Systemteknik/Processreglering F3

Storlek: px
Starta visningen från sidan:

Download "Systemteknik/Processreglering F3"

Transkript

1 Systemteknik/Processreglering F3 Matematisk modellering Tillståndsmodeller Stabilitet Läsanvisning: Process Control:

2 Modellering av processer Dynamiken i våra processer beskrivs typiskt av en eller flera differentialekvationer. Två olika angreppssätt: 1. Matematisk modellering Använd fysikens lagar (balansekvationer mm) för att ställa upp en modell 2. Experiment Utför experiment (t.ex. stegsvarsexperiment) på processen och analysera in- och ut-data FRT041 Systemidentifiering I praktiken används ofta en kombination av båda sätten

3 Matematisk modellering Flödesbalanser Intensitetsbalanser Konstitutiva relationer

4 Flödesbalanser T.ex. volymflöde [m 3 /s] Ändring av upplagrad volym = [ Inflöde ] [ Utflöde ] per tidsenhet materialflöde [mol/s] Ändring av antalet upplagrade partiklar = per tidsenhet [ ] Inflöde av partiklar [ ] Utflöde av partiklar

5 Flödesbalanser energiflöde [W] Ändring av upplagrad energi = [ Effekt in ] [ Effekt ut ] per tidsenhet strömflöde [A] [ ] Summa ström in = till knutpunkt [ ] Summa ström ut från knutpunkt

6 Intensitetsbalanser T.ex. kraftbalans [N] Ändring av rörelsemängd = per tidsenhet [ ] Drivande krafter [ ] Bromsande krafter spänningsbalans [V] [ ] Summa spänning runt en krets = 0

7 Konstitutiva relationer T.ex. Ideala gaslagen p = nr V T Torricellis lag v = 2 h Energi i uppvärmd vätska W = C p ρvt Ohms lag u = Ri

8 Typiska balansekvationer för kemiprocesser Total massbalans: dρv dt = i=all inlets ρ i q i i=all outlets ρ i q i Massbalans för komponent j: dc j V dt = i=all inlets c j,i q i i=all outlets c j,i q i + r j V Total energibalans: de dt = ρ i V i H i ρ i V i H i + i=all i=all inlets outlets k=all phase boundaries Q k + W

9 Exempel: CSTR med exoterm reaktion q in, c A,in, T in q, c A, T T c Exoterm reaktion A B, r = k 0 e E/RT c A Kylslinga med temperatur T c Perfekt omrörning, konstant densitet ρ

10 Exempel: CSTR med exoterm reaktion Total massbalans: d(ρv ) dt = ρq in ρq Massbalans för komponent A: d(c A V ) dt = c A,in q in c A q rv Total energibalans: ρvc p dt dt = ρc pq in (T in T)+( Δ H r )rv + UA(T c T)

11 Exempel: CSTR med exoterm reaktion Efter förenklingar: dv dt = q in q dc A = q in V (c A,in c A ) k 0 e E/RT c A dt dt dt = q in V (T in T)+ ( Δ H r)k 0 e E/RT c A + UA (T c T) ρc p V ρc p Olinjär tredje ordningens modell Tillståndsvariabler: V, c A, T Möjliga insignaler: q in, q, c A,in, T in, T c Konstanta parametrar: ρ, C p, ( Δ H r ), k 0, E, R, U, A

12 Exempel: mekaniskt system k m F d 0 z Massa m med position z Yttre kraft: F Fjäderkraft: F k = kz Dämparkraft: F d = dż

13 Exempel: mekaniskt system Kraftbalans: m z = F kz dż Inför v = ż v = d m v k m z + 1 m F ż = v Linjär andra ordningens modell Tillståndsvariabler v, z Insignal: F Konstanta parametrar: m, k, d

14 Tillståndsformen x u System y Generellt är x, u och y vektorer: x 1 x n u 1 u m x =. u =. y =. y 1 y p n = antal tillståndsvariabler = systemets ordningstal m = antal insignaler, p = antal utsignaler

15 Tillståndsformen x kallas systemets tillstånd (state) och innehåller värdet av alla ackumulerade storheter i systemet (systemets minne ) Systemets dynamik beskrivs av n första ordningens ordinära differentialekvationer: dx 1 dt = f 1 (x 1,..., x n, u 1,..., u m ) dx n dt. = f n (x 1,..., x n, u 1,..., u m )

16 Tillståndsformen Utsignalerna ges av p algebraiska ekvationer (anges inte alltid): y 1 = 1 (x 1,..., x n, u 1,..., u m ). y p = p (x 1,..., x n, u 1,..., u m ) Systemet kan skrivas på vektorform som dx = f (x, u) dt (tillståndsekvation) y = (x, u) (mätekvation) f och kan vara olinjära funktioner

17 Tillståndsformen för linjära system dx 1 dt = a 11x a 1n x n + b 11 u b 1m u m. dx n dt = a n1 x a nn x n + b n1 u b nm u m y 1 = c 11 x c 1n x n + d 11 u d 1m u m. y p = c p1 x c pn x n + d p1 u d pm u m

18 Tillståndsformen för linjära system På matrisform: dx = Ax + Bu dt (tillståndsekvation) y = Cx + Du (mätekvation) x och u anger avvikelser från en jämviktspunkt (x, u) =(0, 0) är alltid en jämviktslösning D kallas systemets direktterm och är ofta 0 för verkliga processer Miniproblem: Vilka dimensioner har matriserna A, B, C och D?

