Välkomna till TSRT19 Reglerteknik Föreläsning 4. Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Välkomna till TSRT19 Reglerteknik Föreläsning 4. Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner)"

Transkript

1 Välkomna till TSRT19 Reglerteknik Föreläsning 4 Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner)

2 Sammanfattning av förra föreläsningen 2 Vi introducerade PID-regulatorn (Propertionell Integrerande Deriverande) P-delen styr snabbhet I-del minskar/tar bort reglerfel D-del minskar/tar bort oscillationer Vi introducerade tre viktiga överföringsfunktioner: kretsförstärkning, slutna systemet samt känslighetsfunktionen

3 Sammanfattning av förra föreläsningen 3 Felkoefficienter definierades som kvarvarande stationärt reglerfel då ett steg, ramp, etc används som referens signal Antalet integratorer i kretsförstärkningen G O (s) = F(s)G(s) bestämmer hur många felkoefficienter som blir noll

4 4 Förra föreläsningen tog vi fram en regulator till en svävande kula, och fick för en PID-regulator följande slutna system Slutna systems dynamik karakteriseras främst av överföringsfunktionens poler, dvs polpolynomets rötter I dag frågar vi oss hur beror polerna på parametrar i polpolynomet Här tre parametrar och tre rötter, men vi kommer att studera fallet då bara en parameter tillåts variera

5 5 Standardproblemet: Vi studerar polpolynom i följande form Exempel: K P och K I fixerade, K D varierar Eftersom det är enkelt att räkna ut rötter i MATLAB kan vi räkna ut rötter för varierande K D, och plotta i komplexa talplanet Vi testar med K P =1 och K I =0.1 och räknar ut poler för 0 K D <

6 6 Poler för K D =0: {-0.09, 0.049±i} Poler för K D =2: {-1.28, -0.59,-0.13} Poler för K D =10000: {-99.9, ±0.001i}

7 7 Rotorter har väldigt typiska utseenden, och vi skall nu lära oss skissa dessa utan att faktiskt beräkna en massa rötter Vi antar att P(s) och Q(s) är i följande form Vidare så antar vi n m och K 0

8 8 Enkla egenskaper För varje K finns det n rötter. Rotorten sägs ha n grenar Rötterna för K=0 är lika med rötterna till P(s)=0. Dessa rötter kallas startpunkter. Rötterna för K= ges av rötterna till Q(s)=0. Dessa rötter kallas slutpunkter Om m<n finns det asymptotiska grenar som går mot oändligheten Eftersom komplexa poler alltid förekommer i ett komplexkonjugerat par, är rotorten symmetrisk runt reella axeln Stabilitetsgränsen hittas genom att lösa ekvationen för skärning med imaginära axeln P(iω) + KQ(iω)=0

9 9 Avancerade egenskaper: Asymptoter De n-m rötterna som inte går mot en slutpunkt rör sig längs asymptotiska strålar som utgår från punkten i riktningarna

10 10 Avancerade egenskaper: Reella axeln De delar av reella axeln som har ett udda antal start och slutpunkter till höger på reella axeln, tillhör rotorten Låt p i vara reella startpunkter och q i vara reella slutpunkter. Då gäller det att Satsen följer ut teckenanalys av kvoten, se kursbok

11 12 Exempel: Svävande kulan Vi skissar rotort för svävande kulan med en PID-regulator där I-delen har fixerats till K I =2 och D-delen till K D =4. Polerna ges såldes av Vi identifierar våra start- och slutpolspolynom

12 13 Startpunkter (n=3): Slutpunkter (m=1): Aymptotriktningar: Asymptotskärning med reella axeln

13 14 Del av reella axeln i rotort Skärning med imaginära axeln? Alltså, K>0.5 ger stabila poler

14 15 Sann rotort Notera att det faktum att de två komplexa rötterna blir reella för ett intervall ej kan ses med hjälp av vår metodik De två komplexa rötterna skulle precis lika gärna kunna ha gått direkt mot asymptoterna, enligt våra ritregler

15 Specifikationer 16 Var vill man ha polerna då? Vi har tidigare sett att vi vill ha poler i vänstra halvplanet för stabilitet, komplexdel ger oscillationer, samt att avstånd till origo bestämmer snabbhet Vi skall nu precisera detta lite, samt relatera till mått på stegsvar.

