Föreläsning 8 Kap G71 Statistik B

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 8 Kap G71 Statistik B"

Transkript

1 Föreläsning 8 Kap G71 Saisik B

2 Y Saionarie 25 2 För en saionär idsserie gäller 15 1 E(y ) = Var(y ) = 2 Corr(y, y -k ) beror bara av k (idsavsånde) och allså ine av. Uryck i ord: korrelaionen på e viss idsavsånd beror bara på avsånde (normal minskar korrelaionen med avsånde) mellan de jämförda idpunkerna En saionär idsserie karakäriseras av a den har en slumpmässig variaion kring en jämn nivå. 2

3 V W U Några ickesaionära idsserier Linjär rend, ickesaionär av försa ordningen Kvadraisk rend, ickesaionär av andra ordningen 5-5 Ickekonsan varians, även om medelvärde verkar konsan. Därmed ickesaionär

4 y y y y Exempel Daa över veckovis försäljning av pappershanddukar från en viss illverkare. y uryck som iousenals handdukars skillnad från 1 handdukar. 4

5 Differeniering a göra en idsserie saionär En idsserie y som är icke-saionär av försa ordningen (i princip uppvisar en linjär rend) kan differenieras en gång: z = y y 1 y kan då bli en saionär serie (men ine nödvändigvis) En idsserie y som är icke-saionär av andra ordningen (i princip uppvisar en kvadraisk rend) kan differenieras vå gånger: z = y y 1 ( y 1 y 2 ) = y 2 y 1 + y 2 y kan då bli en saionär serie (men ine nödvändigvis) 5

6 Exempel (fors) Tidsserien förefaller ha blivi saionär! 6

7 Auokorrelaionsfunkionen (acf) Engelska sample auocorrelaion, SAC Meod för a avgöra om en idsserie z (som kan vara rådaa eller differenierade daa) är saionär. Mäer graden av linjär samband mellan observaioner på idsavsånd (laggavsånd) k r k nk b z zz n z z b k z z b där z 2 n b 1 Besäms med daorns hjälp och ploas mo laggavsånde illsammans med e konfidensinervall (konfidensband). Önskvär: snabb avklingande (saplar under konfidensbande) auokorrelaionsfunkion vid öka laggavsånd Om långsam avklingande auokorrelaionsfunkion (saplar uanför konfidensbande) är serien ej saionär n 7

8 Auokorrelaionsfunkion vid kora respekive långa beroenden För serier med kora beroenden avar acf snabb mo då k växer acf acf k k acf För serier med långa beroenden avar acf långsammare, men ydlig mo då k växer k 8

9 Exempel (fors) Signifikan spike i den försa laggen 9

10 Pariella auokorrelaionsfunkionen (pacf) Engelska parial sample auocorrelaion, SPAC Definierad som r om k 1 1 r kk r k 1 k 1 j1 k 1 j1 r k 1, j r k 1, j r k j r j där r kj rk 1, j rkk rk 1, k j Komplicerad olkning men kan berakas som den auokorrelaion som råder mellan observaioner på idsavsånd k när effeken av mellanliggande observaioner elimineras 1

11 Exempel (fors) Signifikan spike i den försa laggen 11

12 Auoregressiv modell av försa ordningen AR(1) z 1 z 1 a z kan vara rådaa eller en differenierad serie, men den ska vara saionär Konsanen skaas från daa och a anas vara normalfördelad med vänevärde och konsan varians. Vidare anas a 1, a 2, a 3, vara oberoende av varandra. Skaning av modellen sker enlig en ieraiv process som ligger uanför kursens ramar a beskriva Auoregressiv modell av försa ordningen lämpar sig när acf klingar av på e dämpa sä pacf har en spike i lagg 1 och inga fler spikes 12

13 Glidande medelvärdesmodell av försa ordningen MA(1) z a a 1 a anas ha samma egenskaper som för den auoregressiva modellen. Modellen skaas enlig ieraiv procedur Lämpar sig när acf har en signifikan spike i lagg 1 och inga fler spikes pacf klingar av på e dämpa sä 13

14 Auoregressiv modell av andra ordningen AR(2) z 1 z z a Har längre beroenden än AR(1) Lämpar sig när acf klingar av på e dämpa sä pacf är skild från för k=1 och 2, är för k = 3, 4, 5,. acf pacf k k 14

15 Glidande medelvärdesmodell av andra ordningen MA(2) z a Har längre beroenden än MA(1) Lämpar sig när a a acf är skild från för k=1 och 2, är för k = 3, 4, 5,. pacf klingar av på e dämpa sä 15

16 16 Kombinerad auoregressiv och glidande medelvärdesmodell av ordningarna p och q ARMA(p, q) Vid mer komplicerade beroenden. Lämpar sig när acf avar mo noll, ofa med växlande ecken pacf avar mo noll, ofa med växlande ecken q q p p a a a z z z

17 Exempel (fors) Glidande medelvärdesmodell av försa ordningen ARIMA Model: y Esimaes a each ieraion Ieraion SSE Parameers Relaive change in each esimae less han.1 Final Esimaes of Parameers Type Coef SE Coef T P MA Modified Box-Pierce (Ljung-Box) Chi-Square saisic Lag Chi-Square DF P-Value Forecass from period 12 95% Limis Period Forecas Lower Upper Acual Differencing: 1 regular difference Number of observaions: Original series 12, afer differencing 119 Residuals: SS = (backforecass excluded) MS = 1.79 DF =

18 Exempel (fors) Auoregressiv modell av försa ordningen ARIMA Model: y Esimaes a each ieraion Ieraion SSE Parameers Relaive change in each esimae less han.1 Final Esimaes of Parameers Type Coef SE Coef T P AR Modified Box-Pierce (Ljung-Box) Chi-Square saisic Lag Chi-Square DF P-Value Forecass from period 12 95% Limis Period Forecas Lower Upper Acual Differencing: 1 regular difference Number of observaions: Original series 12, afer differencing 119 Residuals: excluded) SS = (backforecass MS = 1.14 DF =

19 Någo om val mellan olika meoder för idsserieanalys Give är en observerad idsserie: y 1, y 2,,y n Säsonger? Ja Nej Ja Trend? Nej ARIMA-modeller Enkel exponeniell ujämning Tidsserieregression Klassisk komponenuppdelning ARIMA-modeller Winers meod Tidsserieregression ARIMA-modeller Dubbel exponeniell ujämning

20 Enkel linjär regression Ni ska kunna för hand räkna fram parameerskaningar, konfidensinervall, prognosinervall, korrelaionskoefficiener, förklaringsgrader ec. Varför skall vi kunna göra dea för hand när de i prakiken allid görs med daorprogram? => Handräkningen visar a man försår vad de olika komponenerna i en modell sår för. Vad som är y, vad som är x, vad de är man skaar och vad de.ex. är för skillnad på konfidens- och prognosinervall. Vidare är den enkla linjära regressionsmeodiken grund för a även kunna räkna på enkla exponeniella modeller och elasiciesmodeller. Omsäning av formler är nyig a göra för a ine bli lås ill a all måse hea y och x. 2

21 Mulipel regression Här är de svårare a räkna u parameerskaningar för hand och de gör vi därför ine! Från daoruskrifer kan ni räkna med a få u - parameerskaningar (b, b 1,, b k ) - medelfel för parameerskaningar ( ) - kvadrasummor (SSR, SSE, SST sam SSR(x k x 1,,x k 1 ) dvs. sekveniella kvadrasummor) - konfidens- och prognosinervall i en given punk Vad måse ni själva kunna inse eller beräkna uifrån daoruskrifen? - anal frihesgrader - medelkvadrasummor, residualvarians - esvariabler - förklaringsgrader s, s b, sb, 1 - omräkning av inervall från 95% ill 99% och vice versa b k 21

