Experiment, Försök, Utfall, Händelse, Sannolikhet. Kaptiel1: Slump, Utfall, Händelse, Sannolikhet... Kaptiel2: Stokastiska variabler
|
|
- Sebastian Arvidsson
- för 7 år sedan
- Visningar:
Transkript
1 Kaptiel: lup Utall Hädelse aolikhet... Begreppe eperiet örsök hädelse utallsru saolikhet osv Diskreta/Kotiuerliga utallsru aasatta och betigade ( A B hädelser/saolikheter. ( A B ( A B ( B Bayes regel. ( A B Oberoede hädelser. ( B A ( A ( B Deiitio: Två hädelser A och B är oberoede o ( A B ( A ( B ör att två hädelser skall kua vara oberoede så åste A B Kobierade örsök/eperiet. periet örsök Utall Hädelse aolikhet Deiitio: Till varje öjlig hädelse A så associerar vi ett ickeegativt värde (A so kallas saolikhete ör hädelse A. Aio : Aio : Aio 3: ( ( A 0 ( A or all... ( A i A A elativ rekves: aolikhete ka deiieras so relativa rekvese att e hädelse iträar: li ( / ( A A där A är atalet gåger hädelse A iträar på örsök. aasatt och Betigad aolikhet Total saolikhet: Atag att vi har stycket ösesidigt uteslutade hädelser (ägder B vars uio är hela utallsruet B B... Då gäller öljade: B ( A ( A B ( B Kaptiel: tokastiska variabler Deiitio av e stokastisk variabel ördeligsuktio - deiitio och egeskaper Täthetsuktio - deiitio och egeskaper ågra olika ördeligar (ektagleördelig poetialördelig oissoördelig Bioialördelig oralördelige Betigade ördeligar Bayes regel: ( A B ( B A ( A ( B
2 tokastiska variabler Deiitio: stokastisk variabel ka deiieras so e uktio (reellvärd av eleete i utallsruet till ett eperiet (s. öljade åste gälla ör att e uktio skall vara e stokastisk variabel: uktioe år ite avbilda ett eleet s rå utallsruet till lera olika värde. uktioe ka däreot avbilda lera olika eleet på saa uktiosvärde. Mägde { z} åste otsvara e hädelse i ör alla reella z. aolikhete ör hädelsera {} och {-} åste vara oll: r( 0 r( 0 ördeligsuktio tokastiska variabler Deiitio: ördeligsuktio deiieras so saolikhete ör hädelse { s : ( s } ( { } Iblad kallas de också ör kuulativa ördeligsuktioe. araeter är ett godtyckligt reellt tal ella - och +. Ma ka härleda öljade egeskaper hos e ördeligsuktio: 0 ( 0 ( + ( ( ( o < { < } ( ( tokastiska variabler tokastiska variabler Täthetsuktio ör diskreta variabler koer täthetsuktioe att uttryckas so e sua av diracer: d ( ( eda öljer ågra egeskaper e täthetsuktio har: 0 ( ( ( ( y dy { < } ( oralördelige Täthetsuktioe ör e Gaussisk V ges av: ( ( Φ( ( e σ πσ ördeligsuktioe ör e Gaussisk V ges av: Där paraeter σ bestäer spridige (variase och bestäer var cetru på ördeligsuktioe haar (vätevärdet. e πσ ( ξ σ dξ
3 tokastiska variabler Betigad ördeligs- och täthetsuktio Deiitio: O vi betraktar saolikhete ör hädelse { } givet att hädelse B har iträat så ka vi deiiera de betigade ördeligsuktioe so: ( B De saasatta hädelse består av alla utall s sådaa att: ({ } B ( B { } B ( s och s B Kapitel 3: Moet Vätevärde Betigade ördeligar Vätevärde Moet varias stadardavvikelse äkeregler ör vätevärde och varias Trasoratio av stokastiska variabler De betigade ördeligsuktio är e oral ördeligsuktio vilket ger att öljade åste gälla: Deiitio: De betigade täthetsuktioe givet hädelse B deiieras so: d ( B ( B Vätevärde (edelvärde Moet och Varias µ [ ] ( [ g( ] g( ( [ B] ( B [ ] ( [( ] ( ( [ ] ( ( [ ] ( σ µ V [ ] + σ Vätevärde och Varias äkeregler: [ a + b ] a b + O och är oberoede så gäller också: [ g( h( ] [ g( ] [ h( ] V [ a + By] a V[ ] + b V[ ]
4 Trasoratio av e stokastisk variabel Kapitel 4: lerdiesioella stokastiska variabler Lijär trasoratio: Låt b+a. Bestä ördelige ör. ( y ( y ( a + b y ( y y b a y b a a y b a Deiitio av e lerdiesioell V aasatt ördeligsuktio aasatt täthetsuktio aolikhete ör e geerell hädelse Betigade ördeligar Oberoede stokastiska variabler ua av stokastiska variabler Mooto trasoratio: O g( är e ooto uktio (avtagade eller väade så har de stokastiska varibel g( täthetsuktioe: ( dy ( y g ( y aasatt ördeligsuktio Deiiera två hädelser A{ } B{ }. De saasatta ördeligsuktioe ör de tvådiesioella stokastiska variabel ( deiieras utirå de saasatta hädelse A B 0 y ( A B ( y De saasatta ördeligsuktioe har öljade egeskaper: ( 0 ( y 0 0 ( y y ( < y < y y + y y y ( y ( y ( är e strägt ickeavtade uktio i både och y Margialördelig ördeligsuktioera ör de eskilda variablera och kallas ör argialördeligsuktioera: y y ( y ( y ( aasatt täthetsuktio geskaper y ( ξ ψ y ( < y < y ( ξ ψ 0 ( y dy ( y y y ( y ( y dy y dξdψ y dξdψ
5 aolikhete ör e geerell hädelse (( A ( y A Betigade ördeligar Bayes egel: ( y ( y Oberoede variabler: y ( y ( y ( ( y och är oberoede o och edast o: ( y ( ( y y ( ( y y ( ( y ( y ( ( y ( y ua av stokastiska variabler: Deiiera e stokastisk variabel Z so sua av två adra variabler ( dvs Z+. ördeligsuktioe ör Z ges då av: Z ( z ( Z z ( + z ( z z y dy O och är oberoede så ka a visa att täthetsuktioe ör Z+ ges av: ( z ( ( y ( ( z Z * ( y ( z y dy Kapitel 5: Operatioer på lerdi V Vätevärde Korrelatio - ortogoalitet Kovarias okorrelerade Betydelse av oberoede variabler äkeregler lerdiesioell (ultivariat( ultivariat- oralördelig tokastiska vektorer och kovariasatriser Vätevärde ( g( g y ydy ( y dy ( Korrelatio och Kovarias Deiitio: Korrelatioe ella och ( y ( ydy Deiitio: Kovariase ella och deiieras so ( ( ( ( ( Kov Deiitio: Korrelatioskoeiciete ( ( ρ σ σ σ σ / Okorrelerade variabler: ( ( 0 Oberoede iplicerar okorellerade e ej tvärto Ortogoala variabler: 0 ( (
6 äkeregler V V ( + V( + V( + Kov( ( V( + V( Kov( Betigade ördeligar ( ( ( ( V( ( + ( V( V ( a + a + a3 3 V( + av( + a3v( 3 + aa Kov( a a Kov( + a a Kov( V a + V Kov Kov Kov Kov Kov 3 3 i i ai V + i i i< j ( V( ( a b abkov( ( a + b c + d ackov( ( a + b cz ackov( Z + bckov( Z i 3 a a i i b j j aib jkov i j i j 3 ( i aia jkov( i j ( j tokastiska vektorer lerdiesioella stokastiska variabler skriver a ota på vektoror. T [( ( ] ( i i OB! Kovariasatrise är alltid syetrisk. Multivariat oralördelig ördelige bestäs etydigt av vätevärdesvektor och kovariasatrise O e oralördelig är okorrelerad så är de också oberoede. Varje argialördelig till e oralördelig är e oralördelig. Varje lijär trasoratio av e oralördelig är e oralördelig. Lijär trasoratio ( ( A + b A b + A A T y ( π e T ( (
7 Kapitel 6: tokastiska processer Deiitio och tolkigs av e Oädlig diesioell V Deiierar e V i varje tidpukt Diskreta/Kotiuerliga processer Gausprocesser A/MA-processer Moet och Vätevärde Medelvärdesuktio Medeleekt Autokorrelatiosuktio Kovariasuktio Korskorrelatiosuktio korskovarias... tatioaritet svagt/strikt vagt statioär kostat edelvärde ak beror ej på tide. rgodisk processer Tidsedelvärde sebleedelvärde Beteckigar av sabad ella stokastiska processer stokastiska variabler realiserigar och estaka värde. t variabel s variabel t variabel ss i i tt i i s variabel tt i i ss i i Tolkig tokastisk process realiserig deteriistisk uktio tokastisk variabel tt visst värde ullstädig beteckig ( t s ( t s i ( t s j ( t j s i örkort. beteck. ( t ( t i ( t j i ( t j Vätevärde vid tidpukte t. ( t ( ( t ( t ; Kvadradiskta edelvärdet vid tidpukte t (edeleekte ( ( t ( t ( t ; Variase vid tidpukte t. σ [ ] ( t ( t ( t ( ( t ( t Kovariasuktio (kovariaskära: ( t t Kov( ( t ( t Autokorrelatiosuktioe (ak: ( t t ( ( t ( t ( t t + τ ( τ ( τ Autokorrelatiosuktioe (ak: ( t t [ ( t ( ] t svagt statioära processer ( t t + τ ( τ [ ( t ( t + τ ] ( τ ( 0 ( τ ( τ ( 0 [ ( t ] σ + O (t har e periodisk kopoet så har också ak:e e periodisk kopoet ed saa period. ör e ergodisk process uta ågo periodisk kopoet så gäller li τ τ ( O (t är ergodisk har vätevärde oll och ige periodisk kopoet så gäller li τ τ ( 0
8 Korskorrelatiosuktioe ( t t [ ( t ( ] t vagt saasatt statioära processer t t + τ τ [ t t + τ ( ( ( ( ] ( τ ( τ ( τ ( 0 ( 0 ( τ ( 0 ( 0 + Kapitel 7: pektraltäthet Deiitio och tolkigs av pektraltäthete ör e stokastisk process abadet ella ak och spektraltäthet geskaper hos spektraltäthete Deiitio av vitt brus kostat spektraltäthet Korsspektru Korskovariasuktioe ( t t + τ ( τ ( τ Okorrelerade processer ( τ ( τ 0 Ortogoala processer ( τ 0 Deiitio: pektraltäthete hos e tidskotiuerlig stokastisk process deiieras so: T T j πt ( li ( t e dt T pektraltäthete ager hur edeleekte i processe är ördelad på olika rekveser. ör svagt statioära processer ka spektraltäthete uttryckas ouriertrasore av ak:e j τ ( ( τ e π dτ pektraltäthete har öljade egeskaper: ( ( 0 ( ( 0 ( jπτ ( τ ( e d T är reelloch jä d Diskreta processer Korsspektru: jωk ( Ω [] k e ( Ω ( Ω 0 ( Ω π [ k] ( Ω är reell och jä är periodisk ed periode π π k π dω π ( [] k ( Ω ( ( ( ( τ π π j τ π τ e dτ j τ e π dτ * ( ( ( ( ( 0 o ( O ( t och ( t ( ( δ ( dω t och ( t är ortogoala är okorrelerade så gäller
9 Kapitel 8: tokastiska processer i lijära syste tokastiska processer i Lijära yste iltrerig av stokastiska processer abad ör ak ella i och utprocess abad ör spektraltäthet ör i och utprocess - uperorel aplig av stokastiska processer ( I (t ( H ( ( h(t (t ( I ( τ ( τ ( τ ( τ t + t ( h t ( h t dtdt H( h( t dt H (0 σ ( ( ( 0 0 d ats: vagt statioär process i ger svagt statioär process ut i lijära syste. ats: Gaussprocess i ger Gaussprocess ut i lijära syste. aplig av tokastiska rocesser aplig av deteriistiska sigaler: aplig av tokastiska rocesser aplig av stokastiska sigaler: c ( t c ( ω vagt stat. proc. ( t T s ( t p eller [] -T 0 T p ( t T t t π T s W W p ( ω W π T s ω ω Vätevärde: ( [ ( ( Ts ] ak: [ k] ( [ ] [ + k] ( ( Ts ( Ts + kts ( kt pektraltäthet: s y[] ( Ω Ω πk jω ( Ω [] e Ts k Ts - 0 π WTs π Ω Motsvarade tidskotiuerliga spektraltäthet: p p πk ( ( ω ωts ω Ts k Ts
SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
Formelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Föreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
TAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
TENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Tentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Kontrollskrivning (KS1) 16 sep 2019
Kotrollskrivig (KS) sep 9 Tid: 8:- Kurs: HF Lijär algebra och aals (algebradele) Lärare: Maria Shaou, Ari Halilovic För godkät krävs poäg (av a 9p) Godkäd KS ger bous eligt kurs-pm Fullstädiga lösigar
Formelsamling för Finansiell Statistik
Formelamlig för Fiaiell Statitik Kombiatorik Atal ätt att ta elemet ur är Uta åter- läggig Med återläggig Med häy till ordig! ( )! Atal ätt att ta elemet, av e ort, och elemet är det totalt orter är elemet,
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)
SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A
Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
TNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233 Saolikhetsteori Kap 2: Saolikhetsteoris
Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n
Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)
b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Stokastiska variabler
TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,
Artificiell intelligens Probabilistisk logik
Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet
Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser
Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det
Matematisk statistik
Matematisk statistik (Corelia Schiebold) Iehåll:. Saolikhetsteori 2. Diskreta stokastiska variabler 3. Kotiuerliga stokastiska variabler 4. Oberoedemått, summor av stokastiska variabler och cetrala gräsvärdessatse
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
INGENJÖRSMATEMATISK FORMELSAMLING
Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
a VEKTORRUMMET R, - dimesioella etorer.. STANDARDBASEN i R. LINJÄRA KOMBINATIONER AV VEKTORER LINJÄRT BEROENDE OCH OBEROENDE VEKTORER LINJÄRT HÖLJE (LINJÄRT SPAN) -----------------------------------------------------------------
Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;
Inklusion och exklusion Dennie G 2003
Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras
TENTAMEN Datum: 16 okt 09
TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
Periodisk summa av sinusar
1 Periodis sua av sinusar Låt x( t) = Asin( ω a t + α ) + Bsin( ω b t + β ). O ω a! x( t) är T-periodis, dvs. x( t) = x( t +T ) ω b ed T = π ω 1, där ω 1 = SGD( ω a,ω ) Största Geensaa Delare (SGD) b =
Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2
Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5
Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad
Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska
Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna
UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt