Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft

Storlek: px
Starta visningen från sidan:

Download "Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft"

Transkript

1 UMEÅ UNIVERSITET Tillämpad fysi och eletoni Las Bäcstöm Övningstentamen (med väl många fågo) Delmoment: Into med bänslen och Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Boyle, Renewable Enegy och Physics handboo (elle motsvaande). Fåga 1-8 löses på sepaata blad. Fåga 9-1 besvaas i fågefomuläet på avsedd plats diet efte vaje fåga! INLÄMNINGSTID: KOD: Uppgift N Poäng Uppgift N Poäng 1 (6) 9 (1) (4) 10 (1) 3 (3) 11 (1) 4 (4) 1 (3) 5 (8) 13 (4) 6 (8) 14 (3) 7 (8) 15 (4) 8 (8) 16 () 17 () 18 (3) 19 () 0 (4) Summa (max 49+36) 1 (6) Betyg (usens slutbetyg sammanvägs med öviga deltentamina) Examinato: Las Bäcstöm

2 Fö fåga 1-8 gälle: Definiea använda betecninga, ange mätetalens enhete och motivea antaganden och appoximatione. Fö full poäng ävs att tanegången ä edovisad i detalj. Siv sva med oet enhet och imligt antal vädesiffo. Sulle du mot fömodan öa fast i en beäning, gö ett imligt antagande och fotsätt. Högst en uppgift pe inlämningsblad. Om flea sido ävs fö en uppgift, numea sidona. Glöm inte att siva din od på vaje lösningsblad du lämna in. 1. Namnge samt besiv funtionen fö de dela i figuen på nästa sida som ä numeade: 5, 6, 8, 1, 13 och 14. Besiv funtionen med cia en mening vadea. (6p). Vad betyde a) fullasttimma b) apacitetsfato c) mävind d) soliditet Ange även imliga väden på dessa. (4p) 3. Namnge och besiv de te huvuduppgifte som stysystemet i ett vindaftve ha. (3p) 4. På en plats ä medelvinden 6,4 m/s och fomfaton. Beäna aatäistisa vindhastigheten samt hu många timma pe å det blåse me än 14 m/s. (4p) 5. I ett soglätt omåde ha man med en vindmätae placead i en mobiltelefonmast 34 m öve maen mätt upp en medelvindhastighet på 5,1 m/s. Beäna den åliga enegimängden som an utvinnas fån en ideal tubin med tubindiameten 4 m och navhöjden 50 m. Motivea de antaganden som måste göas fö att lösa uppgiften. (8p) 6. En liten vindtubin med en diamete på m sa onstueas. (gäns fö bygglov) Egensape fö bladpofilen som sa användas famgå av bifogade figue. Beäna optimal bladutfomning mitt på bladen samt dm fån spetsen. Vilet vavtal ä lämpligt nä det blåse 7 m/s? Motivea de antaganden som måste göas fö att lösa uppgiften. (8p) 7. Vi ha tebladig tubin med diameten 8 m. Vid adien 34 m ha bladen en oda på 1,75 m och pitchvineln ä 0,5. Egensape fö den använda bladpofilen famgå av bifogade figue. Vid ett tillfälle ä bladspetsanas hastighet 60 m/s och vindhastigheten 10 m/s och luftens densitet 1,3 g/m 3. Beäna hu sto axeleffet som ingelementet mellan 33 m och 35 m bida med. Ta hänsyn till vaotation och luftmotstånd. Bifoga bladpofilens diagam till lösningen med dina avläsninga samt KOD (8p) 8. Ett vindaftve ostade 31 M att uppföa och man äna med att det sa poducea 5,8 GWh/å. Livslängden beänas till 0 å, medan elcetifiaten ä begänsade till 15 å. Elenegin an säljas fö 450 /MWh och elcetifiaten fö 00 /st. Om tio å planea man med en enoveing på M, övig dift och undehåll uppsattas till 1 öe/wh. Restvädet efte 0 å anses fösumbat. Realäntan ä 3,5%, den nominella äntan 5% och inflationen 1,5%. Beäna nuvädet, ROI och payofftid fö vindaftveet. (Obs du behöve inte alla givna väden) (8p)

3

4 Nedanstående fågo besvaas i detta häfte! 9. Vila två ämnen eageas fö att tillvea RME? (1p) 10. I vila motoe använde man RME, elle vad allas RME med ett annat namn. (1p) 11. Otantalet fö etanol och biogas ä stöe än fö bensin (110 esp 130). Hu an man få höge veningsgad i en moto som ä designad fö en etanol esp. biogas jämföt med FFV-vaiante. (1p) 1. DME, di-metyl-ete, ä ett altenativt divmedel som på senae å ha fått sto uppmäsamhet. DME tillveas u biomassa enligt det föelade eationsschemat nedan. Ange de två mellanpodutena och vad den fösta delpocessen (1:a pilen) allas. (3p) Biomassa DME 13. Etanol an tillveas fån olia åvao som ösoce, spannmål esp. cellulosamateial. (4p) a. Vilen åvaa ä i dagsläget mest eonomis gynnsam? b. Vila bipodute få man fån esp. åvao?

5 14. Sogsbänslets egensape (bänslevalitet) an besivas utifån ett antal valitetsaspete. (3p) a. Ange te vitiga valitetsvaiable. b. Vad ha dessa valitetsvaiable fö påvean på eonomin vid hanteing, tanspot och föbänning av sogsbänslen? 15. Besiv den gundläggande poblematien vid hanteing av sogsbänslen och ge föslag på åtgäde fö att omma tillätta med dessa poblem. (4p)

6 16. Besiv i gova dag hu elcetifiatsystemet fungea. (p) 17. Definiea vad NOx ä samt besiv de eonomisa tansationena ing NOx. (p) 18. Besiv hu ol, åolja espetive metanhydat bildats. Vila föutsättninga ävs fö espetive bänsle. (3p)

7 19. Stymedel delas vanligtvis in i fya huvudguppe efte hu de åstadomme föändinga. Ange de fya huvudguppena samt ett exempel på stymedel i vaje huvudgupp. (p) 0. Nedan syns fya olia type av vattentubine. Siv unde espetive figu dels vad tubintypen hete samt en siffa 1-4 dä 1lägst och 4högst fallhöjdsomåde. (4p)

8 1. Redogö fö följande bänslens egensape, miljöpåvean och famtidspotential jämföt med vaanda: a. Kol b. Natugas c. Petoleumpodute d. GROT. (6p)

9 Vinden Den fia vindens effet: P in Weibullfödelningens fevensfuntion: f ( v) Wei ρ 3 Av c v c Weibull sannolihetsfuntion: p ( v < v < v ) Medelvind vid Weibullfödelning: Kubfaton: Wei 1 1 v c Γ 1 + ( v) 3 1 e e v c v1 c e Γ( 1+ 3 / ) [ Γ( 1+ 1/ ) ] 3 Fomelblad v c 3 v EPF ä 6/π nä Gammafuntionen: Γ( x + 1 ) x Γ( x) Γ( 0, 5) π 1 x : Γ( x) 3 Den fia vindens medeleffet: A v A ( v) EPF Höjdbeoende, exponentiell modell: Höjdbeoende, logaitmis modell: Allmänt Rotons vinelhastighet: Axeleffet: Eleffet: Totalveningsgad: Axiell indutionsfato: P in v v ρ α h ln h / z0 ln h z 0 h 0 v v ( ) ( ) 0 0 / 0 ρ πn Ω [ad/s] om n [pm] 60 P ΩM P C in P P P C C el in e C P e η η växel geneato 3 e ( x 1)( x ) 0,6105 0,538+ 1, x vtubin a 1 dä v tubin vindhastigheten genom tubinen v 1 1 a 8π sinϕ 8π sinϕ tanϕ Bc C tanϕ + C BcC ( L D ) L ω Tangentiella indutionsfaton: a dä ω ä luftens otationshastighet Ω a( CL tanϕ CD ) a C D a tanϕ a tanϕ λ ( CL CD tanϕ) λ C + L λ ΩR vspets Löptalet: λ dä R otons adie v v Ω Loalt löptal: λ λ vid avståndet fån tubinaxeln v R v( 1 a) Relativa vindens hastighet: v el sinϕ 1 a Relativa vindens itning: ϕ actan 1+ a λ ( ) ϕ α + β vid attacvineln α och pitchvineln β

10 Massflöde genom tubin: m& ρavtubin ρav( 1 a) Vältaft: F Av 4a( 1 a) Ideal tubin Effetoefficient: P CP Pin 4a( 1 a) Maximal effetoefficient: 16 C P, max 0, 596 nä a 1/ 3 7 Effet: P ρ Av 3 a ( 4 1 ) in P BEM M1: df 4a( 1 a) ρv πd ρ 3 M: dm 4a ( 1 a) ρvωπ d ρ ρ df vel CL cosϕ + CD sinϕ Bcd v ρ B: dm vel ( CL sinϕ CD cosϕ)bcd B1: ( ) C cos Bcd Optimal design fö fitionsfi tubin med hänsyn till vaotation 1 8π ϕopt actan copt ( 1 cosϕopt ) 3 λ BC Analys av tubin 8π sinϕ( 1 λ tanϕ) 40 C L, BEM α stat β Bc λ + tanϕ λ Ljud Ljudeffet: ( ) P austis L W L 1 el L W P summa P 1 + P ϕ Ljudtyc: p L P Pa p summa + p 1 p Eonomi Payofftid: T i dä K i investeing, I å åligt intät, D å ålig diftsostnad I å K D å N 1 + Nuvädet av enstaa intät/utgift: ( ) x n x 1 x K Nuvädet av uppepad intät/utgift: N ( 1 + ) I å f I å Kapitaliseingsfato: Nettonuväde: Ålig vinst: Retun Of Investment: ( 1+ ) n 1 f NNV N Ve K NNV V å f Vå ROI K i i x dä änta, n antal å

11 Pofildata fö FFA-W3-11 1,6 KOD: 1,5 1,4 1,3 1, Lyftaftsoefficient Cl 1,1 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, Attacvinel (gade) 0,018 Luftmotståndsoefficient Cd 0,016 0,014 0,01 0,01 0,008 0,006 0,004 0, Attacvinel (gade) Glidtal Cl / Cd Attacvinel (gade)

Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft

Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft UMEÅ UNIVERSITET -4-4 Tillämpad fysi och eletoni as Bäcstöm Exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Physics

Läs mer

Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft

Exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft UMEÅ UNIVERSITET -4-9 Tillämpad fysi och eletoni as Bäcstöm Exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa och bifogat fomelblad.

Läs mer

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft UMEÅ UNIVERSITET -4-9 Tillämpad fysi och eletoni as Bäcstöm ösningsföslag till exempel p: eltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp elmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa

Läs mer

Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft

Övningstentamen (med väl många frågor) Delmoment: Intro med bränslen och Vindkraft UMEÅ UNIVERSITET Tillämpad fysi och eletoni Las Bäcstöm Öningstentamen (med äl mnga fgo) Delmoment: Into med bänslen och Vindaft Hjälpmedel: Ränedosa och bifogat fomelblad samt Boyle, Renewable Enegy och

Läs mer

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft UMEÅ UNIVERSITET 0-04-4 Tllämpad fys och eleton as Bäcstöm ösnngsföslag tll exempel p: Deltentamen Uthllg enegten 5 hp och Enegällo 5 hp Delmoment: Vndaft Hjälpmedel: Ränedosa och bfogat fomelblad samt

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfågo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste åsstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i å?. Nämn minst te type

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfgo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i?. Nämn minst te type

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfågo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste åsstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i å?. Nämn minst te type

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfgo oh öningsuppgifte i indaftteni. Hu myet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu myet ha installeats oh podueats i Seige hittills i?. Nämn minst te type a indafte,

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudeingsfgo och öningsuppgifte i indaftteni. Hu mycet indaft fanns det i Seige espetie älden enligt senaste sstatisti.. Hu mycet ha installeats och poduceats i Seige hittills i?. Nämn minst te type

Läs mer

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft

Lösningsförslag till exempel på: Deltentamen i Uthållig energiteknik 15 hp och Energikällor 15 hp Delmoment: Vindkraft UMEÅ UNIVERSITET 00-04-9 Tillämpad fysi och eletoni as Bäcstöm ösningsföslag till exempel p: Deltentamen i Uthllig enegiteni 5 hp och Enegiällo 5 hp Delmoment: Vindaft Hjälpmedel: Valfi fomelsamling, änedosa

Läs mer

Övningstentamen. Syfte med tentamen

Övningstentamen. Syfte med tentamen Övningstentamen Syfte med tentamen Inte primärt få fram värden Lösningarna ska vara så tydliga att läraren blir övertygadatt du kan tillräckligt för att bli godkänd eller högre betyg. Obegriplig lösning

Läs mer

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15 Tentamen i Matemati, HF sep, l 8:-: Examinato: min Halilovic Undevisande läae: Fedi Begholm, Jonas Stenholm, Elias Said Fö godänt betyg ävs av max poäng Betygsgänse: Fö betyg, B, C, D, E ävs,,, espetive

Läs mer

Instuderingsfrågor och övningsuppgifter i vindkraftteknik

Instuderingsfrågor och övningsuppgifter i vindkraftteknik Instudingsfgo oh öningsuppgift i indafttni. Hu myt indaft fanns dt i Sig spti äldn nligt snast sstatisti.. Hu myt ha installats oh poduats i Sig hittills i?. Nämn minst t typ a indaft, oh das anändningsomdn,

Läs mer

Tentamen i Energilagringsteknik 7,5 hp

Tentamen i Energilagringsteknik 7,5 hp UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

Lösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl

Lösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl Lösninga till tentamen i tillämpad känkemi den 10 mas 1998 kl 0845-145 Ett öetag ha köpt natuligt uan ö 10 k/. Konveteing till UF 6 kosta 60 k/ tillvekad UF 6. I en gascentiugbasead anikningsanläggning

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

1. Kraftekvationens projektion i plattans normalriktning ger att

1. Kraftekvationens projektion i plattans normalriktning ger att MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

Taxa för Sala kommuns allmänna vatten- och avloppsanläggning

Taxa för Sala kommuns allmänna vatten- och avloppsanläggning Sala ommun Kommunal föfattningssamling 1 (13) Taxa fö Sala ommuns allmänna vatten- och avloppsanläggning KFS 070 evision 03 ANTAGEN: 2017-02-27 GÄLLER FRÅN OCH MED: 2017-07-01 ERSÄTTER: 427/2008 356/2003

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING. 24 april 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 4 pil 1999 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1. Dt om cceletionen ge en sttning v bilens effet. Kinetis enegi vid 1 m/h:, MJ. Denn enegi fås på 1 seunde vilet medfö tt

Läs mer

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar 1(5) & nt s MLJösÄKRtNG INNENALLER MILJöPOLICY ch ARBETSMILJöPOLIGY K:\Malla MILJOPOLICY 2(5) # nt s Denna miljöplicy gälle Elcente. Syfte Elcente ska följa aktuell miljölagstiftning, egle, kav ch nme

Läs mer

Kontrollskrivning Mekanik

Kontrollskrivning Mekanik Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)

Läs mer

TYP-TENTAMEN I TURBOMASKINERNAS TEORI

TYP-TENTAMEN I TURBOMASKINERNAS TEORI Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 1808 TFYA16 1 TFYA16: Tenta 1808 Sva och anvisninga Uppgift 1 a) Läget som funtion av tid fås genom sambandet: x(t) = v(t) dt = v 0 (1 t )dt = v 0 ( t 1 3 t3 ) + x 0 Eftesom x(0) = 0 gälle att x 0 = 0.

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Boverket. Energideklarat LL_. IOfl DekLid: 195073. Byggnadens ägare - Kontaktuppgifter. Byggnadens ägare - Övriga

Boverket. Energideklarat LL_. IOfl DekLid: 195073. Byggnadens ägare - Kontaktuppgifter. Byggnadens ägare - Övriga Smhusenhet, -...-. Boveket Enegideklaat Vesion 15 IOfl DekLid: 195073 Byggnadens ägae - Kontaktuppgifte Ägaens namn Pesonnumme/Oganisationsnumme Utländsk adess Adess Postnumme Postot Mötvätsvägen 21 62449

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige. Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa

Läs mer

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109 PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2

Läs mer

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat. Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa

Läs mer

Allmänna anvisningar: Del A och B: För att påskynda rättningen skall nytt blad användas till varje ny del.

Allmänna anvisningar: Del A och B: För att påskynda rättningen skall nytt blad användas till varje ny del. Vindkraftteknik Provmoment: Ladokkod: Tentamen ges för: tentamen 41No1B En2, En3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-03-14 Tid: 9-13 Hjälpmedel:

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor

1 Etnicitet i rekryteringssammanhang -En jämförelse mellan privat och offentlig sektor 1 Etnicitet i ekyteingssammanhang -En jämföelse mellan pivat och offentlig sekto Chistina Ekdahl Madelene Gustafsson Elin Spaman Maia Svedbeg Pojektabete 5 poäng Våteminen 2002 Handledae: Staffan Nilsson

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:

Läs mer

Särskild utbildning för vuxna

Särskild utbildning för vuxna Säskild ubildning fö vuxna I KATRINEHOLM OCH VINGÅKER Kunskape och fädighee fö ETT GOTT LIV www.viadidak.se Telefon: 0150-48 80 90, 0151-193 00 E-pos: info@viadidak.se Viadidak ä en gemensam fövalning

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L

Läs mer

Föräldrabarometer 2013

Föräldrabarometer 2013 Föbundet Hem och Skola i Finland Föäldabaomete 2013 Cilla yman (ed.) Innehåll Föod... 2 1 Inledning... 3 2 Undesökningens genomföande... 4 2.1 Föäldabaomete 2013... 4 2.2 De svaandes bakgundsuppgifte...

Läs mer

Varför blåser det och hur mycket energi finns det i vinden

Varför blåser det och hur mycket energi finns det i vinden Varför blåser det och hur mycket energi finns det i vinden Agenda Globala cirkulationer konceptuell modell Krafter som påverkar luftens rörelse Vinden som resurs Energiutvinning Rotorbladet Global cirkulation

Läs mer

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget

Läs mer

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m LÖSNINGSFÖRSLAG 007 KVALIFICERINGS- OCH LAGTÄVLINGEN 1 februari 007 SVENSKA FYSIKERSAMFUNDET UPPGIFT 1. Enelspaltsproblem. Med sedvanliga betecningar erhålles: λ v / f 340/ 680 m 0,50 m Om α är vineln

Läs mer

Att leda förändring. Vad orsakar en förändring? Exempel:

Att leda förändring. Vad orsakar en förändring? Exempel: Att leda föänding Rune Olss www.iei.liu.se/pie/olss-une Vad osaka en föänding? Exempel: Nya investeinga Ny teknik i poduktien Svikande fösäljning Oganisatien ha fö höga kostnade Omoganisati Sto stess Vaje

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar. Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

Vänersborgs kommun. Fördjupad granskning av Samhällsbyggnadsnämnden

Vänersborgs kommun. Fördjupad granskning av Samhällsbyggnadsnämnden Vänesbogs kommun Födjupad ganskning av Samhällsbyggnadsnämnden Götebog 2005-12-14 Enst & Young AB Vilhelm Rundquist 1 Sammanfattning Enst & Young ha fått i uppdag av evisoena i Vänebogs kommun att genomföa

Läs mer

Deltentamen. TMA044 Flervariabelanalys E2

Deltentamen. TMA044 Flervariabelanalys E2 Deltentamen godäntdelen, del TMA44 Flervariabelanalys E 4-9-7 l. 8:3-:3 Eaminator: Peter Hegarty, Matematisa vetensaper, Chalmers Telefonvat: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt

Läs mer

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

REDOVISNINGSUPPGIFT I MEKANIK

REDOVISNINGSUPPGIFT I MEKANIK Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE6 Inbyggd Elektonik F F3 F4 F Ö Ö PIC-block Dokumentation, Seiecom Pulsgivae I, U, R, P, seie och paallell KK AB Pulsgivae, Menypogam Stat ö pogammeingsguppuppgit Kichos laga Nodanalys Tvåpolsatsen RR

Läs mer

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten Byggmax miljöappot Inledning Unde 2009 påböjade Byggmax sitt miljöabete genom att skapa en miljöpolicy med miljömål. Som en följd av detta policyabete ha en miljöappot uppättats och ett kontinueligt föbättingsabete

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Statsupplåning. prognos och analys 2004:1. Statens lånebehov. Finansiering. Aktuellt. Marknadsinformation

Statsupplåning. prognos och analys 2004:1. Statens lånebehov. Finansiering. Aktuellt. Marknadsinformation 2004:1 Statsupplåning pognos oh analys Statens lånebehov Åspognosen fö 2004 3 Lånebehovet justeat fö tillfälliga betalninga 4 Jämföelse med anda lånebehovspognose 5 Månadspognose 5 Statsskulden 5 Finansieing

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Projekt sent anmälda barn

Projekt sent anmälda barn 2013-03-04 Pjekt sent anmälda ban Bakgund I Åsappt 2012 fö Kvalitetsegiste CPUP anges syftet vaa: Gunden fö CPUP ä att alla ban med CP identifieas ch ebjuds deltagande så snat CP-liknande symtm ses, dvs.

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

Sebastian det är jag det! eller Hut Hut den Ovala bollen

Sebastian det är jag det! eller Hut Hut den Ovala bollen i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea

Läs mer

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig) 1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Scenario 1: Vi får bidrag och ca 10 kommuner. Scenario 2: Vi får bidrag och ca 20 kommune r

Scenario 1: Vi får bidrag och ca 10 kommuner. Scenario 2: Vi får bidrag och ca 20 kommune r Ange kommun: Ange namn: Skulle ni vaa intesseade av att delta i en kemikalieådgivningsfu nktion fö nas medabetae? Till exempel specifika kemikaliefågo i upphandling och inköp,veksamhete (föskolo, skolo,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem

V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem Institutionen fö Meani Nichoas paidis te: 79 748 epost: nap@ech.th.se hesida: http://www.ech.th.se/~nap/ S4, 76 entaen i S4 Meani II, 76 S! Inga hjäpede. Lyca ti! Pobe ) ) y d x ey e ex en ed ängden otea

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.

Läs mer

Hårdmetallfilar för tuff användning speciellt i gjuterier, varv och vid tillverkning av stålkonstruktioner

Hårdmetallfilar för tuff användning speciellt i gjuterier, varv och vid tillverkning av stålkonstruktioner speciellt i gjuteie, vav och vi tillvekning av stålkonstuktione Nya specialtanninga och S Nya innovativa specialtanninga, extemt okänsliga fö slag. Dessa mycket obusta, kaftfulla tanningsvaiante minimea

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF33 Elläa F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Stömketsläa Mätinstument Batteie ikstömsnät Tvåpolsatsen KK AB Mätning av U och I F/Ö6 F/Ö7 Magnetkets Kondensato Tansiente KK AB Tvåpol mät och sim F/Ö8 F/Ö9 KK3 AB3

Läs mer

xtillväxt- och regionplaneförvaltningen

xtillväxt- och regionplaneförvaltningen xtillväxt- och egionplanefövaltningen STOCKHOLMS LÄNS LANDSTING 1(1) TJÄNSTEUTLÅTANDE 2016-06-20 Handläggae: Ann Lundell Tillväxt- och egionplanenämnden Tetialappot fö tillväxt- och egionplanefövaltningen

Läs mer

Övningar i Reglerteknik

Övningar i Reglerteknik Fysialisa esrivningar Övningar i eglerteni Inom reglertenien är det vitigt att unna ta fram ra esrivningar av verliga system. Oftast anlitas olia fysialisa lagar för detta ändamål. Vanliga typer av fysialisa

Läs mer

Nivåmätning Fast material Flytande material

Nivåmätning Fast material Flytande material Nivåmätning Fast mateial Flytande mateial Nivåmätning fö pocessindustin Nivåkontoll fö: Övefyllnadsskydd Batchkontoll Poduktmätning Lagekontoll Säkehetslam Skiljeyto Industie: Koss o Asfalt Olja o Gas

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Personnummer:

Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF33 Elläa F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Stömketsläa Mätinstument Batteie ikstömsnät Tvåpolsatsen KK AB Mätning av U och I F/Ö6 F/Ö7 Magnetkets Kondensato Tansiente KK AB Tvåpol mät och sim F/Ö8 F/Ö9 KK3 AB3

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

tl Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17

tl Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17 tl Fakka ab Stockholm 2010-05-17 Enegideklaationsabetet HSB:s Bf Kubena i Stockholm Vi ä nu fädiga med enegideklaationsabetet fö HSB:s Bf Kubena i Stockholm, Enegideklaationena ä inskickade och godkända

Läs mer