22 Mulipel regression - VIF-värden - Resula från bes subses regression - Resula från auomaiska modellvalsprocedurer (framåval, bakåeliminering, segvis regression) Dessa måse försås kunna olkas och användas. Uskriferna på denna punk ges dock i sin helhe uan censurering. 22

23 Index Förså och kunna hanera de meodiker för indexberäkningar som diskueras i kursen Enkla prisindex Bye av basidpunk Deflaering Impliciprisindex Sammansaa fasbasindex Kedjeprisindex Relaivprisindex 23

24 Elasiciesmodeller Egenligen ine konsigare än vanliga regressionsmodeller, men kräver a man hanerar arimlagarna. Exempel: Modell i originalskala Modell på arimerad skala 1 y x Q C P Q C I Q C P E E I E p p I E I y 1 x Q C E P Q Q C E C E p I P I P E I I Handräkning kan endas göras för modeller med en förklaringsvariabel. 24

25 25 Exponeniella modeller Hanering av arimlagarna krävs. Exempel: Modell i originalskala Modell på arimerad skala k k x k x x x x x y y y y r C v r C v x y y k

26 Tidsserieanalys Mycke av dea examineras genom inlämningsuppgifen men uppgifer kan komma på enamen. De handlar om a lära sig använda/olka modeller för idsserieregression och klassisk komponenuppdelning sam exponeniella ujämningsmeoder för prognoser. Själva räknande görs dock uesluande med daorns hjälp. Viss hum om saionarie och ARMA-modeller ingår också, men ingen kunskap om hur man räknar förusäs. För a få den oala examinaionen individuell finns normal en uppgif med på enan. Denna kan handla om a kunna olka en uskrif från idsserieregression eller klassisk komponenuppdelning kunna olka en uskrif från enkel eller dubbel exponeniell ujämning eller Winers meod kunna för hand beräkna en prognos med hjälp av skaade komponener från en komponenuppdelning kunna besvara diverse eorifrågor run idsserieanalys 26

ARMA-, ARIMA, (S)ARIMA Modernare metoder för tidsserieanalys och prognoser. Något om val mellan olika metoder

ARMA-, ARIMA, (S)ARIMA Modernare metoder för tidsserieanalys och prognoser. Något om val mellan olika metoder Någo om val mellan olia meoder Give är en observerad idsserie: y 1 y 2 y n ARMA- ARIMA (S)ARIMA Modernare meoder för idsserieanalys och prognoser Säsonger? Ja Tidsserieregression Klassis omponenuppdelning

Läs mer

Föreläsning 7 Kap G71 Statistik B

Föreläsning 7 Kap G71 Statistik B Föreläsning 7 Kap 6.1-6.7 732G71 aisik B Muliplikaiv modell i Miniab Time eries Decomposiion for Försäljning Muliplicaive Model Accurac Measures Från föreläsning 6 Daa Försäljning Lengh 36 NMissing 0 MAPE

Läs mer

Föreläsning 8. Kap 7,1 7,2

Föreläsning 8. Kap 7,1 7,2 Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y

Läs mer

Något om val mellan olika metoder

Något om val mellan olika metoder Något om val mellan olika metoder Givet är en observerad tidsserie: y 1 y 2 y n Säsonger? Ja Nej Trend? Tidsserieregression Nej ARMA-modeller Enkel exponentiell utjämning Tidsserieregression ARIMA-modeller

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data Finansiell Saisik (GN, 7,5 hp,, HT 008) Föreläsning 9 Analys av Tidsserier (LLL kap 8) Deparmen of Saisics (Gebrenegus Ghilagaber, PhD, Associae Professor) Financial Saisics (Basic-level course, 7,5 ECTS,

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från Fasbasindex--Kedjeindex Index av de slag vi hiinills agi upp kallas fasbasindex. Vikbesämningar ugår från priser och/eller kvanieer under basåre. Vid långa indexserier blir dea e problem. Vikerna måse

Läs mer

Tidsserieanalys. Vad karaktäriserar data? Exempel:

Tidsserieanalys. Vad karaktäriserar data? Exempel: Tidsserieanalys Exempel: Vad karakäriserar daa? Observaionerna är ine oberoende Observaionerna ger e mönser över iden ex sigande värden med iden ex periodisk variaion över en idsperiod av besämd längd

Läs mer

Föreläsning 2. Prognostisering: Prognosprocess, efterfrågemodeller, prognosmodeller

Föreläsning 2. Prognostisering: Prognosprocess, efterfrågemodeller, prognosmodeller Föreläsning 2 Prognosisering: Prognosprocess, eferfrågemodeller, prognosmodeller Kurssrukur Innehåll Föreläsning Lek1on Labora1on Inroduk*on, produk*onsekonomiska grunder, produk*onssysem, ABC- klassificering

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Förord: Sammanfattning:

Förord: Sammanfattning: Förord: Denna uppsas har illkommi sedan uppsasförfaarna blivi konakade av Elecrolux med en förfrågan om a undersöka saisikmodulen i deras nyimplemenerade affärssysem. Vi vill därför acka vår handledare

Läs mer

Svensk arbetslöshetsdata: Hjälper barometerdata att prognostisera Sveriges arbetslöshet

Svensk arbetslöshetsdata: Hjälper barometerdata att prognostisera Sveriges arbetslöshet Saisiska insiuionen Svensk arbeslöshesdaa: Hjälper baromeerdaa a prognosisera Sveriges arbeslöshe Uppsas i Saisik 5 högskolepoäng Nivå 60-90 högskolepoäng Okober 007 Av: Krisofer Månsson Handledare: Mas

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Konsumtion, försiktighetssparande och arbetslöshetsrisker

Konsumtion, försiktighetssparande och arbetslöshetsrisker Fördjupning i Konjunkurläge juni 12 (Konjunkurinsiue) Konjunkurläge juni 12 75 FÖRDJUPNING Konsumion, försikighessparande och arbeslöshesrisker De förvänade inkomsborfalle på grund av risk för arbeslöshe

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

Realtidsuppdaterad fristation

Realtidsuppdaterad fristation Realidsuppdaerad frisaion Korrelaionsanalys Juni Milan Horemuz Kungliga Tekniska högskolan, Insiuion för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformaik Teknikringen 7, SE 44 Sockholm

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik ) VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

Hur simuleras Differential-Algebraiska Ekvationer?

Hur simuleras Differential-Algebraiska Ekvationer? Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

2003:11. Säsongrensning av Nationalräkenskaperna Översikt

2003:11. Säsongrensning av Nationalräkenskaperna Översikt 2003:11 Säsongrensning av Naionalräkenskaperna Översik Bruonaionalproduken (BNP) Förändring från föregående kvaral, uppräkna ill årsak, procen. Säsongrensade värden och rend 7 6 5 4 3 2 1 0 1993 1994 1995

Läs mer

Tjänsteprisindex för varulagring och magasinering

Tjänsteprisindex för varulagring och magasinering Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005

Läs mer

Sambanden mellan inandningsbara, grova och fina partiklar i luften och strokeanfall i Malmö

Sambanden mellan inandningsbara, grova och fina partiklar i luften och strokeanfall i Malmö Saisiska Insiuionen Sambanden mellan inandningsbara, grova och fina pariklar i lufen och srokeanfall i Malmö Jenny Hillsröm & Joselyne Nsabimana Uppsas i Saisik 5 högskolepoäng Nivå 6-90 högskolepoäng

Läs mer

Säsongrensning av Nationalräkenskaperna -Översikt- Sven Öhlén

Säsongrensning av Nationalräkenskaperna -Översikt- Sven Öhlén 1(63) Säsongrensning av Naionalräkenskaperna -Översik- Sven Öhlén 2003-03-18 Bruonaionalproduken (BNP) Förändring från föregående kvaral, uppräkna ill årsak, %. Säsongrensade värden och rend 7 6 5 4 3

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Prognoser av ekonomiska tidsserier med säsongsmönster

Prognoser av ekonomiska tidsserier med säsongsmönster Uppsala universie Saisiska Insiuionen C-uppsas i Saisik Handledare: Johan Lyhagen Prognoser av ekonomiska idsserier med säsongsmönser - En empirisk meodjämförelse Eliza Leja Jonahan Sråle 2011-05-17 Sammanfaning

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

Demodulering av digitalt modulerade signaler

Demodulering av digitalt modulerade signaler Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas

Läs mer

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3). TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge

Läs mer

En flashestimator för den privata konsumtionen i Sverige med hjälpvariablerna HIP och detaljhandeln

En flashestimator för den privata konsumtionen i Sverige med hjälpvariablerna HIP och detaljhandeln Bakgrundsfaka En flashesimaor för den privaa konsumionen i Sverige med hjälpvariablerna HIP och dealjhandeln En idsserieanalys med hjälp av saisikprogramme TRAMO 006: Ekonomisk saisik I serien Bakgrundsfaka

Läs mer

Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012

Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Background Facts on Economic Statistics

Background Facts on Economic Statistics Background Facs on Economic Saisics 2003:12 En illämpning av TRAMO/SEATS: Den svenska urikeshandeln 1914 2003 An applicaion of TRAMO/SEATS: The Swedish Foreign Trade Series 1914 2003 Exporen år 1914-2003

Läs mer

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är

Läs mer

Inflation: Ger kointegration bättre prognoser?

Inflation: Ger kointegration bättre prognoser? Kandidauppsas Januari, 006 Naionalekonomiska insiuionen Inflaion: Ger koinegraion bäre prognoser? Krisofer Månsson 836-3938 Handledare: Thomas Elger Sammanfaning Tiel: Inflaion: Ger koinegraion bäre prognoser

Läs mer

Regressions- och Tidsserieanalys - F8

Regressions- och Tidsserieanalys - F8 Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning

Läs mer

Betalningsbalansen. Andra kvartalet 2012

Betalningsbalansen. Andra kvartalet 2012 Bealningsbalansen Andra kvarale 2012 Bealningsbalansen Andra kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Second quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

Laborationstillfälle 4 Numerisk lösning av ODE

Laborationstillfälle 4 Numerisk lösning av ODE Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner

Läs mer

Kvalitativ analys av differentialekvationer

Kvalitativ analys av differentialekvationer Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De

Läs mer

Att studera eller inte studera. Vad påverkar efterfrågan av högskole- och universitetsutbildningar i Sverige?

Att studera eller inte studera. Vad påverkar efterfrågan av högskole- och universitetsutbildningar i Sverige? NATIONALEKONOMISKA INSTITUTIONEN Uppsala universie Examensarbee C Förfaare: Ameli Frenne Handledare: Björn Öcker Termin och år: VT 2009 A sudera eller ine sudera. Vad påverkar eferfrågan av högskole- och

Läs mer

Skattning av respirationshastighet (R) och syreöverföring (K LA ) i en aktivslamprocess Projektförslag

Skattning av respirationshastighet (R) och syreöverföring (K LA ) i en aktivslamprocess Projektförslag Beng Carlsson I ins, Avd f sysemeknik Uppsala universie Empirisk modellering, 009 Skaning av respiraionshasighe R och syreöverföring LA i en akivslamprocess rojekförslag Foo: Björn Halvarsson . Inledning

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Svenskt producentprisindex (PPI) En analys av tidsseriens integrationsgrad och säsongsmönster

Svenskt producentprisindex (PPI) En analys av tidsseriens integrationsgrad och säsongsmönster Svensk producenprisindex (PPI) 1975 004 En analys av idsseriens inegraionsgrad och säsongsmönser 005:10 I serien Bakgrundsfaka preseneras bakgrundsmaerial ill den saisik som avdelningen för ekonomisk saisik

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Är valutamarknader effektiva? En kointegrationsanalys av spot- och forwardkurser

Är valutamarknader effektiva? En kointegrationsanalys av spot- och forwardkurser NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee C Förfaare: Per Haldén och Jonas Rydén Handledare: Annika Alexius och Chrisian Nilsson H 06 Är valuamarknader effekiva? En koinegraionsanalys

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

FAQ. frequently asked questions

FAQ. frequently asked questions FAQ frequenly asked quesions På de följande sidorna har jag samla ihop några av de frågor jag under årens lopp få av sudener när diverse olika problem uppså i arbee med SPSS. De saisiska problemen har

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Tjänsteprisindex för Rengöring och sotning

Tjänsteprisindex för Rengöring och sotning Tjänseprisindex för Rengöring och soning Branschbeskrivning för SNI-grupp 74.7 TPI-rappor nr 18 Thomas Olsson Tjänseprisindex, Priser (MP/PR), SCB 2007 Förord Som e led i a förbära den ekonomiska saisiken

Läs mer

Monetära modellers prognosförmåga för den svenska kronans utveckling

Monetära modellers prognosförmåga för den svenska kronans utveckling NATIONALEKONOMISKA INSTITUTIONEN Uppsala Universie Examensarbee D Förfaare: Per Jonsson Handledare: Annika Alexius HT 2005 Moneära modellers prognosförmåga för den svenska kronans uveckling Sammanfaning

Läs mer

Betalningsbalansen. Tredje kvartalet 2010

Betalningsbalansen. Tredje kvartalet 2010 Bealningsbalansen Tredje kvarale 2010 Bealningsbalansen Tredje kvarale 2010 Saisiska cenralbyrån 2010 Balance of Paymens. Third quarer 2010 Saisics Sweden 2010 Producen Producer Saisiska cenralbyrån,

Läs mer

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

Kontrolldiagram för månadsvis uppföljning av antal dödade i vägtrafiken

Kontrolldiagram för månadsvis uppföljning av antal dödade i vägtrafiken VTI rappor 53 Ugivningsår 2005 www.vi.se/publikaioner 80 70 60 2002 200 994 2003 Anal dödade 50 40 30 20 0 0 994 jan feb ar apr aj jun jul aug sep ok nov dec Konrolldiagra för ånadsvis uppföljning av anal

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI SAISISKA CENRALBYRÅN Pm ill Nämnden för KPI 1(21) Dags för sambye i KPI? - Nuvarande meod för egnahem i KPI För beslu Absrac I denna pm preseneras hur nuvarande meod för egnahem i KPI beräknas, moiveras

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Det prediktiva värdet hos den implicerade volatiliteten

Det prediktiva värdet hos den implicerade volatiliteten Föreagsekonomiska insiuionen STOCKHOLMS UNIVERSITET Magiseruppsas HT 2005 De predikiva värde hos den implicerade volailieen en jämförelse mellan Black-Scholes och Cox-Ross-Rubinsein Förfaare: Saphiro Flügge

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data

F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

Har Sveriges Riksbank blivit mer flexibel i sin penningpolitik?

Har Sveriges Riksbank blivit mer flexibel i sin penningpolitik? Har Sveriges Riksbank blivi mer flexibel i sin penningpoliik? En analys av rekursiv skaade Taylorregler baserade på realidsdaa Henrik Siverbo Kandidauppsas Lunds Universie, Naionalekonomiska insiuionen

Läs mer

Betalningsbalansen. Tredje kvartalet 2008

Betalningsbalansen. Tredje kvartalet 2008 Bealningsbalansen Tredje kvarale 2008 Bealningsbalansen Tredje kvarale 2008 Saisiska cenralbyrån 2008 Balance of Paymens. Third quarer 2008 Saisics Sweden 2008 Producen Producer Saisiska cenralbyrån,

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

Konsumentprisindex för kläder och skor

Konsumentprisindex för kläder och skor Saisiska Insiuionen STA03:2 Lunds Universie HT 2007 Kandidauppsas, 0poäng Konsumenprisindex för kläder och skor 986-2005 Dekomponering och prognosisering Förfaare: Henrik Svansröm 79063-4098 Samuel Roos

Läs mer

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland

Läs mer