16 Specifikationer 17

17 Specifikationer 18 Översläng M: Största utsignal dividerat med slutvärde (ibland i %) Stigtid T r : Tid för att gå från 10% till 90% av slutvärde Insvängningstid T s : Tid innan utsignalen håller sig inom 5% från slutvärde

18 Specifikationer 19 Första ordningens system: Specifikationerna kan enkelt översättas till krav på en pol för ett första ordningens system (eller ett system som domineras av en pol) Kom även ihåg tidskonstanten (1/a) som definierar tiden det tar att nå 63% av slutvärdet

19 Specifikationer 20 Andra ordningens system: Specifikationerna för ett 2:a ordningens system med komplexkonjugerade poler är lite knepigare Detaljer inte viktiga

20 Specifikationer 21 Vad vi skall försöka komma ihåg: Insvängningstid är ungefär 3/(avstånd till origo) för reella poler och oscillerande system med rimligt stor relativ dämpning ξ (mellan 0.5 och 1) En relativ dämpning ξ på 0.7 ger en översläng på ungefär 5%, vilket ofta är vad man siktar på. I komplexa talplanet betyder det att vi vill att poler skall ligga i det skuggade området (dvs i en kon med vinkeln 45º vilket motsvarar ξ=0.7) 45º Im Re

21 22 Det verkar vara möjligt att välja K P så att polerna hamnar i det önskade området, med K I och K D fixerade till 2 och 4

22 Sammanfattning 23 Sammanfattning av dagens föreläsning En rotort beskriver hur polerna rör sig i det komplexa talplanet när en parameter i polpolynomet varierar Enkla räkneregler hjälper oss att skissa rotorten utan att faktiskt beräkna en massa rötter Insvängningstid för ett steg ges av ungefär 3/(avstånd till origo för pol närmast origo). En relativ dämpning på 0.7 ger en översläng på ungefär 5%

23 Sammanfattning 24 Viktiga begrepp Rotort: Polers position i komplexa talplanet som funktion av en parameter Insvängningstid : Tid det tar för ett stegsvar att hålla sig inom 5% från slutvärdet Stigtid: Tid det tar att gå från 10% till 90% av slutvärdet vid ett stegsvar Översläng: Största värdet på utsignalen dividerat med slutvärdet

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) Innehåll föreläsning 12 2 Reglerteknik, föreläsning 12 Sammanfattning av kursen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

REGLERTEKNIK I BERÄKNINGSLABORATION 2

REGLERTEKNIK I BERÄKNINGSLABORATION 2 UPPSALA UNIVERSITET Systemteknik/IT-institutionen HN 0608, 1001 REGLERTEKNIK I BERÄKNINGSLABORATION 2 1. Bode och Nyquistdiagram och stabilitetsmarginaler 2. Systemdynamik, stabilitet och rotort Förberedelseuppgifter:

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)

Läs mer

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna. Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören

Läs mer

TENTAMEN I REGLERTEKNIK I

TENTAMEN I REGLERTEKNIK I TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG

Läs mer

REGLERTEKNIK Laboration 3

REGLERTEKNIK Laboration 3 Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: TER2 TID: 22 oktober 25, klockan 4-9 KURS: TSRT3 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5., 7. KURSADMINISTRATÖR:

Läs mer

Tentamen i Reglerteknik, för D2/E2/T2

Tentamen i Reglerteknik, för D2/E2/T2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Lördagen den 15 Augusti kl.9.-13. 29 Sal: Tillåtna hjälpmedel: Valfri

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4 SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,

Läs mer

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser

Läs mer

EL1000/1120/1110 Reglerteknik AK

EL1000/1120/1110 Reglerteknik AK KTH ROYAL INSTITUTE OF TECHNOLOGY EL1000/1120/1110 Reglerteknik AK Föreläsning 6: Kompensering (forts.), robusthet och känslighet Kursinfo: Extra material Introduktion till Laplacetransformen: https://www.kth.se/social/upload/527ac1d0f276540a852d0

Läs mer

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till!

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till! TENTAMEN I REGLERTEKNIK M TSRT5 för M3 TID: 9 april 006, klockan 4-9. ANSVARIG LÄRARE: Inger Klein, tel 8 665, alt 0730-96 99. TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik, grundläggande teori

Läs mer

REGLERTEKNIK Inledande laboration (obligatorisk)

REGLERTEKNIK Inledande laboration (obligatorisk) UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK HN, MW 2008-01-23 Rev. HN, 2015-01-15 REGLERTEKNIK Inledande laboration (obligatorisk) Läsanvisningar: 1. Läs igenom instruktionen innan påbörjad laboration

Läs mer

Reglerteknik 1. Kapitel 1, 2, 3, 4. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se

Reglerteknik 1. Kapitel 1, 2, 3, 4. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se Reglerteknik 1 Kapitel 1, 2, 3, 4 Köp bok och övningshäfte på kårbokhandeln Reglerteknik 1. Givare för yttertemperatur 2, 3. Givare för inomhustemperaturer Behaglig innetemperatur med hjälp av reglerteknik!

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Industriell reglerteknik: Föreläsning 4

Industriell reglerteknik: Föreläsning 4 Föreläsningar / 25 Industriell reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Reglerteknik 6. Kapitel 10. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se

Reglerteknik 6. Kapitel 10. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se Reglerteknik 6 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 6 kap Reglersystemets egenskaper Stabilitet är den viktigaste egenskapen. Ett ostabilt system är oanvändbart. Stabilitet är

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Industriella styrsystem, TSIU04. Föreläsning 1

Industriella styrsystem, TSIU04. Föreläsning 1 Industriella styrsystem, TSIU04 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Mål Ge kunskaper och färdigheter om reglerteknik närmare verkligheten. Mera precist: Trimning av PID-regulatorer.

Läs mer

LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK. Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS

LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK. Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS Obs! Alla förberedande uppgifter skall vara gjorda innan laborationstillfället! Namn: Program: Laborationen

Läs mer

Reglerteknik M3, 5p. Tentamen 2008-08-27

Reglerteknik M3, 5p. Tentamen 2008-08-27 Reglerteknik M3, 5p Tentamen 2008-08-27 Tid: 08:30 12:30 Lokal: M-huset Kurskod: ERE031/ERE032/ERE033 Lärare: Knut Åkesson, tel 0701-749525 Läraren besöker tentamenssalen vid två tillfällen för att svara

Läs mer

Tentamen i Styr- och Reglerteknik, för U3 och EI2

Tentamen i Styr- och Reglerteknik, för U3 och EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 2 december kl. 9-13, 29 Sal: R1122 Tillåtna hjälpmedel:

Läs mer

Liten MATLAB introduktion

Liten MATLAB introduktion Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts

Läs mer

TSRT19 Reglerteknik: Välkomna!

TSRT19 Reglerteknik: Välkomna! TSRT19 Reglerteknik: Välkomna! Föreläsning 5 Inger Erlander Klein Dagens föreläsning 1 / 21 Föreläsning 4: PID-återkopplong Stabilitet & Specikationer Samband polernas läge kvalitativa egenskaper Idag:

Läs mer

Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006)

Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006) Hans Norlander, IT-inst., Uppsala universitet, 2006-02-07 Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006) Kursboken

Läs mer

Reglerteknik, TSIU 61

Reglerteknik, TSIU 61 Reglerteknik, TSIU 61 Föreläsning 7 Regulatorkonstruktion i Bodediagram Reglerteknik, ISY, Linköpings Universitet Innehåll 2(18) 1. Sammanfattning av föreläsning 6 2. Hur ställer man in en PID-regulator

Läs mer

ÅBO AKADEMI REGLERTEKNIK I

ÅBO AKADEMI REGLERTEKNIK I INSTITUTIONEN FÖR KEMITEKNIK Laboratoriet för reglerteknik ÅBO AKADEMI DEPARTMENT OF CHEMICAL ENGINEERING Process Control Laboratory REGLERTEKNIK I Grundkurs Kurt-Erik Häggblom Biskopsgatan 8 FIN-20500

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Styr- och Reglerteknik för U3/EI2

Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther LABORATION i Styr- och Reglerteknik för U/EI Målsättning: Använda tumregler för att ställa in regulatorer

Läs mer

Reglerteknik, TSIU 61

Reglerteknik, TSIU 61 Reglerteknik, TSIU 61 Föreläsning 8 Störningar, modellfel och svårstyrda system Reglerteknik, ISY, Linköpings Universitet Innehåll 2(15) 1. Sammanfattning av föreläsning 7 2. Känslighet mot störningar

Läs mer

8.2.2 Bodediagram System av första ordningen K =, antages K > 0

8.2.2 Bodediagram System av första ordningen K =, antages K > 0 8. Frekvensanalys 8.2 Grafiska representationer av frekvenssvaret 8.2.2 Bodediagram System av första ordningen K G ( s) =, antages K > 0 Ts + A R ( ω) = G( jω) = K + ( ωt ) ϕ( ω) = arg G( jω) = arctan(

Läs mer

KAPITEL 8. Absolutbelopp. 1. Absolutbelopp.

KAPITEL 8. Absolutbelopp. 1. Absolutbelopp. KAPITEL 8 Absolutbelopp. 1. Absolutbelopp. Vi har redan introducerat absolutbelopp av komplexa tal: Kom ihåg att z är avståndet från z till origo i det komplexa talplanet. Om nu z = a 2 R ligger på den

Läs mer

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:...

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:... Reglerteknik M3 Inlämningsuppgift 3 Lp II, 006 Namn:... Personnr:... Namn:... Personnr:... Uppskattad tid, per person, för att lösa inlämningsuppgiften:... Godkänd Datum:... Signatur:... Påskriften av

Läs mer

Reglerteknik Z2. Kurskod: SSY 050 och ERE080. Tentamen 2006-08-24

Reglerteknik Z2. Kurskod: SSY 050 och ERE080. Tentamen 2006-08-24 Reglerteknik Z2 Kurskod: SSY 050 och ERE080 Tentamen 2006-08-24 Tid: 14:00-18:00, Lokal: V-huset Lärare: Goran Cengic tel 3729, 073-903 70 10 Tentamen omfattar 25 poäng, där betyg tre fordrar 10 poäng,

Läs mer

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H

Läs mer

TENTAMEN I REGLERTEKNIK Y (TSRT12)

TENTAMEN I REGLERTEKNIK Y (TSRT12) TENTAMEN I REGLERTEKNIK Y (TSRT12) SAL: U1, U3, U4 TID: 10 juni 2011, klockan 14-19 KURS: TSRT12 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR: 12 ANSVARIG LÄRARE: David Törnqvist, 013-281882,

Läs mer

Implementering av PID-regulatorer med dator

Implementering av PID-regulatorer med dator Implementering av PID-regulatorer med dator PID-reglering Styrlagen för en PID-regulator på standardform kan skrivas ) u(t) = K (e(t)+ 1Ti de e(τ)dτ +T d (t) = u P (t)+u I (t)+u D (t) där u(t) är styrsignalen

Läs mer

Simulering och reglerteknik för kemister

Simulering och reglerteknik för kemister Simulering och reglerteknik för kemister Gå till http://techteach.no/kybsim/index_eng.htm och gå igenom några av följande exempel. http://techteach.no/kybsim/index_eng.htm Följ gärna de beskrivningarna

Läs mer

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Tillämpningar av fysik och dynamik i biologiska system , kl. 09:00-15:00

Tillämpningar av fysik och dynamik i biologiska system , kl. 09:00-15:00 Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Bo Tannfors Tentamen i elektronik: Hjälpmedel: Tillämpningar av fysik och dynamik i biologiska system 2008--8, kl. 09:00-5:00 Reglerteknikformelsamling,

Läs mer

Processidentifiering och Polplacerad Reglering

Processidentifiering och Polplacerad Reglering UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap

Läs mer

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30 Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20

Läs mer

Styr- och Reglerteknik för U3/EI2

Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 071111/ Thomas Munther LABORATION 3 i Styr- och Reglerteknik för U3/EI2 Målsättning: Bekanta sig med olika processer.

Läs mer

Reglerteknik för D2/E2/Mek2

Reglerteknik för D2/E2/Mek2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 080303/ Thomas Munther LABORATION 3 i Reglerteknik för D2/E2/Mek2 Målsättning: Använda polplaceringsregulator för att

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

Möbiusgruppen och icke euklidisk geometri

Möbiusgruppen och icke euklidisk geometri 94 Möbiusgruppen och icke euklidisk geometri Lars Gårding Lunds Universitet Meningen med detta förslag till enskilt arbete är att alla uppgifter U redovisas skriftligt med fulla motiveringar och att alla

Läs mer

KO-pos positionsstyrning. Andreas Rönnqvist

KO-pos positionsstyrning. Andreas Rönnqvist KO-pos positionsstyrning Andreas Rönnqvist Examensarbete för ingenjörsexamen (YH) Utbildningsprogrammet för elektroteknik Vasa 2012 EXAMENSARBETE Författare: Utbildningsprogram och ort: Inriktningsalternativ/Fördjupning:

Läs mer

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

7x 2 5x + 6 c.) lim x 15 8x + 3x 2. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter TM-Matematik Mikael Forsberg 074-42 Pär Hemström 026-648962 För ingenjörs och distansstudenter Envariabelanalys ma04a 202 06 04 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 4: Kalmanfiltret & det slutna systemet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 3 2(19) Kovariansfunktion: Spektrum: R u (τ) = Eu(t)u(t τ)

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 7.1 7.4 7.1 Invarians av Laplaceekvationen Om f O(Ω), Ω C ett område, är bijektiv med holomorf invers så säger vi att f är biholomorf. Detta avsnitt handlar om att harmoniska

Läs mer

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc) 1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts. Reglerteori 2016, Föreläsning 4 Daniel Axehill 1 / 18 Sammanfattning av Föreläsning 3 Kovariansfunktion: TSRT09 Reglerteori Föreläsning 4: Kalmanfiltret & det slutna systemet Daniel Axehill Reglerteknik,

Läs mer

Överföringsfunktioner, blockscheman och analys av reglersystem

Överföringsfunktioner, blockscheman och analys av reglersystem Övning 3 i Mät- & Reglerteknik 2 (M112602, 3sp), MT-3, 2013. Överföringsfunktioner, blockscheman och analys av reglersystem Som ett led i att utveckla en autopilot för ett flygplan har man bestämt följande

Läs mer

TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62

TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62 TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62 Tid: Tisdagen den 2 juni 27, kl 4.-8. Lokal: TER Ansvariga lärare: Inger Klein, 28 665 eller 73-9699, Calin Curescu, 28 937 eller 73-54355 Hjälpmedel:

Läs mer

ASYMPTOT. Horisontal (lodrät) Vertikal (vågrät) Sned och Hål

ASYMPTOT. Horisontal (lodrät) Vertikal (vågrät) Sned och Hål ASYMPTOT Horisontal (lodrät) Vertikal (vågrät) Sned och Hål Definition av en asymptot En asymptot är en rak linje som agera som en gräns i grafen av en funktion När en funktion har en asymptot (alla funktioner

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och

Läs mer

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet

Gaussiska primtal. Christer Kiselman. Institut Mittag-Leffler & Uppsala universitet 195 Gaussiska primtal Christer Kiselman Institut Mittag-Leffler & Uppsala universitet 1. Beskrivning av uppgiften. De förslag som presenteras här kan behandlas på flera olika sätt. Ett första syfte är

Läs mer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer

Beräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer 1 Beräkningsuppgift I Vi skall studera ett flygplan som rör sig i xz planet, dvs vi har med de frihetsgrader som brukar kallas de longitudinella. Vi har ett koordinatsystem Oxyz fast i flygplanet och ett

Läs mer

Mät- & reglerteknik 1: Kompletterande material

Mät- & reglerteknik 1: Kompletterande material Mät- & reglerteknik 1: Kompletterande material Matias Waller 22 augusti 2013 Dessa anteckningar är avsedda för att komplettera kurslitteraturen och undervisningen i reglerteknik. Anteckningarna är knappast

Läs mer

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

1 3 5 7 9 11 13 12 15 17 [Nm] 400 375 350 325 300 275 250 [kw][ps] 140 190 130 176 120 163 110 149 100 136 90 122 80 109 225 200 70 60 95 82 175 150 125 155 PS 100 PS 125 PS 100 20 1000 1500 2000 2500

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Tentamen i reglerteknik SSY310/ERE091. Torsdagen den 4 juni 2015 kl. 14:00

Tentamen i reglerteknik SSY310/ERE091. Torsdagen den 4 juni 2015 kl. 14:00 Chalmers Tekniska Högskola Institutionen för signaler och system Avdelningen för reglerteknik, automation och mekatronik Tentamen i reglerteknik SSY31/ERE91 Torsdagen den 4 juni 215 kl. 14: 1. Längd: 4

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

Utbildning i reglerteknik. Ett samarbete inom ProcessIT mellan LTU och Optimation

Utbildning i reglerteknik. Ett samarbete inom ProcessIT mellan LTU och Optimation Utbildning i reglerteknik Ett samarbete inom ProcessIT mellan LTU och Optimation Upplägg Grov planering Seminarium Riktat mot en bredare publik än bara kursdeltagarna. Syftar till att skapa en förståelse

Läs mer

Tentamen i Systemteknik/Processreglering

Tentamen i Systemteknik/Processreglering Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 22 augusti 2011 kl 14 19 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Kompletterande anteckningar för Mät- & Reglerteknik 1

Kompletterande anteckningar för Mät- & Reglerteknik 1 Kompletterande anteckningar för Mät- & Reglerteknik 1 Matias Waller 12 september 2011 Föreliggande anteckningar skall tjäna som ett stöd för undervisningen i Mät- & Reglerteknik 1: Någon ambition att göra

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer