Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln"

Transkript

1 Föeäsig 4 5 Sfäisk kökig och att mäta de; sag fome De sfäiska ta ä de viktigaste tpe av ta iom optike. Det ä de atuiga fom två to få om de gids mot vaada och toa på de aa festa ise ka behadas som sfäiska ä vi äka och ita i dea kus. E sfäisk ta ä e de av e sfä ee ett kot, som t.ex. e såpbubba. Om ma täke sig att vi skä av ea sida av e såpbubba så skue vi få e sfäiskt kökt ta, så som visas i figue eda. Hä betecka vi sfäes (såpbubbas) mittpukt med C och dess adie med. Fö de sfäiska ta iebä detta att C ä tas kökigscetum och ä tas kökigsadie (som ages i mete [m]). Det ä också vaigt att taa om tas kökig, R = 1/ (ages i 1/mete [m -1 ]). Figue eda visa exempe på oika to med oika kökigsadie och kökig. E pa ta ha e oädigt åg kökigsadie ( = m) och o kökig (R = 0 m -1 ). E kaftigt kökt sfäisk ta (som fås få e ite sfä) ha e kot kökigsadie och e sto kökig. Det kaaktäistiska fö e sfäisk ta ä att omae (iktige vikeät mot ta) atid gå geom tas kökigscetum, C, obeoede av va på ta vi titta. Fö e pa ta, dä omaea i oika pukte på ta ä paaea med vaada, gäe egetige samma sak, me kökigscetum igge i oädighete. (se figue bedvid, omaea ti toa ä itade som steckade ije). 1

2 Sag fome Oftast vet ma ite va ta ha sitt kökigscetum och ka däfö ite mäta dess kökigsadie diekt. Det vaigaste sättet att mäta tas kökigsadie ä istäet att mäta tas så kaade sag (egeskt od fö häg?). Figue hä eda visa e sfäisk ta som e de av e sfä med kökigscetum C. Med beteckiga få figue ä tas kökigsadie (R = 1/ ä tas kökig), ä tas höjd (hava diamete) och s ä tas sag. Om ma mäte s och (fig i Optics visa hu mätige ka utföas) ka ma aväda de gåmakeade tiage fö att beäka geom oika vaiate av sag-fome: s s R s s R Häedig av sag-fome m.h.a. Pthagoas sats i tiage ENC: s s s s s s s om s ä ite s Sag-fome ä e appoximatio och föutsätte att s ä itet i föhåade ti kökigsadie. Det gäe i de aa festa fa eftesom tas kökigsadie,, omat ä mcket äge ä tas hava diamete,. Exempe: = 1 m och = 5 cm = 0,05 m ge s = 1,5 mm. Vågfotskökig Ljusets utbedig ka beskivas med hjäp av både ståa och vågfote (dä vågfote ä vikeät mot ståaa). Ljuset som komme få e puktkäa ha sfäiska vågfote (se figue hä bedvid). Pecis som fö sfäiska to ka ma beskiva fome på e sfäisk vågfot med dess kökig, 1 Hä ä avstådet i mete få pukte som juset komme ifå ti det pa dä ma mäte vågfotskökige. Kökiges väde beo atså på hu ågt bot juskäa ä; äa puktkäa ä vågfotskökige sto och så miska de successivt ju

3 äge bot få käa ma ä. Vågfotskökige bi o ä käa igge oädigt ågt bot (pa vågfot). Vågfotskökig vid btig i pa gästa Nä e vågfot täffa e optisk gästa, komme dess kökig att ädas. Figue eda visa ett sådat exempe fö e pa ta. ä btigsidex föe ta och ä btigsidex efte ta. I detta fa ä stöe ä ( >) viket iebä att juset gå sabbae i ä i. Om gästa ite hade fuits hade ståkippet få pukte B (objektet) haft de vågfot som i figue gå geom M. Me eftesom juset fädas sabbae i komme mitte av vågfote (som täffa gästa föst) att ha huit e äge stäcka (fam ti M ) ä katea av vågfote å ta. De a vågfote efte ta komme atså att vaa me kökt och se ut att komma ifå pukte B (bide) istäet. I figue ä de föägda ståaa föe och efte steckade fö att makea att de baa visa ståaas iktig, me att ståaa ite gå dä på iktigt. Resoemaget ova ka också beskivas i fome. Eftesom det ta ika åg tid fö juset att gå stäcka AM i btigsidex som att gå AM i så ä: AM v AM v AM AM sag fome fö vågfotea bi: AM s R och AM s R dä R ä vågfotes kökig föe btig i ta (R=1/) och R ä vågfotes kökig efte btig (R =1/ ). Detta ge: AM AM s s R R R R (Samma som tidigae!) Veges Vågfotskökige mutipiceat med btigsidex, R=/, kaas fö ståkippets veges och buka beteckas med L. Uttckt i vegese bi fome fö btig i pa gästa: L L dä L och L L ä atså vegese hos ifaade jus (föe btig i ta) och L ä vegese på juset efte btig i ta. Ehete fö veges ä diopti [D] och motsvaa att ma age och i mete. 3

4 Någa exempe: 4 Veges 3 1 L = -0,667 D Veges L =10 D 0,1 (Ude teckekovetioe eda ska vi titta på aedige ti miustecket i fösta exempet) Eftesom btigsidex fö uft ä 1,0 komme vegese på juset i uft att vaa samma sak som vågfotskökige. Som fome L L visa så äda e pa gästa ite jusets veges, tots att de äda vågfotskökige. Däemot äda kökta to jusets veges. Paaxia appoximatio I picip ka ma ta eda på hu juset popagea efte oika gästo geom att föja e massa ståa med hjäp av btigsage ( sii sii, se figue på ästa sida), s.k. a tacig. Detta ta dock åg tid och gös omat med dato. Ofta ä dock vikaa små så att ma ka äka i s.k. paaxia appoximatio. Det iebä att vi aväde e föekad fom av btigsage, i i, som gäe fö små vika i och i. Vi aväde äve att höjdea ä små så att de appoximativa sag-fomea ova gäe fö tas kökig. I paaxia appoximatio ata vi atså att fö aa ifas-, btigs- och ståvika mot axe gäe: si ta Obsevea att i paaxia appoximatio måste vikaa ages i adiae!* Paaxiaa appoximatioe gäe fö avbidig med ståa som komme i med ite vike mot tas oma, d.v.s. aa ståa ska gå äa sstemets optiska axe; tas apetu (öppig) få ite vaa fö sto och objektspukte få ite igga fö ågt bot få optiska axe (se figu på ästa sida). De optiska axe gå geom tas kökigscetum (mitt igeom ta). E ståe som gå ägs med de optiska axe komme däfö ite att äda iktig ä de passea ta (eftesom de komme i ägs med tas oma, d.v.s. ha ifasvike i = 0). Om det fis fea to ä de optiska axe ije geom aa tos kökigscetum. Sstem som på detta sätt ha aa kökigsceta på gemesam axe kaas fö ceteade och smmetiska. * Vi aväde hä de s.k. små-vike-appoximatioe, som iebä att sius och tages fö e vike komme att vaa vädigt äa vikes ege stoek agive i adiae. Att si i tai i, ka ma föstå geom att titta på seieutveckige fö sius och tages: i i sii i... och i i tai i... ä i ä itet, ä i 3 och i 5 så små att vi ka fösumma dem. Obsevea att seieutveckige av cosius se aouda ut: i i cosi 1... om 4 vike i ä vädigt ite så bi atså cosi 1. 4

