Fallrörelse med luftmotstånd
|
|
- Sven-Erik Isaksson
- för 8 år sedan
- Visningar:
Transkript
1 Fallöls d lufosånd
2 Fallöls d lufosånd Dnni G 00 Fallöls d lufosånd n ula alas av yngdafn F g g, dä ä ulans assa oh g ä yngdalaionns noalväd. Dssuo påvas ulan av lufosånd so g upphov ill fiionsafn F f.. Fö öls d laiv höga hasigh gäll a F f v. Fol F F a F g f g v 4π V ρv Hasighn so funion av idn Rsuland af på oppn: F F d g F g v f d g v F f Sä g b d b v obs. a v a g då d 0 F g Da ä n spaabl diffnialvaion so an sivas b v d Paialbåsuppdlning av vänsa ingandn g d b b v b v Ingaion av båda ldn g ln b v ln b v b b v b ln D b v b v b v b D fso b v C
3 Fallöls d lufosånd Dnni G 00 b v b v b, dä D K vil f lösning bli v b b b Insäning av b g d allänna uy fö hasighn so funion av idn v g g Dä v g allas fö gänshasighn, d.v.s. dn onsana hasigh so uppnås nä fiionsafn F f ä lia so so yngdafn F g. K ä n onsan so bsäs u bgynnlsvillo,.. v00 /s. Hasighn so funion av fallsäan Löss på saa sä d osivningn a v nlig d d a ad v ad v a d v a v d d d Diffnialvaionn g v d övgå då ill v g v d viln f osivning bli g v v d Da ä oså n spaabl diffnialvaion so an sivas v d g v
4 Fallöls d lufosånd Dnni G 00 Di ingaion g g ln v C g ln v D fso v g D v g v vil g d sluliga uy g g v / Da uy g nauligvis saa väd fö gänshasighn v g. Säan so funion av idn Fö a få saband llan säan oh idn unyja vi a 0 vd säan ä aan und v--gafn Funionn so sa ingas ä allså g v dä vi sä g b oh so då bli v b b Säan an då uyas so b d b d d dä dn fösa ingaln löss d subsiuion. ln u d Sä u oh du u
5 Fallöls d lufosånd Dnni G 00 Vi få då K d f paialbåsuppdlning du du Ku u Ku u K K ln Ku ln u du C Ku u K ln u ln Ku C u ln C Ku ln C, u > 0 Dn anda ingaln ovan fås d di ingaion d ln D ln D o K > 0 Da innbä fö säan b b b d ln ln ln g insäning av b ln oh g ln ** vil slulign an sivas so g ln dä K oh ä onsan so bsäs u villo,.. v00 /s oh 00. 4
6 Fallöls d lufosånd Dnni G 00 5 Bäning av fallid Fö a bäna fallidn s fån höjdn används fon ** dag on u båda ld ln ln 0, 4 K ha lösningn 0 0 Sä 0 > ± K K K K K so slulign säs in i d.v.s ln
7 Fallöls d lufosånd Dnni G 00 pl n ula d dian,0 oh dnsin 000 g/ släpps uan bgynnlsfa fån höjdn. Fö n sfäis opp gäll ρ0sς ρ,9 g/ o 5 luf S 7,85 0 sniaa ζ 0,45nhslös fiionsoff. F f v dä ρosζ,9 7,85 0 4π 4π 0,005 7 V 5,4 0 ρ V 000 5,4 0 7 g, g 0,45 g/,8 0 Hasighn so funion av idn Kulans hasigh an åsådliggöas d n gaf ill funionn v g so d insaa vädn oh villo v00 /s g K, appoiaiv bli v, v /s 0,94 0,94 Uan lufosånd 5 g/ Md lufosånd s 6
8 Fallöls d lufosånd Dnni G 00 Hasighn so funion av säan Kulans hasigh an åsådliggöas d n gaf ill funionn / g v so d insaa vädn oh villo v00 /s g Kg/, appoiaiv bli v 0,044 / v /s Uan lufosånd Md lufosånd
9 Fallöls d lufosånd Dnni G 00 Säan so funion av idn Kulans illyggalagda säa an an åsådliggöas d funionn g ln so d insaa vädn oh villon v00 /s g K oh 00 g -/ln appoiaiv bli 0,94, 47,0 ln Uan lufosånd Md lufosånd s Anäning - Tidn fö ulan a falla ill an fån övsa agn av ifflon, 0, a allså a 6 s oh fan vid ndslag ä a /s 77 /h. Vid jäföls d öls uan lufosånd bli idn a 8 s oh fan vid ndslag a 79 /s 85 /h. - Fö n fallsäshoppa, sydiv, uan fallsän uvlad ä gänsfan a 50 /s 80 /h. - n gndopp d dian 0,5 uppnå i luf n gänshasigh av a 7,5 /s 7 /h. Hä ås an ävn a hänsyn ill lufns lyfaf nlig Aids pinip F l d g, dä d ä dplans assa. Fö läg hasigh i visösa di äna an isäll d n fiionsaf so ä popoionll o v, d.v.s. F f v. 8
Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
4.2 Sant: Utfört arbete är lika stort som den energi som omvandlas p.g.a. arbetet. Svar: Sant
LÖSNINGSFÖRSLAG Fysik: Fysik och Kapiel 4 4 nergi nergiprincipen 4. nergin bearas. Allså är före efer,9,, ilke ger,9,,j, 6 J Sar:,6 J 3 3 Arbee, effek och erkningsgrad 4. San: Uför arbee är lika sor so
Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)
B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)
Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Fö 3 Periodiska signaler, Fourierserieanalys. Jag inleder först med ett resonemang på tavlan!!! Fö 3 Periodiska signaler, Fourierserieanalys
Fö 3 Priodisa signalr, Fourirsrianalys Fourirsrianalys Jag inldr förs d rsonang på avlan!!! opyrigh Lass Alfrdsson, LiH Fö 3 Priodisa signalr, Fourirsrianalys 5 a 6 Sua av cos/sin b 3 x 3sin 6 cos SGD6,
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
F8: Asynkronmaskinen. Sammanfattning
F8: Aynkonmknn Smmnfnng Allmän om ynkonmknn (I) Lgköld Uglåd Kylflän Kllg Mool Solndnng Fläk Roo Soplåpk Fg 0.. Aynkonmkn Lnd nv / Lnd knk högkol / Indll Elkoknk / PK Allmän om ynkonmknn (II) A ynkonmoon
5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER
5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
laiablanals I Vintn Ösikt föläsninga läscka Dt tj kapitlt i ksn bhanla bbl- och tipplintgal. Dn intgaln i känn till fån naiablanalsn b a f kan j ofta ss som aan n f mllan a och b fnktion a tå aiabl och
Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl
Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a
KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:
Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Den kinetiska energin för bilen ges av massan och sluthastigheten enligt
FYSIKTÄVLINGEN Fnaln - o apl LÖSNINGSFÖSLAG SVENSKA FYSIKESAMFNDET. a Dn kompla ablln s u nlg följan T/s Hasg/(m/s Acclaon (m/s Kaf (N Säcka (m Ab (Nm,7 3,,6 8735 8 583 7, 3,6 6 38 5,, 3, 5657 8 5588 7,
Kapitel 8. Kap.8, Potentialströmning
Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v
Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m
LÖSNINGSFÖRSLAG 007 KVALIFICERINGS- OCH LAGTÄVLINGEN 1 februari 007 SVENSKA FYSIKERSAMFUNDET UPPGIFT 1. Enelspaltsproblem. Med sedvanliga betecningar erhålles: λ v / f 340/ 680 m 0,50 m Om α är vineln
45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik
KTH Meani 2013 05 23 Meani, SG1102, Lösningar till probletentaen, 2013 05 23 Uppgift 1: Längre slag i golf påeras raftigt a luften. För ortare chippar är däreot luftotståndet försubart. En golfspelare
SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.
SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen
verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att
Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc
går genom AX + B = C,
Tnmn i Mmik HF9 lödg fui kl Hjälpmdl: End fmlld miniäkn ä in illån Fö gdkän kä päng möjlig päng gkl ä ä D EFXF Dn m uppnå 9 päng få g FX ch h ä kmpl dnn nmn Fulländig löning kll pn ill ll uppgif Emin:
Sebastian det är jag det! eller Hut Hut den Ovala bollen
i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea
3 Rörelse och krafter 1
3 Rörelse och krafer Hasighe och acceleraion 3. ar är hasigheens sorlek. Sar: alsk 3. Medelhasigheen fås so Sar 5, /s 3.3 Medelhasigheen fås so s 5 /s 5, /s 5, 6 s s s slu sar. örflyningen sarar och sluar
F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)
F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg
Kom Helge Ande. œ œ œ. Ó Œ œ. b b Ó Œ. œ œ. & b b. œ œ œ œ. œ œ. œ œ œ œ œ œ œ œ. œ œ. œ œ. œ œ. œ œ. œ œ. œ œ. œ œ. œ œ. œ œ
pran c Œ Km Helge nde rad arr. Mattias Risthlm Km hel ge n de till mig in. Upp lys min säl, upp tänd mitt sinn. tt ag i dig må lt 7 c Œ Km hel ge an de till mig in. Upp lys min säl, upp tänd mitt sinn.
Utgångspunkter. Hushåll med värmeelement
söjd!) l, hl sjlfö (Pss! Ig få o ik! b sd. D o k s g i id p ö f S di upp i sll k s u i o s u h Poduk då oc sl. l k l o d g kici. l g li o g h b di u d dis D g. o s k i f p p if u d d i i i h f s ö f d
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Vilka varor och tjänster samt länder handlar svenska företag med? - och varför?
Emj www.mf.smj Smällsm fö u Emf uvcl d slml sm mlm ll läudvs smällsus. Syf ä lv övd fösåls fö u smällsm fu. Ml båd s c s fösåls fö u d s u Sv. Ml bså v fy s övd uf sm bdl usdl, bsmd, fsmd c ffl m. Uf bsvs
Kraftekvationen i olika koordinatsystem. Exempel 1.1: Naturliga koordinater. Exempel 2.8. Exempel 2.8. Exempel 1.
Kaaonn ola oodnaym Exmpl.: aulga oodna Exmpl.: En ula ä uppädd på n x ålåd omad om n höguln md al axl nlg Exmpl.8 (Läca 5). D nmaa onal mllan ula och ålåd ä. omula dnalaonn ö ulan öl läng ålådn. Exmpl.8
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
Differentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
Lösningar till Problemtentamen
KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll
Blåsen nu alla (epistel nr 25)
lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas
1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
Belastningsförsök Bergeforsen. En studie av hur staglastökning orsakad av yttre last påverkas av förspänning av stagen
PÅLKOMMIIONEN knik PM 1:20 Bninföök Bfon En di v h öknin okd v y åvk v föännin v n Uföd v Vivc Avidon Gnkd v And Fdikon PÅLKOMMIIONEN knik PM 1:20 1 INNEHÅLLFÖRECKNING Aän 3 Bknd 3 on i öv fånd, Bfon 3
Uppgradering. och varför
Uppgradring vad är d och varför Lösligh lir pr lir Lösligh man och koldiox 2,000 1,800 1,600 1,400 1,200 Man 1,000 Koldioxid id 0,800 0,600 0,400 0,200 0,000 0 10 20 30 40 50 60 70 Tmpraur C Skrubba gas,
Matematisk statistik
Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls
SG Armen OA med längden b roterar med en konstant vinkelhastighet
nstitutionn fö Mani Nicholas paidis tl: 79 748 post: nap@ch.th.s hsida: http://www.ch.th.s/~nap/ S4-74 Tntan i S4 Mani 74 BS! nga hjälpdl. Lyca till! Pobl ) Vagnn i figun bosa d n onstant acclation a längs
LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet:
LEDNINAR TILL PROBLEM I KAPITEL 3 LP 3. Systeets asscentru ligger hela tiden id aeln. Krafteationen för hela systeet: F = a P = M+ LP 3. Anänd definitionen a inetis energi. Varje ula har en cirelrörelse.
HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Mekaniska vibrationer. Hjulupphängning. Fria odämpade svängningar. Svängningstiden för pendelrörelsen. Approximationen sin
--9 Meaisa vibraioer Hjulupphäi ria oäpae sväiar Sväisie för peelrörelse 9 7 S e ( S) r ( ) P; e r e 7 9 De aeaisa peel (parielpeel) ( ) (...) 7 Approxiaioe si Rörelseevaioe.99.9.97 si.9.9.9 P ; si, (
Om antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn
Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m
Bng Assarsson Forskning Makro, konomri Skar, EMU, frfrågsysm Finansdparmn Svrigs Riksbank Sora konomriska modllr Svnsk modll BASMOD Modll för världskonomin Modll för kors prognosr Inflaion/rlaiva prisr
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudingsfgo oh öningsuppgift i indafttni. Hu myt indaft fanns dt i Sig spti äldn nligt snast sstatisti.. Hu myt ha installats oh poduats i Sig hittills i?. Nämn minst t typ a indaft, oh das anändningsomdn,
TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls
TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kusnumme: HF Memik fö så I Momen: TEN Pogm: Teknisk så Rände läe: Nicls Hjelm Emino: Nicls Hjelm Dum: -- Tid: :-: Hjälmedel: Fomelsmling: ISBN 98-9--9-8 elle ISBN 98-9--- un neckning. Ing nd fomelsmling
{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät
Kap 4 Laplaceanfomanaly av idkoninueliga yem 9 Sabilie fö enegifia LTI-yem Maginell abil yem: De flea begänade inignale ge upphov ill begänade uignale Kap 4 Laplaceanfomanaly av idkoninueliga yem 0 Sabilie
Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik- och partikeldynamik Lösningsförslag ( ) ( ) ( ) ( )
Utgåva Tntansskivning i Mkanik (FMEA30) Dl tatik- och patikldynaik 305 Lösningsföslag. a) Filägg stång + skylt! Infö spännkaftna = och = i linona, tyngdkaftn g = k ( 00g), angipand i skyltns asscnta G
Möt Privata Affärers och Placeringsguidens aktiva läsekrets
2014 Möt Pvt Affäs och Pcngsgudns ktv äskts Und 2013 stod nnonsön på Sto Pcngskvän nskt mot nskt md 1 500 v vå mst pcngsntssd äs. Sto Pcngskvän Bok n hkvä md Pvt Affäs och Pcngsgudns ktv äskts Pvt Affä
Schrödingerekvationen i 3 dim: Väteatomen.
Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:
F5: Digital hårdvara. Digitala signaler. Fördelar med digitala system. Digital kontra Analog
F5: Digial hårdvara Digiala signaler Innehåll: - Digiala signaler - Grindar (gaes) - Symboler - Logiska kresar - Timing diagram - Fördröjningar - Tillsånd för digiala signaler - Logikfamiljer (CMOS, TTL)
Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r
oelsalg TYA6 ekak TB E eko: a a ˆ + a ˆj + a kˆ z ˆ ˆj kˆ a a a + a + a Skalä poduk ˆ ˆ ˆ ˆj z Vekopoduk (kss poduk) C c ˆ + c ˆj + c kˆ C A B A B cosφ dä Φ ä kel ella A C A B Dä A A, B B och Φ ä kel ella
Lösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
3 Rörelse och krafter 1
LÖSNINGSÖRSLAG ysik: ysik och Kapiel 3 3 Rörelse och krafer Hasighe och acceleraion 3. ar är hasigheens sorlek. Sar: alsk 3. Medelhasigheen fås so Sar 5, /s 3.3 Medelhasigheen fås so s 5 /s 5, /s 5, 6
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean
Solo standard. Skjutbara och fasta partier. Forserum
Foum 805 Solo ndd Skjub och f Exodul ndd llvk Solo ym, md mm häd gl lnv mm häd nggl. Ybhndlng vlckd, vlckd ll nunodd lumnumofl. Dönän, fönnän ll hkgllå md ghndg ngå. Fk llkomm. Sndd kn kombn f md Solo
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret
Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso
UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer
Lösningar/svar till tentamen i F0031T Hydromekanik Datum:
Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Sotenäs Kommun tryggar driften med avtal. om årlig service. Per Bobeck vår man på fältet. www.prominent.se. 2012 nr 1 SÄKERHET NYHETSBREV
NYHETSBREV 2012 1 SÄKERHET Exp C-F W T ycl fö vå pup S S Ku y f vl ål vc P Bbc vå på fl wwwp T y f ö u! PM l VARIM-cf VARIM å fö Vu öpl fö u pbl c öjl v bc- c ublfå Målupp fö vll l uvcl VARIM cf - yf ul
Massa, rörelsemängd och energi inom relativitetsteorin
Massa, rörelseäng oh energi ino relatiitetsteorin Vi et iag att inget föreål e en iloassa större än noll (t.ex. elektroner, protoner oh ryfarkoster) någonsin kan röra sig snabbare än ljuset. Partiklar
TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier
Tidsprogram VSM Fredag ***************************** ( xx) = antal anmälda Ver. 10
Tidsprogram VSM Fredag 140725 140713 ***************************** ( xx) = antal anmälda 140708 Ver. 10 Tid Löpning Längd A läktaren 11.00 M35-40 400m H (1+5) /91,4/ 11.10 M45 400m H (5) /91,4/ 11.20 M50-55
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on
S i da 1 (14 ) A n k o m s tdatum 2018-07 - 09 M R M K on s u l t AB Ut f ä r dad 2018-07 - 16 P e r S a mu el s s on T a v as tg a t a n 34 118 24 S to ck ho lm S w e d en P r o j e kt B e s tnr S p å
Tentamen i Linjär algebra 2010 05 21, 8 13.
LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on
S i da 1 (13 ) A n k o m s tdatum 2016-05 - 31 T y r é n s AB Ut f ä r dad 2016-06 - 08 A le xa n d e r G i r on P r o j e kt Ka b el v e r k e t 6 B e s tnr 268949 P e t e r M y nd es B ac k e 16 118
TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor
ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs
Reflektion och transmission
RfTas / Ljud byggad oh samhäll / VTAF0 Rflko oh asmsso Tdga ha bhadla ågubdg homoga md ua a gå äma å ad som sk ögåg få mdum ll aa ll ad som sk d äda. Da ska äma gå å hä. V ka ll ml äka oss såg a sål som
UNICA Ny skola F-6 Mariestad
T TU Y T TU T TU Ä UT/ÄT TÄÄ V V TT Unikon ä pd i tt vkt pkomåd tånd v - o övtäd, ny o gm. mådt ä n viktigt p fö dn ioogik mångfdn då dt innå mång inkt, fåg o dju. Tmt fö pojktt vit kog o idén vit tt v
Livslängd vägen till lönsammare produktion
! L ä f ä b ö F ö. ä s s y p b sx föbä sä A. h p s s bhös. A föä föä h hö. å b f fö å ps yc DL K Lsä ä ös p Ks sä ä s fö ös jöp. Fö s h ö s sä bhö få h å sp sh få fs, f, f, p hässy p ch p. Lsä h föä s
9. Diskreta fouriertransformen (DFT)
Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm
Minst 16,5 poäng för godkänt; minst 23 poäng för 4; minst 28,5 poäng för 5
Tenaen V004B 03-0-09 uleå enisa universie TENTMEN Kursod: V004B Kursnan: Hydrauli och geologi Tenaensdau: 03-0-09 Srivid: 6 iar Tillåna hjälpedel: Miniränare, Forelsaling nna-maria Gusafsson, 090-49 6
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E
(8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p
Opp, Amaryllis (Fredmans sång nr 31)
Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso
System med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Bakgrund och syfte. Med närstående menas en person som patienten själv anser sig ha en nära relation till. Det behöver inte vara en familjemedlem.
Näådplicy Plicy fö äåd dlkigh i vuxpykiik våd g i um lmdv i i k Py må ig å g å p mid d d m å h våd hbiliig. m u l f jug ik ik ö d pyki g v pyki v f d ik ckli ö Ud d m våd ch uv åd få ifö. m b å dd pmäkmm
undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.
FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då
B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva
{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är