Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system
|
|
- Hanna Elsa Lindgren
- för 6 år sedan
- Visningar:
Transkript
1 Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om öveföigsfukioe Vad ha vi gjo? Vi mis få idigae a vid seiekopplig av sysem så ka vi få de oala öveföigsfukioe geom a muliplicea ihop de vå sysemes öveföigsfukioe. ä ha vi gå å ada hålle och dela upp vå sysem i vå seiekopplade sysem. Vi se a de fösa syseme ä asvesell meda de ada ä e ekusiv. Vi ka olka ekvaioe med hjälp av Figu B6... Bilaga 6. sida 6.. q[] Figu B6.. Tidsdiske sysem på uppdelad fom,, blockschema
2 Om vi gå illbaka ill diffeesekvaio så skall dea u beskiva vå sycke sepaaa, seiekopplade sysem och vi få dela upp ekvaioe och ecka de som e ekvaiossysem q y [ ] x[ ] x[ ] x[ ] [ ] q[ ] y[ ] y[ ] Vi mis också få idigae a vid seiekopplig av sysem spelade odige mella syseme ige oll. Vi ka allså skiva öveföigsfukioe som ( ) som ge Figu B6..3. q[] Figu B6..3 Tidsdiske sysem på omväd, uppdelad fom,, blockschema vilke dea gåg ge ekvaiossyseme q y [ ] x[ ] q[ ] q[ ] [ ] q[ ] q[ ] q[ ] Vi se u både blockschema och ekvaiossysem a båda beäkigaa iehålle skalig och summaio av samma födöjda sampel, q [ ] och q[ ]. De fis ige aledig a laga dessa ideiska följde i vå paallella mieskedjo och vi ka esäa dom med e eda kedja. Dea sys ie i ekvaiossyseme me ge de föeklade blockschema i Figu B6..4. Figu B6..4 Tidsdiske sysem på föeklad, omväd, kaoisk fom,, blockschema Bilaga 6. sida 6..
3 Vi ha allså visa a vi ka bygga upp syseme på e omväd fom som gö a vi ka spaa i hälfe av våa miescelle. Dea fom som ge de misa aale blockschemaeleme kallas kaoisk fom. Ma ise ua vidae a vå esoemag ie ä begäsa ill sysem av gadal vå ua de gälle geeell fö alla gadal. Bilaga 6. sida 6..3
4 Bilaga 6. Exempel: Realisea uycke, 9 4, 7, 8 3, , 6, 944, 7,, 384, 9 med hjälp av seiekopplade adagadsläka. Lösig: Vi ka bya u fö a få, 9, 7, 8, 49, 6, u vilke vi ka ecka diffeesekvaioe y 3 944,, ,, 9 [] x[], 9 x[ ], 8 x[ ], 6 x[ 3] 944, x[ 4] [ ],7 y[ ],49 y[ ], y[ 3],384 y[ ],7 x 4 4 [ ],9 y Lägg mäke ill de ombya ecke på de ekusiva emea. Få dea uyck ka vi ia blockschema i Figu B6... -,9,8 -,6 -,7 -,49 -,,944 -,384 -,7 -,9 Figu B6.. Tidsdiske sysem på gudfom,,, blockschema Vi se a uycke ä av udda gadal (fem) vilke beyde a vi få dela upp de i vå adagadsläka och e fösagadaläk. Vi klaa ie av a mauell göa dea uppdelig ua vi få a ågo maemaikpogam ill hjälp. Vi ha avä Malab och få som esula Bilaga 6. sida 6..
5 ,9,8,8,64,6,36,7,49,6,8 som vi ka ia som blockschema i Figu B6...,8 -,9 -,7,6 Z -,8 - -,6 -,64,8 -,49,36 Figu B6.. Tidsdiske sysem som seiekopplade biquadsekioe,, blockschema Lägg åe mäke ill ecke på de ekusiva emea. I e pakisk applikaio ä de ie uppeba i vilke odig sekioea skall komma och vilke äljae som skall kombieas med vilke ämae. De beo på vå målsysems egeskape, ex fixal elle flyal, odlägd ec. Bilaga 6. sida 6..
6 Bilaga 6.3 Exempel: Dela upp uycke få Bilaga 6., 9 4, 7, 8 3, , 6, 944, 7,, 384, 9 i paallellkopplade adagadsläka. Lösig: Vå uspugsekvaio ka som i Bilaga 6. ias som blockschema i Figu B ,9,8 -,6 -,7 -,49 -,,944 -,384 -,7 -,9 Figu B6.3. Tidsdiske sysem på gudfom,, blockschema Vi se a uycke ä av udda gadal (fem) vilke beyde a vi få dela upp de i vå adagadsläka och e fösagadsläk. A äljae ha samma gadal som ämae lede dessuom ill a vi få e e eell em i öveföigsfukioe. Ie helle hä klaa vi av a göa dea uppdelig fö had ua vi få a ågo maemaikpogam ill hjälp. Vi ha åe avä Malab vilke i dea fall ie ä så ekel som i seiekoppligsfalle efesom pogamme saka fukioe fö a diek a fam paallellkopplade adagadsläka, ågo som fis fö seiekopplade läka. Dea bis fis yvä i de flesa maemaikpogam. Lie maipulaio ge, 8, 64, 377, 47, 8, 64, 7, 49, 443, 8 Lägg mäke ill a vi få e e eell em som komme a fias med om äljae gadal ä lika so som ämaes, skulle äljaes gadal vaa söe ä ämaes så skulle vi få fle eme uafö kvoe. a ex äljae vå seg höge gadal ä ämae så få vi emea Bilaga 6.3 sida 6.3.
7 A B C. De högsa gadal som fis med i dea uyck bli lika med de gadal som skilje mella äljae och ämae. Sysem med höge gadal i äljae ä i ämae ä dock ie kausala. Lägg äve mäke ill a i de adagads- och fösagadsuyck som summeas ha äljae läge gadal ä ämae. Vå file ka ias som blockschema i Figu B6.3..,8 Lägg åe mäke ill de ekusiva emeas ecke.,8 -,64,64 -,377 -,7,47 -,49 -,443 -,8 Figu B6.3. Tidsdiske sysem som paallellkopplade biquadsekioe,, blockschema Bilaga 6.3 sida 6.3.
8 Bilaga 6.3 sida 6.3.3
6 Strukturer hos tidsdiskreta system
6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
Programmering Emme-makro rvinst_ic.mac version 2
Uppdragsr: 10109320 2008-08-27 Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM
Matematisk statistik
Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls
KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:
Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn
Kvinnors arbetsmiljö. Rapport 2012:11. Tillsynsaktivitet 2012 inom regeringsuppdraget om kvinnors arbetsmiljö. Delrapport
Kviors arbesmiljö Tillsysakivie 12 iom regerigsuppdrage om kviors arbesmiljö Delrappor Rappor 12:11 12-5-9 1 (9) Ehee för mäiska och omgivig Chrisia Josso, 8-73 94 18 arbesmiljoverke@av.se Delrappor Tillsysakivie
1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill
2009-11-20. Prognoser
29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska
Särskild utbildning för vuxna
Säskild ubildning fö vuxna I KATRINEHOLM OCH VINGÅKER Kunskape och fädighee fö ETT GOTT LIV www.viadidak.se Telefon: 0150-48 80 90, 0151-193 00 E-pos: info@viadidak.se Viadidak ä en gemensam fövalning
Finansiell ekonomi Föreläsning 2
Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Finansiell ekonomi Föreläsning 3
Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen
gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.
Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
fermacell Brandskydd Brandskydd med fermacell AESTUVER och fermacell Firepanel A1
fermacell Bradskydd Bradskydd med fermacell ESTUVER och fermacell Firepael 1 2 Bradiklädad av balkar och pelare med fermacell ESTUVER Skivas uppbyggad fermacell ESTUVER skiva är illverkad av sad, ceme,
KURV- OCH YTAPPROXIMATION MED POLYNOM
KURV- OCH YTAPPROXIMATION MED POLYNOM Magus Bodesso Isiuioe för Daaveeskap 999-02-04, 200-02-0 (red), 2003-02-05 (red) Allmä om kurvapproximaio med polyom Dea papper ersäer framsällige i HB: 35-354, FvD:
Pingsteld över Maramba, Zambia
Nyhesbrev Nr 10 2014 Jesus är desamme i går och idag och i evighe. (Hebr. 13:8) Pigseld över Maramba, Zambia Maramba är e kåksad srax uaför sade Livigsoe i Zambia. I dea yhesbrev vill jag rapporera frå
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
1. Definiera i en figur summan av två vektorer a och b. Visa i samma figur att a + b = b + a. b får skrivas som en determinant.
Teoifågo Fya av edasåede eiofya fågo ugö eoidele av eame. Va oc e av de vå koollskivigaa beså av sex fågo få de edasåede. 1. Defiiea i e figu summa av vå vekoe a oc b. Visa i samma figu a a + b = b + a..
E I T. Efficient & Integrated Transport. EIT - Efficient & Integrated Transport Processes. Projektkonferens
EIT - Efficie & Iegraed Trapor FFI Traporeffekivie i Projekkofere 2011-0-1 Se Lidgre, Odee Swede 1 Måläig och bakgrud EIT-projeke hadlar om hur rapor/logiikföreag kommuicerar med ia kuder (B2B-relaioer).
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret
Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Sebastian det är jag det! eller Hut Hut den Ovala bollen
i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god
Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006
M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
a utsöndring b upptagning c matspjälkning d cirkulation
I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl
Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a
Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)
B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä
FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.
Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad
1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade
3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall
Sigaler och sstem i tidsplaet. Skissa följade sigalers tidsförlopp i lämpligt tidsitervall a) 0 6 [ ] b) [ ] c) 07 [ ] 0 [ ] d) u [ ] e) 06u[ ] u[ ] [ ] f) r [ ] 0 r[ ] r[ ] r[ 6] 0 r[ 8] g) 08 cos π h)
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
CONSUMER PAYMENT REPORT SWEDEN
CONSUMER PAYMENT REPORT SWEDEN Sveige I kothet De oa majoitete av sveskaa betala sia äkiga i tid och iämme i att äkiga ska betalas i tid. Både ude 01 och 01 to sveskaa att abetslöshet och att spedea fö
Försöket med trängselskatt
STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då
Vi betygsätter årets skatteprogram
Vi beygsäer åres skaeprogram Tycker du a de är svår a deklarera? Då ka du få hjälp. Här graskar och beygsäer Privaa Affärer markades samliga skaeprogram. För de flesa sveskar är deklaraioe umera e lä mach.
( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =
gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:
Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga
Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha
REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Fakta om plast i havet
SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om att vi mäiskor måste fudera över all plast som vi aväder. Vad häder med plaste är vi har avät de? I boke får vi lära oss varför plaste är farlig
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.
1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och
Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln
Föeäsig 4 5 Sfäisk kökig och att mäta de; sag fome De sfäiska ta ä de viktigaste tpe av ta iom optike. Det ä de atuiga fom två to få om de gids mot vaada och toa på de aa festa ise ka behadas som sfäiska
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.
öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede
Med frihet att välja. Centerpartiet i Östergötland. Östergötland ska vara en grön framtidsregion!
Östegötlad ska vaa e gö famtidsegio! Fö e göae famtid Med fihet att välja Det ä vi som vill abeta fö Östegötlads bästa i iksdage! Rösta på Cetepatiet de 19 septembe! Dia ladstigskadidate få Cetepatiet:
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Systemdesign fortsättningskurs
Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Hammar (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 1-2 3-4 5-6
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Fakta om Zara Larsson
SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om artiste och femiiste Zara Larsso. Vi får lära oss mer om Zaras liv, hur och var ho växte upp, är ho bestämde sig för att ho ville bli sågerska
det bästa sättet för e n författare att tala är a tt skriva
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 b e a h d g e a c g e f b d d c b f h d h b a h e c f d g b a c a d f
Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Skogshydda (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? Atal svarade: 21 0% 10% 1 20% 2 30% 3 40% 4 50% 5 1-2 19%
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
MARKNADSPLAN Kungälvs kommun 2010-2014
MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,
Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25
Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om
8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Föreläsning F3 Patrik Eriksson 2000
Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12
Sigal- oc Bildbeadlig FÖELÄSNING Korrelaio (D) Korskorrelaio (ofa kalla bara korrelaio) Auokorrelaio oc effekspekrum Brus Lijära ssem LTI-ssem (Lijär idsivaria ssem) Differeial- oc differes-ekvaioer (kursiv)
Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Visst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r
Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom
LINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Några begrepp 2011-04-28. Hur kan kvalificerad rådgivning tillämpas i tandvården. Beteendeförändring. Patientcentrerat Beteende
0048 Hu ka kvalificead ådgivig tillämpa i tadvåde PhD, leg. tadhygieit, Högkola Dalaa och Folktadvåde Uppala bjo@du.e Någa begepp Patietceteat Beteede Beteedeföädig Mikig av det om ä oökat Tilläga ig ett
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.