5 , = btigsidex föe / efte ta C= kökigscetum B1= objektspukt öve optiska axe B= objektspukt på optiska axe B = bide av B i, i = ståes vike föe / efte btig Tabe 3.1 på sida 64 i Optics age hu stot fe de paaxiaa appoximatioe ge vid oika ifasvika, ju stöe vike desto stöe fe, t.ex. ge e vike i=10 (=0,174 adiae) ett fe på 1%, viket ofta ases vaa appoximatioes gäs. Nä vikaa bi stoa komme ståaa ite äge att samas ti e bidpukt och bide bi suddig p.g.a. abeatioe (se figu.10, 3.10 och 3.11 i Optics). Detta hida dock ite att ma aväde paaxia appoximatioe äve ä vikaa ä stöe fö att få ugefäigt äge och stoek på bide och seda utfö ma tteigae beäkiga fö att bedöma bides kvaitet. Teckekovetioe Fö att kua äka på jusets btig måste vi kua skija på avståd som ä föe och efte ta och öve och ude optiska axe. Detta gös med hjäp av positiva och egativa stäcko, dä tecket age iktige.* Positiva stäcko ä få väste ti höge och eifå och upp. Vi ita atid juset ikommade ifå väste, så att det ifaade jusets iktig ä positiv. Figue eda visa ett exempe fö btig i sfäisk gästa, hä aväde vi tas vetex, A, (vetex defiieas som pukte dä optiska axe skä ta) som mittpukt (oigo) och aa stäcko mäts ifå A. Vi age t.ex. objektsavstådet,, som avstådet få vetex, A, ti objektet, B, som i figue ä e egativ stäcka eftesom de mäts få höge ti väste. Bidavstådet,, ä avstådet få vetex ti bide, B, och ä hä eda e positiv stäcka. Avståd vikeät mot axe mäts få optiska axe, positivt om uppåt och egativt om edåt. * Det fis äve teckekovetioe fö vika, me eftesom vi aväde dem så säa äms det edast som e fotot hä. Vika ä positiva motus och egativ ä de gå medus, i Optics ages vike få ståe ti optisk axe och få oma ti ståe (se figu 3.1). 5

6 Teckekovetioe gäe äve kökigsadie på to och vågfote; kökigsadie mäts få ta / vågfote ti kökigscetum. Detta iebä att de kovexa ta i figue på föa sida ha e positiv kökig, R. Fö vågfote gäe motsvaade att: Negativ veges = diveget ståkippe (juset spids ut ifå e pukt, exempe 1 på sid 4) Positiv veges = koveget ståkippe (juset samas ihop mot e pukt, exempe på sid 4) Exempe på paaxia avbidig i pa gästa: (t.ex. titta på ågot som igge ude vatteta) = 4/3 = 1 = -67 cm = -0,67 m fö att hitta bidäget, B, ka vi aväda L L med L och L 4/3 L,0 D 0,67 m L L,0 D 1 0,50 m L,0 D Detta ä e s.k. vitue bid eftesom ståaa ite möts i B på iktigt uta baa se ut att ha mötts dä (steckade ije). Paaxia btig och avbidig i sfäisk gästa Vi ska u aväda paaxia appoximatio fö att ta fam e fome fö hu jus bts i sfäiska to. I figue eda ä objektet B med ifasvike i och bide B med btigsvike i utsatta tisammas med hjäpvikaa u, u och a.* * Fö att udeätta häedige ä figue itad så att aa vika och stäcko ä positiva (om objektet hade vait eet och egat famfö ta hade och vike u vait egativa). 6

7 Vi böja med att ta fam ett föhåade mea vikaa. Eftesom vike a i figue ä e ttevike ti både tiage DCB och tiage DCB så få vi: i a u i a u Nu ka vi aväda de paaxiaa btigsage och få: i i a u a u u u a Fö att skiva detta uttck i avståd istäet fö i vika behöve vi uttck fö hjäpvikaa u, u och a. Vi ata föstås att aa vika ä små. Vi ata också att vi ka fösumma tas sag (d.v.s. avstådet mea vetex, A, och pukte N atas vaa mcket itet) så att avståde, och. Då få vi: u ta u u ta u ata a Dessa te vika isatta i de paaxiaa btigsage ge: Hä ka vi fökota med på båda sido så att uttcket bi obeoede av vike höjd ståe täffa ta på (obeoede av ). Det iebä att aa ståa som föst va på väg mot det vituea objektet B komme att äda iktig i ta så att de istäet samas i pukte B. B bi atså e bid av B och vi ha fått avbidigsfome fö sfäisk gästa: Uttckt i vegese ka dea avbidigsfome skivas som L L R R. Uttcket age hu mcket jusets veges ädas vid btig i ta. Vi ifö beteckige F fö det: F R och kaa F fö tas btkaft (tas stka) som ages i dioptie [D]. Btkafte ä positiv fö to som tedea att ge koveget jus (som sama juset) och egativ fö to som ge diveget jus (som spide juset). Paa to äda ite jusets veges och ha däfö btkafte 0 D. 7

8 Sammafattigsvis ka avbidigsfome fö sfäisk gästa skivas som: L L F Kuses viktigaste fome! med bidveges, objektsveges och btkaft i dioptie. Fome se ikada ut äve fö spega, ise och kompexa optiska sstem, me ma aväde oika uttck fö att äka ut btkafte. Äu så äge ha vi tagit fam btkafte fö e ta: Fsfäisk ta F pa ta 0 D (e pa ta ha oädig kökigsadie, = m, R = 0 D) Fokapukte och fokaägd Avbidigsfome iebä att fö vaje objektspukt B fis e uik bidpukt B. Eftesom juset föje samma väg obeoede av viket hå det gå åt gäe äve det omväda, d.v.s. ett objekt vid B ge e bid vid B. B och B kaas däfö fö kojugat ee kojugatpukte. Det fis två kojugatpukte som ä speciet viktiga: Nä objektet på axe igge oädigt ågt bot, hama bide i bake fokapukte (fokus, bäpukt), F : Avstådet få tas vetex ti F kaas fö bake fokaägde(bävidde), f. Objekt i oädighete, = m, iebä paaet jus i, L = 0 D, och bid i F. Avbidigsfome ge då: L F och med L och f fås f F f F Övesta bide visa e ta med positiv btkaft (F>0), viket iebä att de bake fokapukte igge bakom ta (f >0). Fö ett objekt i oädighete bidas däfö e ee bid i F. De ede bide visa e ta med egativ btkaft (F<0), viket iebä att de bake fokapukte igge famfö ta (f <0). Fö ett objekt i oädighete bidas däfö e vitue bid i F. 8

9 Nä bide på axe hama oädigt ågt bot, igge objektet i fäme fokapukte (fokus, bäpukt), F: Avstådet få tas vetex ti F kaas fö fäme fokaägde (bävidde), f. Bid i oädighete, = m, iebä paaet jus ut, L = 0 D, och objekt i F. Avbidigsfome ge då: L F och med L och f fås f F f F Övesta bide visa e ta med positiv btkaft (F>0), viket iebä att de fäme fokapukte igge famfö ta (f<0). Fö e bid i oädighete kävs däfö ett eet objekt i F. De ede bide visa e ta med egativ btkaft (F<0), viket iebä att de fäme fokapukte igge bakom ta (f>0). Fö e bid i oädighete kävs däfö ett vituet objekt i F. Sambade fö bake och fäme fokaägd beo atså på sstemets btkaft, F, och btigsidex bakom och föe sstemet, och : f f viket ge föhåadet f F F f Fokapuktea ä ti sto tta äve ä objekt ee bid ite igge dä. Vid ståkostuktio, ä ma ska föja oika ståa få objektet, komme e ståe som fae i paaet med optiska axe att btas ti F och e ståe som komme i geom (ee sikta mot) F komme ut paaet med optiska axe. Exempe på avbidig på avbiig i sfäisk gästa E fisk befie sig vid bakkate av e vattefd sfäisk skå med adie dm. Va hama bide? Givet: = 4/3, = 1 Bid = -0, m = -0,4 m. Objekt c Beäkiga: F = ( -)/ = 1,66 D L = / = -3,33 D L = L + F = -1,67 D = -0,6 m 9

Föreläsning 6 (kap i Optics)

Föreläsning 6 (kap i Optics) 23 öeäsig 6 (kap 3.7-3.10 i Optics) Avbidig i säisk gäsyta Hittis ha vi baa avbidat puktomiga objekt som igge på de optiska axe, me de esta objekt ha e stoek d.v.s. bestå av me ä e pukt. Otast ita ma objektet

Läs mer

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h. öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede

Läs mer

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Finansiell ekonomi Föreläsning 3

Finansiell ekonomi Föreläsning 3 Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,

Läs mer

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna. Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:

Läs mer

Arbetsmiljöuppföljning IFO-FH enhet: Barn- och familjeenheten

Arbetsmiljöuppföljning IFO-FH enhet: Barn- och familjeenheten Abetsmiljöuppföljig 2014 IFO-FH ehet: Ba- och familjeehete Iehållsföteckig 1 Uppföljig vå... 3 1.1 Abetsskado, otillåte påveka och tillbud... 3 1.2 Sjukfåvao... 3 1.3 Lågtidsfiska... 3 1.4 Abetsmiljöod

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige. Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa

Läs mer

REDOVISNINGSUPPGIFT I MEKANIK

REDOVISNINGSUPPGIFT I MEKANIK Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken

Läs mer

CONSUMER PAYMENT REPORT SWEDEN

CONSUMER PAYMENT REPORT SWEDEN CONSUMER PAYMENT REPORT SWEDEN Sveige I kothet De oa majoitete av sveskaa betala sia äkiga i tid och iämme i att äkiga ska betalas i tid. Både ude 01 och 01 to sveskaa att abetslöshet och att spedea fö

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Övning 7 Diffraktion och upplösning

Övning 7 Diffraktion och upplösning Övning 7 Diffraktion och uppösning Diffraktionsbegränsade system Om man tittar på ett objekt genom ett perfekt (aberrationsfritt) optiskt system avgörs hur små saker man kan se av diffraktionen i insen.

Läs mer

Föreläsning 2. Signalbehandling i multimedia ETI265. Kapitel 2. Faltning Impulssvar Differensekvationer Korrelationsfunktioner

Föreläsning 2. Signalbehandling i multimedia ETI265. Kapitel 2. Faltning Impulssvar Differensekvationer Korrelationsfunktioner Sigabeadig i mutimedia - ETI65 Föeäsig Sigabeadig i mutimedia ETI65 Kapite Fatig Impussva Diffeesevatioe Koeatiosfutioe LTH 5 Nedeo Gbic mt. få Begt Madesso Depatmet of Eectica ad Ifomatio Tecoog Lud Uivesit

Läs mer

Med frihet att välja. Centerpartiet i Östergötland. Östergötland ska vara en grön framtidsregion!

Med frihet att välja. Centerpartiet i Östergötland. Östergötland ska vara en grön framtidsregion! Östegötlad ska vaa e gö famtidsegio! Fö e göae famtid Med fihet att välja Det ä vi som vill abeta fö Östegötlads bästa i iksdage! Rösta på Cetepatiet de 19 septembe! Dia ladstigskadidate få Cetepatiet:

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Digital signalbehandling Alternativa sätt att se på faltning

Digital signalbehandling Alternativa sätt att se på faltning Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Några begrepp 2011-04-28. Hur kan kvalificerad rådgivning tillämpas i tandvården. Beteendeförändring. Patientcentrerat Beteende

Några begrepp 2011-04-28. Hur kan kvalificerad rådgivning tillämpas i tandvården. Beteendeförändring. Patientcentrerat Beteende 0048 Hu ka kvalificead ådgivig tillämpa i tadvåde PhD, leg. tadhygieit, Högkola Dalaa och Folktadvåde Uppala bjo@du.e Någa begepp Patietceteat Beteede Beteedeföädig Mikig av det om ä oökat Tilläga ig ett

Läs mer

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions) - 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig) 1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Föreläsning 10: Kombinatorik

Föreläsning 10: Kombinatorik DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem

V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem Institutionen fö Meani Nichoas paidis te: 79 748 epost: nap@ech.th.se hesida: http://www.ech.th.se/~nap/ S4, 76 entaen i S4 Meani II, 76 S! Inga hjäpede. Lyca ti! Pobe ) ) y d x ey e ex en ed ängden otea

Läs mer

Fakta om plast i havet

Fakta om plast i havet SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om att vi mäiskor måste fudera över all plast som vi aväder. Vad häder med plaste är vi har avät de? I boke får vi lära oss varför plaste är farlig

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Sebastian det är jag det! eller Hut Hut den Ovala bollen

Sebastian det är jag det! eller Hut Hut den Ovala bollen i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

Formelsamling. i= 1. f x. Andelar, medelvärde, standardavvikelse, varians, median. p = Stickprovsandel. Populationsandel

Formelsamling. i= 1. f x. Andelar, medelvärde, standardavvikelse, varians, median. p = Stickprovsandel. Populationsandel fo m e lam l Fomelaml Adela, medeläde, tadadakele, aa, meda Stckpoadel atal p ehete tckpoet med tudead tckpotolek eekap Populatoadel atal ehete populatoe med tudead populatotolek eekap Stckpomedeläde beäkat

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8

Läs mer

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad 1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00. Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13. HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

INGENJÖRSMATEMATISK FORMELSAMLING

INGENJÖRSMATEMATISK FORMELSAMLING Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede.

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede. VÄSTIA DUSJROM Produsert for bevegelses hemmede, og er det mest fleksible og variasjorike alterativ på markedet. Tilpasigs-mulighetee er este ubegresede. HML Hjelpemiddel-leveradøre AS Braderudv. 90, 2015

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Övning 3 - Kapitel 35

Övning 3 - Kapitel 35 Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten! 14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

Arbetsmiljöuppföljning IFO-FH enhet: Resursenheten

Arbetsmiljöuppföljning IFO-FH enhet: Resursenheten Arbetsmiljöuppföljig 2012 IFO-FH ehet: Resursehete Iehållsförteckig 1 Uppföljig vår... 3 1.1 Arbetsskad, otillåte påverka och tillbud... 3 1.2 Arbetsmiljöroder (fysiska)... 3 1.2.1 Sjukfråvaro... 3 1.3

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar. Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Arbetsmiljöuppföljning IFO-FH enhet: Boendeenheten

Arbetsmiljöuppföljning IFO-FH enhet: Boendeenheten Arbetsmiljöuppföljig 2013 IFO-FH ehet: Boedeehete Iehållsförteckig 1 Uppföljig vår... 3 1.1 Arbetsskad, otillåte påverka och tillbud... 3 1.2 Sjukfråvaro... 3 1.3 Lågtidsfriska... 3 1.4 Arbetsmiljörod

Läs mer

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Enköpings Biodlae c/o Mattias Blixt Kykvägen 3 749 52 GRILLBY Jounalnumme 2012-1185 E-postadess mattias.blixt@enviotaine.com B.Uppgifte om kontaktpesonen Namn

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Övning 8 Diffraktion och upplösning

Övning 8 Diffraktion och upplösning Övning 8 Diraktion och uppösning Diraktionsbegränsade system Om man tittar på ett objekt genom ett perekt (aberrationsritt) optiskt system avgörs hur små saker man kan se av diraktionen i insen. n θ mi

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer