Föreläsning 2. Signalbehandling i multimedia ETI265. Kapitel 2. Faltning Impulssvar Differensekvationer Korrelationsfunktioner
|
|
- Maja Bengtsson
- för 8 år sedan
- Visningar:
Transkript
1 Sigabeadig i mutimedia - ETI65 Föeäsig Sigabeadig i mutimedia ETI65 Kapite Fatig Impussva Diffeesevatioe Koeatiosfutioe LTH 5 Nedeo Gbic mt. få Begt Madesso Depatmet of Eectica ad Ifomatio Tecoog Lud Uivesit
2 Föeäsig Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Kapite Fatig sid 7-8 Det vitigaste sambad mea isiga oc utsiga aas fatig. Om vi vet e ets impussva a vi beäa utsigae fö e godtcig isiga. Vi utttja baa ijaitet oc tidsivaias LTI. impussva impus Defiitio Utsiga Isiga Detta sambad aas fatig oc ä de mest amägitiga fome i use
3 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Eempe på fatig Givet: Isiga oc impussva oc Sö: Utsiga fatig Lösig: Vi öse gafist geom att siva eigt ge baäges vite Mutipicea ompoetvis oc addea. Sifta se impussva åt öge
4 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Egesape fö fatig vaiga äeege gäe sid 8 Kommutativ, Associativ oc Distibutiv Iput - output = * Kasadoppig seieoppig * = * * dvs = * Paaeoppig dvs = + 4
5 5 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Defiitio av stabiitet sid 85. E ets BIBI-stabi bouded iput-bouded output om M medfö M Hu se det sambadet ut i impussvaet M M Dvs stabit om
6 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Diffeesevatio sid Amät: N a N b Eempe: FIR fite ge diet impussvaet Eempe: Fösta odiges IIR.5 Eempe: Ada odiges IIR.5.5 Fö IIR-fite måste vi ösa diffeesevatioe fö att bestämma impussvaet 6
7 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Vi öse fösta odiges diffeesevatio sid 94. a b Lös iteativt fö a a a b b b a a b b b b a a b a b a a oftast beo av statväde Impussva Om få vi b a fö Fö godtcig isiga beäa vi se utsigae med fatig Fö ösig av öge odiges ev väta vi tis vi a Z- tasfome ap. 7
8 8 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Eempe Givet: u u Sö: Lösig: Fatig ge om om om Sva: u
9 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Koeatiofutioe detemiistist sid 8. Vi avsuta apite med att defiiea oeatiosfutioe. Hu ia ä sigae? Autooeatiosfutio Kosoeatiosfutio Siv om som fatig 9
10 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Sambad mea oeatiosfutioe fö iput - output Autooeatiosfutio fö isigae Autooeatiosfutio fö utsigae ] [ dvs Kosoeatiosfutio fö utsigae-isiga Vi a ätt mäta upp ett oät sstem geom att aväda e isiga dvs om ä vad ti vitt bus, te ad. i Matab med Vi få då = *
11 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Eempe på oeatio, födöjig i GSM;-öveföig Siga föe GSM Siga efte GSM Kosoeatio
12 Digita sigabeadig, Istitutioe fö eeto- oc ifomatiostei Eempe på IIR-fite Ifiitive Impuse Respose Eempe: Beäig beåig på baoto beäig av äta på äta Givet: Beåig på otot å = Isättig e gåg pe å 5 % åig äta beäas e gåg pe å Sö. Lösig: Vad ä sadot efte,, 5, å Atuet sado=gammat sado*.5 + isättig =.5*- + Vi a ett åteoppat sstem, a sadot beo på såvä igåede sado gamma utsiga som på isättig isiga IIR-fite Iteativ ösig ge:.5 osv.5.5 ävi böjaspaa Iitiaest coditio etsi via Med jäp av z-tasfom a vi få e fome fö omme seae
Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln
Föeäsig 4 5 Sfäisk kökig och att mäta de; sag fome De sfäiska ta ä de viktigaste tpe av ta iom optike. Det ä de atuiga fom två to få om de gids mot vaada och toa på de aa festa ise ka behadas som sfäiska
Finansiell ekonomi Föreläsning 3
Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig
Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga
Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha
Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system
Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om
verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att
Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc
Föreläsning 6 (kap i Optics)
23 öeäsig 6 (kap 3.7-3.10 i Optics) Avbidig i säisk gäsyta Hittis ha vi baa avbidat puktomiga objekt som igge på de optiska axe, me de esta objekt ha e stoek d.v.s. bestå av me ä e pukt. Otast ita ma objektet
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade
Några begrepp 2011-04-28. Hur kan kvalificerad rådgivning tillämpas i tandvården. Beteendeförändring. Patientcentrerat Beteende
0048 Hu ka kvalificead ådgivig tillämpa i tadvåde PhD, leg. tadhygieit, Högkola Dalaa och Folktadvåde Uppala bjo@du.e Någa begepp Patietceteat Beteede Beteedeföädig Mikig av det om ä oökat Tilläga ig ett
LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
Skador bland äldre. Denna redovisning bygger på statistik ur patientregistret. Det är olyckor som medför att personen ifråga blir inlagd vid sjukhus.
Skao ban äe Denna eovisning bygge p statistik patientegistet. Det ä oycko som mefö att pesonen ifga bi inag vi sjkhs. Det innebä att en enast omfatta en e av en häso- och sjkv ee omsog som behövs fö att
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Att större akuta reparationer. Ansvarsfrihet fiir styrelsen
Åmöte Smtillighete Bkbdet 24 ktbe 2012 Plt :Håktpkl mtl 1 Vl v dtide ch eketee ii tämm Till dde vlde Mget Eic ch till eketee vlde Mgu Tte 2 Vl v juteigmä Till juteigmä vlde Åke Glud ch Cut Gutv 3 Mötet
Vårnatt. l l l l l l 2 4. f f f f 6 l 8 l l l l l 2 4 kz k s k k. l l l l l l 2 l l 4. k k k f k k k j kz kk k
Soro 1 Soro 2 Ato 1 Ato 2 Teor 1 Teor 2 Bss 1 Bss 2 Pio 1 Pio 2 G =6 Vårtt Keyed by Gör Westig Gor@WestigHisso.et No dymic or temo exressios! Icomete io otes! Wihem Stehmmr yr. Oscr Lewerti f f f f 6 8
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett
EXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterpolatio och approimatio av Elhoussaie Ifoudie 8 - No 5 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 69 STOCKHOLM Iterpolatio
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)
Finansiell ekonomi Föreläsning 2
Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid
13. DIKTÖRNS SÅNG. l l l l. a 2 2 ff f l. l l l l. a2 ff f l. l l l l. b 2 2f f f. k k k k k k k k
13. DIKTÖRNS SÅNG 70 a 2 2 ff f a2 ff f Ditörn: Ficor: b 2 2f f f Pirater: a 2 2 ff f b2f f f e e f n n J mz o Jag Jag är ett fö-re-dö-me för en ä-ta fö-re - ta - ga-re, en fö-re-bid för star-a - re som
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Tentamen i Kunskapsbaserade system, 5p, Data 3
Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska
Arbetsmiljöuppföljning IFO-FH enhet: Barn- och familjeenheten
Abetsmiljöuppföljig 2014 IFO-FH ehet: Ba- och familjeehete Iehållsföteckig 1 Uppföljig vå... 3 1.1 Abetsskado, otillåte påveka och tillbud... 3 1.2 Sjukfåvao... 3 1.3 Lågtidsfiska... 3 1.4 Abetsmiljöod
Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret
Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso
Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN
Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator
= (1 1) + (1 1) + (1 1) +... = = 0
TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
===================================================
min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Betong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater
Nvåmätg Betg Cemet Guv Pappe & Cellula Afalt Gu Kem Plat Läkemedel Lvmedel Avlpp & Vatte Vätk Pulve Sluy Flg Gaulate Nvåmätg fö pcedut Nvåktll fö: Övefylladkydd Batchktll Pduktmätg Lagektll Säkehetlam
EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET
EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe
Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y
Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback
z 0 0 a f LAPLACETRANSFORMEN Antag något xt dt Följaktligen existerar Fö 6, 7 & 8 - Laplacetransformanalys 1 (enl. grunddef.
Atag Fö 6, 7 & 8 - Laplacetasfomaalys LAPLACETRANSFORMEN R a S z T a f xt f 0 0 xt dt a f l q xt Låt ~x t xt e t, dä, såda att z ~x a f x t dt ågot z 0 0 Fölaktlge exstea x t (el. guddef.) Copyght Lasse
GODA MÖJLIGHETER. Lösvikt T3 2018
T3 2018 Lösvikt GODA MÖJLIGHETER info@hultenfosaljning.se det hä hände i din i samband med evideing v.37 byte vi alla etikette avdelning unde t3 skyltning halloween v.40 Bio fukt Ingediense: glukossiap,
AV SKÅP LB+S AV DISKBÄNK MOBIL SKRIVTAVLA 131 PL 48 PL UTSTÄLLNING 2 A123 UTSTÄLLNING 2 A123 SA1-G1 75 DISKBÄNK E+N E+N
ÅP + Å P I UTTI Ad + I I IVTA 3 P 48 P UTTI 2 A3 UTTI 2 A3 ATJÉ 2 A4 + 6 E 6 6 43 TYCUFT 8 I Å UTTI 42 CC - F A9 AT VETA A7 TTA VT ÅP 6 A3 A- T-F ÅP FA V A T- F V3-2 6 A--7 V 336 Ö A--7 V 348 Ö 3X 2X :
LE2 INVESTERINGSKALKYLERING
LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on
S i da 1 (13 ) A n k o m s tdatum 2016-05 - 31 T y r é n s AB Ut f ä r dad 2016-06 - 08 A le xa n d e r G i r on P r o j e kt Ka b el v e r k e t 6 B e s tnr 268949 P e t e r M y nd es B ac k e 16 118
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
Heureka Fysik 2, Utgåva 1:1
Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
===================================================
Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte
Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:
Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä
Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?
Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera
081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.
1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso
Mening med ditt liv G/H. o n G/H
=132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Fördjupningsrapport om simuleringar av bombkurvan med Bolins och Eriksson matematisk modell
1 Föjupningsappot o siuleinga av bobkuvan e Bolins och Eiksson ateatisk oell Av Peh Bjönbo Rappoten ge en bakgun so beskive Bolin och Eiksson (1959), speciellt eas ateatiska oell fö att siulea ängen aioaktiv
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.
öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.
Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på
R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on
S i da 1 (14 ) A n k o m s tdatum 2018-07 - 09 M R M K on s u l t AB Ut f ä r dad 2018-07 - 16 P e r S a mu el s s on T a v as tg a t a n 34 118 24 S to ck ho lm S w e d en P r o j e kt B e s tnr S p å
V.g. vänd! Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem
Institutionen fö Meani Nichoas paidis te: 79 748 epost: nap@ech.th.se hesida: http://www.ech.th.se/~nap/ S4, 76 entaen i S4 Meani II, 76 S! Inga hjäpede. Lyca ti! Pobe ) ) y d x ey e ex en ed ängden otea
Digital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
INGENJÖRSMATEMATISK FORMELSAMLING
Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
TATM79: Föreläsning 2 Absolutbelopp, olikheter och binomialkoefficienter
TATM79: Föreläsig Absolutbelopp, oliheter och biomialoefficieter Joha Thim augusti 018 1 Absolutbelopp Absolutbelopp Defiitio. För varje reellt x defiieras absolutbeloppet x eligt { x, x 0 x x, x < 0.
TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.
HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:
Databaser - Design och programmering. Databasdesign. Funktioner. Relationsmodellen. Relationsmodellen. Funktion = avbildning (mappning) Y=X 2
Databaser Desig och programmerig Relatiosmodelle Databasdesig Förstudie, behovsaalys defiitioer ER-modell -> relatiosmodell ycklar Relatiosmodelle Itroducerades av Edward Codd 1970 Mycket valig Stödjer
27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.
27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u
Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
BESIKTNINGSRAPPORT. Energideklaration. Björkekärr 5:17
Utgåva 1:1 2014-11-19 BESIKTNINGSRAPPORT Eergidearatio Böreärr 5:17 INDEPENDIA ENERGI AB SISJÖ KULLEGATA 8 421 32 VÄSTRA FRÖLUNDA TEL :031-712 98 00/08-446 22 00 FAX: 031-712 98 10 WWW.INDEPENDIA.SE ENERGIDEKLARATION
REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Surveysektionens årsmöte 20 oktober 2004.
uvesektonens åsmöte oktobe 4. åga aspekte på anals av suvedata av Lennat odbeg, CB ----------------------------------------------------------------- Anals av suve-data kan betda allt mölgt...tll eempel:
1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.
Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital
Analys av polynomfunktioner
Aals av polomfutioer Aals36 (Grudurs) Istuderigsuppgifter Dessa övigar är det tät du sa göra i aslutig till att du läser huvudtete. De flesta av övigara har, om ite lösigar, så i varje fall avisigar till
14 september, Föreläsning 5. Tillämpad linjär algebra
14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar
DN1240 numi12 1
F7 Ssem av ODE - iiialvärdesproblem Exises & edige Lipsciz Euler overges fel overgesordig Lösigssaror fasrum Sabilie äslige Högre ord. evaio ill försa ord. ssem Ruge-Kua-meoder seglägdsreglerig Sva evaioer
Binomialsatsen och lite kombinatorik
Biomialsatse och lite ombiatori Sammafattig Aders Källé MatematiCetrum LTH adersalle@gmail.com Här disuteras e del grudläggade ombiatori, som utgår ifrå biomialoefficieteras ombiatorisa betydelse. Vi härleder
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.
Vitare vinter med vitt kakel!
Vitare vinter med vitt kakel! Visst är det mysigt med en riktigt vit vinter? Det tycker i alla fall vi på Centro och firar det nya året med riktiga vrakpriser på vitt kakel i både blankt och matt! Blank
Linjer och plan (lösningar)
Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
LINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Operativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
Matlab: Inlämningsuppgift 2
Mtlb: Inläningsuppgift Uppgift : Dynisk däpning. Inledning I denn uppgift skll vi nlyse den dynisk däpningen v tvättskinen so vi studede i pojektet. Se igu nedn. Vi foule föst öelseekvtionen fö systeet
m a g a s i n n y h e t s s a j t n y h e t s b r e v e t n d i r e k t t i d n i n g e n s o m ä l s k a r e l e k t r o n i k å r e t r u n t
Mediakit 2015 m a g a i n n y h e t a j t n y h e t b e v e t n d i e k t t i d n i n g e n o m ä l k a e l e k t o n i k å e t u n t Sid 2 (7) Elektoniktidningen ha edan taten 1992 föett venk elektonikinduti
find your space find your space Plantronics Bluetooth -headset Upplev friheten Vår/sommar 07
find you space find you space Plantonics Bluetooth -headset Upplev fiheten Vå/somma 07 Med Plantonics sotiment av tådlösa headset med Bluetooth-teknik innebä mobil vekligen att du ä ölig hela vägen fån
Bröderna fara väl vilse ibland (epistel nr 35)
Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me
Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
1 Reducerat faktorförsök rf f
1 REDUCERAT FAKTORFÖRSÖK RF F 1 Reducerat faktorförsök rf f Vi skall med tre faktorer och således 2 3 försök reducera till ett fullständigt 2 2 försök. 1.1 Tre faktorer Vi repeterar med ett tidigare fullständigt
INSTALLATIONSMANUAL COBRA 8800/8900 CAN
INSTALLATIONSMANUAL COBRA 8800/8900 CAN DRA UT MITTSEKTIONEN MED INSTALLATIONSSCHEMAT. INNEHÅLL 8808 8805 Larmehet 03CB0364A 10SA0623A Kablage Moterigspåse KA0001STSAA Ultraljudsesorer 04PC3600B 8800USER
Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Digital signalbehandling
Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:
FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis
FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio
Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige
ØÓ ÓÐÑ ÙÒ Ú Ö Ø Ø Å Ø Ñ Ø Ø Ø Ø ÐÖÒØ Ó Ð Ø ÓÒ Ö ÓÑ Ý ÑÓØ Ò Ø ÓÒ Ö ÖÐ ÚÖÒØÓÖ Ö Ø Òà ÖÐ ÓÒ Ü Ñ Ò Ö Ø ¾¼¼ Ƽ¾ ¾¹ ½ Postadess: Matemats statst Matematsa sttutoe Stocholms uvestet 06 9 Stocholm Svege Iteet:
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom