Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing vriler och de grundläggnde räkneopertionern är ddition, subtrktion, multipliktion och division. Även ndr räkneopertioner som procenträkning, potenser, rotutdrgning och logritmer kn förekomm. Här någr exempel på ritmetisk uttryck + + 5 +5) ) +++ +5) +7) 5 + 9 + + 5 7 + 5 All dess uttryck kn ersätts med ett end tl heltl, bråk eller pproximtivt decimltl 5 0.7 5 6 0.8 7 0 0 0.008.880 77 78 0.987 Algebr elementär lgebr) eller, i vår mening, populärt uttryckt bokstvsräkning. Skillnden från ritmetiken är tt mn här ersätter ll eller en del v tlen med vriler med bokstäver). Här någr exempel på lgebrisk uttryck + b + ) b ++ + ) b x+y) b c d x +x+ Algebrisk uttryck kn iblnd förenkls och i undntgsfll led frm till ett end tl. Vi förenklr det som går v uttrycken ovn: b+ 6 b d bc x +xy+y x +x+ En del v uttrycken kn inte förenkls, ndr kn förändrs men det är inte helt klrt om förändringen innebär en förenkling. Resten är verkligen förenklingr. En stor del v vårt rbete frm till KS:en går ut på tt förenkl lgebrisk uttryck. Ekvtioner, i vår mening, är två lgebrisk uttryck som sätts lik med vrndr. Ekvtioner innehåller lltid ett likhetstecken, =). Att lös en ekvtion innebär i llmänhet tt först förenkl de lgebrisk uttrycken på båd sidor om likhetstecknet. Håkn Strömberg KTH STH
En förstgrdsekvtion kn lltid förenkls till x+b = 0 där och b är konstnter. Till exempel kn ekvtionen x+ x++x = 5 x+x+ x förenkls till x = 0, med lösningen x =. En ndrgrdsekvtion kn lltid förenkls till x +bx+c = 0, där, b och c är konstnter till exempel kn ekvtionen x+) +x x ) = +x) förenkls till x 5x 6 = 0. Båd dess ekvtioner kräver förenkling v lgebrisk uttryck. Förenkling v lgebrisk uttryck + 5 6 + 5 6 Om mn inte klrr v tt beräkn uttrycket till vänster ovn klrr mn förmodligen inte v tt förenkl uttrycket till höger. Det vill säg mn måste behärsk ritmetiken för tt kunn t sig n lgebrn. De mest v ritmetiken hr ni med er från tidigre skolår. Här någr exempel som kn behöv fräschs upp. Först ddition v bråk + + 5 6 + + 5 6 + +5 8++0 7 7 I först föreläsningen gick vi igenom hur mn finner en gemensm nämnre, speciellt den minst MGN. Här är MGN=. När vi förlänger bråken med ett lämpligt tl får ll bråken smm nämnre och vi kn dder de ny täljrn. Det är snyggt, om inte nödvändigt, tt förkort resulttet så långt möjligt. 7 9 7 9 7 Dett är ett dubbelbråk. Bråket i täljren multiplicers med det inverterde värdet v bråket i nämnren. + Multipliktion och division) går före ddition och subtrktion). Vill mn tt uttrycket ovn sk bli 0 måste mn nvänd prenteser +) 0 När vi nu sk gå vidre med förenkling v lgebrisk uttryck måste vi kunn förläng, förkort och bryt ut. Bryt ut och förkort. Tre exempel x +x xx+) Håkn Strömberg KTH STH
och och )+ +) x+ x+ x+) x+) = )+) )+) + För tt mn sk kunn förkort måste ett bråk vr inblndt. I först exemplet finns inget bråk. Ett rtionellt uttryck är division v två lgebrisk uttryck Iblnd kn de förenkls + b+ + b+ x +x+ x+ x+ b b Rtionell uttryck kn förstås också dders och subtrhers b + b Precis som i ritmetiken måste vi finn en gemensm nämnre. Den måste vr eftersom de två nämnrn inte hr någon gemensm fktor. b + b b b +b Om dett resultt kn nses vr en förenkling v det ursprunglig uttrycket är en smksk, men vi hr i ll ddert de två uttrycken Problem. Adder uttrycken + + + Lösning: Uttryckets gemensmm nämnre är +)+). Vi får +) +)+) + +) +)+) +)++) +)+) + +)+) + +++ + ++ Om mn sk låt nämnren stnn vid +)+) eller om mn sk utveckl den till ++ är en smksk. + Svr: ++ Håkn Strömberg KTH STH
Problem. Adder uttrycken b + b + b + b Lösning: Med ddition mens tt termern sk slås smmn till ett rtionellt uttryck. Vi ser direkt tt MGN= Svr: +b + +b b + b + b + b b + b b b + b + b b b b+ b +b + +b Problem. Lös ekvtionen x + = 7 Lösning: En ekvtion innehållnde ett dubbelbråk, men x br på ett ställe. Strt med tt förenkl vänstr ledet. Avslut den förenklingen med tt ersätt divisionen v bråken i täljre och nämnre med multipliktion v täljren och nämnren inverterd. Sedn hr vi nått till en ekvtion, som är enkel tt lös. Svr: x = x + x x x + x 9 x 8+9 x 9 x 7 x 9 5x ) x 7 5xx 9) x 7 = 7 = 7 = 7 = 7 = 5x ) 7 = 5x 7 x 9) = x x 08) = x 7x = 08 x = Håkn Strömberg KTH STH
Problem. Lös ekvtionen Lösning: x + x x x + x x x + = x 8+x x x x 8 = = = = x = x 8) x = 6x 96 x = 96 x = Problem 5. Förenkl så långt möjligt x+ ) x ) x x Lösning: Ett sätt tt lös dett problem är med hjälp v konjugtregeln A B = A B)A+B). Dett ger x+ ) x ) x+ ) x )) x+ ) + x )) x x x x x x x x Självklrt kn problemet löss även den lång vägen. Problem 6. Förenkl Lösning: x xy y + y xy x x xy y + y xy x x yx y) + y xy x) x yx y) x y xyx y) x y)x+y) x+y xyx y) xy y xx y) x xyx y) y xyx y) Håkn Strömberg 5 KTH STH
Läx. Beräkn + Läx. Förenkl så långt möjligt b) +b+) b)) Läx. Vilket är störst: summn, differensen, produkten eller kvoten v 5 och 7 9 Läx. Lös ekvtionen x + x = 8 Läx 5. Lös ekvtionen x+55 = x Läx Lösning. Beräkn + = + = + = 7 = 7 = 7 Kommentr: Ett lite mer komplicert dubbelbråk. Vi hnterr inledningsvis täljre och nämnre för sig. Läx Lösning. b) +b+) b)) +9b )+b ++ ) 6 +8 8 b ) +9b +b ++ 6 8+8+b 6b Svr: 6b Läx Lösning. Summn: Produkten: Diffrensen: Kvoten: 5 + 7 ) 9 5 5 5 7 ) 9 7 ) 9 0.77778 0.66667.7778 0.779 7 9 Svr: Differensen är störst Håkn Strömberg 6 KTH STH
Läx Lösning. x + x 8x x + ) x 8x x + 8x x = 8 = 8x = 8x 8 ) 8 6+ = x x = 8 Svr: x = 8 Läx Lösning 5. x+55 = x x+55 ) = x ) x+55 = x x+ x x 5 = 0 9 x = ± + 5 x = ± 5 x = ± 5 x = 9 x = 6) Vi ser tt x = 6 är en flsk rot eftersom 6+55 7. Däremot är x = 9 en äkt rot eftersom 9+55 9 Svr: x = 9 Problem 7. Lösning: b + c c + b c b c c+ b + c c + b c b c c+ ) b) + c c )c+) + b c)b+c) b c c+ b+ c+ +b+c c+ b+b+c +c Här gäller det tt tänk en liten stund innn mn sätter igång tt hitt en gemensm nämnre. Genom tt nvänd konjugtregeln inte mindre än tre gånger kn vi skriv om uttrycket som i ). Håkn Strömberg 7 KTH STH
Efter möjlig förkortningr får vi ett betydligt enklre uttryck ). De två termern med nämnre tr ut vrndr och kvr blir Svr: +c Problem 8. b b b + +5+b ) Lösning: b b b + +5+b ) 5 b)) b b + +5+b )) ) b)) b)) b)) + +5+b ) b) b)) b+ ) b) +b +)+ +5+b ) b) b)) b+ + + b b b )+ +5+b ) b) b)) b+ b+ b+b + + +5 b+ b 5 b b)) 6 + + b b+ b+5 b b+ + + 5 +b b b)) 7 + b b b)) 8 + b b + b b 9 En riktigt jobbig uppgift. Till tt börj med ser vi tt minst gemensmm nämnren är + b) b) ). Med utgångspunkt från det förlänger vi de tre bråken med lämplig uttryck ) och kn slå smmn hel uttrycket till ett bråk ). Vi står nu inför en mängd beräkningr vrs frmgång prägls v noggrnnhet och en dministrtiv känsl. Håller vi tungn rätt i mun kommer vi så småningom hit 7). Om vi inte visste tt smtlig svr blnd dess 0 uppgifter vr betydligt mindre komplicerde knske vi skulle stnn här. Vår end chns är nu tt utveckl nämnren 8) och se det gv frukt! Svr: Problem 9. Uppgift 5 9 6+ + + ) 9 ) Håkn Strömberg 8 KTH STH
Lösning: 9 6+ + + ) 9 ) ) + + ) )+) ) +) ) + ) ) +) +) ) 5 6 +9 ) +8 )+ +9 ) +) +) ) +9 + 8 + +9 +) ) 9 8 +9 ++ + +) ) 0 +) ) 7 0 Åter en uppgift som kräver precision. För tt finn en lämplig gemensm nämnre behöver mn se tt 9 6+ ) och tt 9 = )+) ). När väl dett är genomskådt får vi den minst gemensmm nämnren +) ) som leder till en del förlängningr innn vi kn skriv hel uttrycket på gemensmt bråkstreck ). Med tålmod och noggrnnhet får vi först ), sedn ) och 5), för tt till slut upptäck tt hel täljren blir 0. Svr: 0. Figur : Håkn Strömberg 9 KTH STH
Problem 0. Lösning: b + b + ) b + b + ) b + + ) b + + ) ) ) Division v två bråk, som vi också kllr dubbelbråk. Vi inleder med tt skriv de tre termern i täljren på gemensmt bråkstreck ). Vi går över från division till multipliktion på ett numer känt sätt ). Vi upptäcker tt b + + ) i ) och vslutr med tt förkort. Svr: Figur : Håkn Strömberg 0 KTH STH