optional nstumental Accompaniment Modeately (J = 132) NC Duation: ca 2: 15 AKT TVÅ! Music by MARVN HAMLSCH Lyic by EDWARD KLEBAN Svensk
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 FEM för Ingnjörstiämpningar ickard Shn 9 6 rshn@kth.s FEM anas md triangmnt 9 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E modu E Poissons ta På tunn påt kan man oftast göra antagand
VIKTIGA SÄKERHETSANVISNINGAR
INSTRUKTIONSBOK VIKTIGA SÄKERHETSANVISNINGAR Dnna symaskin ä int avsdd fö användning av pson (inklusiv ban) md ducad fysiska, snsoiska ll mntala fömågo, ll i avsaknad av fanht ll kunskap såvida d int ha
V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem
Institutionen fö Meani Nichoas paidis te: 79 748 epost: nap@ech.th.se hesida: http://www.ech.th.se/~nap/ S4, 76 entaen i S4 Meani II, 76 S! Inga hjäpede. Lyca ti! Pobe ) ) y d x ey e ex en ed ängden otea
A LT B A R Y TO N. enkelt
A LT SOPRAN sahlt nklt B A R Y TO N Innhåll: Amn - låt rns lja råda 2 Du ljuvast n Gud har männs kär Gud ll oss väl 6 Halluja 7 Hlg 8 följr dg Gud 9 Julat Do 10 Kom, öppna dn dörr 11 r 12 Må dn väg gå
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: tentamen Ladokkod: A145TG (41N19A) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 18-6-1 Tid: 14.-18. Hjälpmedel: Hjälpmedel
Lösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl
Lösninga till tentamen i tillämpad känkemi den 10 mas 1998 kl 0845-145 Ett öetag ha köpt natuligt uan ö 10 k/. Konveteing till UF 6 kosta 60 k/ tillvekad UF 6. I en gascentiugbasead anikningsanläggning
Bestäm den sida som är markerad med x.
7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,
Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Flyktingfrågan regional samordning. Ana Norlén, PKN 2015-12-11
Flyktingfågan ginal amdning Ana Nlén, PKN 2015-12-11 En myckt antängd ituatin Lägbild Dt finn int n mall Excllfil yft få n gmnam bild ch kunna tnd inm lika mådn, nkl ifyllnad Rappting fån/till MSB natinll
VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera:
Dragningsresultat vecka 14-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till
Instruktionsbok. Memory Craft 500E
Instuktionsbok Mmoy Caft 500E VIKTIGA SÄKERHETSINSTRUKTIONER Vid användning av lktiska appaat ska alltid gundläggand säkhtsföskift följas: Dnna symaskin ä utfomad och tillvkad nbat fö användning i hmmt.
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 172 lottnummer 1.000 kronor vardera:
Dragningsresultat vecka 12-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till