19 Exempel: mekaniska systemet Tillståndsvektor: x = v z Vi styr u = F och mäter y = z Modellen skriven på tillståndsform med matriser blir dx dt = k m d m 1 0 }{{} A y = 0 1 } {{ } C x + x + 1 m 0 }{{} B 0 u }{{} D u

20 Exempel: compartmentmodeller Erik Widmark modellerade spridningen av alkohol i kroppen, 1922 Torsten Teorell myntade begreppet compartment model, 1936 Compartmentmodeller krävs av FDA för att godkänna nya läkemedel

21 Exempel: compartmentmodell Systemet består av förbundna avdelningar (compartments) En tillståndsvariabel för varje avdelning representerar massan eller koncentrationen av det studerade ämnet Transporthastigheterna är proportionella mot koncentrationsskillnaderna Exempel med två avdelningar: u k k 0

22 Exempel: compartmentmodell Inför tillståndsvariablerna c 1 = koncentrationen i avdelning 1 c 2 = koncentrationen i avdelning 2 Dynamiken ges då av dc 1 V 1 dt = k 12(c 2 c 1 ) k 0 c 1 + u dc 2 V 2 dt = k 12(c 1 c 2 )

23 Exempel: compartmentmodell Antag V 1 = V 2 = k 12 = k 0 = 1 och att systemet är i vila, c 1 (0) =c 2 (0) =0. Svar vid injektion av enhetsvolym vid tiden 0 ( impulssvar ): c1, c c c t

24 Inlämningsuppgift 1 Compartmentsystem med tre avdelningar: u k 12 k k 0 MATLAB med Control System Toolbox

25 Lösning av den linjära tillståndsekvationen x u System y dx = Ax + Bu dt y = Cx + Du Hur svarar tillståndet x (och utsignalen y) på insignalen u och initialtillståndet x(0)?

26 Lösning av tillståndsekvationen skalära fallet System med en tillståndsvariabel och en insignal: dx(t) dt = ax(t)+bu(t) Lösning: t x(t) =e at x(0)+ e a(t τ ) bu(τ ) dτ 0 Exempel: Konstant insignal u(t) =u 0 och a = 0: x(t) begränsad om a < 0 x(t) =e at x(0)+ b a (eat 1)u 0

27 Simulering med u(t) =1 och x(0) =0 2 1 x(t) för a = 1, b = 0.5, 1, 2 b = 2 b = 1 b = Tid x(t) för a = 0.5, 1, 2, omb/a = 1 1 a = 2 a = 1 a = Tid

28 Lösning av tillståndsekvationen allmänna fallet t x(t) =e At x(0)+ e A(t τ ) Bu(τ ) dτ 0 där e At är matrisexponentialfunktionen, definierad som e At = I + At + (At)2 2! + (At)3 3! +

29 Exempel: Mekaniska systemet dx dt = d m 1 0 k m 1 x + m u 0 Antag: Ingen dämpning (d = 0), ingen yttre kraft (F = u = 0), initialvillkor x(0) =[v(0) z(0)] T =[01] T, m = k = 1: dx dt = 0 1 x 1 0 }{{} A Exponentialmatris: e At = cos t sin t sin t cos t Ger lösningen x(t) =e At x(0) = cos t sin t 0 = sin t sin t cos t 1 cos t

30 Simulering av mekaniska systemet z v x t

31 Egenvärden A:s egenvärden ges av de n rötterna till den karakteristiska ekvationen det(λ I A) =0 det(λ I A) =P(λ) kallas karakteristiskt polynom Egenvärdena kan vara komplexa (komplexkonjugerade) Multiplicitet av egenvärde = antal egenvärden med samma värde

32 Egenvärden Antag diagonal A-matris med egenvärden λ 1,...,λ n : λ λ A = λ n Då e λ 1t e λ 2t e At = e λ nt Varje egenvärde λ i ger en term e λ it i lösningen

33 Egenvärden För en generell A-matris ger varje egenvärde en term P mi 1(t)e λ it i e At där P mi 1(t) är ett polynom i t av högst gradtal m i 1 m i är egenvärdets multiplicitet Exempel: Egenvärden: Exponentialmatris: A = λ 1 = λ 2 = 1 (m = 2) e At = e t te t 0 e t

34 Stabilitet för linjära system Stabilitet är en inneboende systemegenskap beror ej på hur insignalen ser ut Vi kan studera det fria systemet dx dt = Ax Lösning: x(t) =e At x(0)

35 Stabilitetsbegrepp Asymptotisk stabilitet: x(t) 0 då t för alla initialvärden Stabilitet: x(t) begränsad då t för alla initialvärden Instabilitet: x(t) obegränsad då t för något initialvärde (Stabila men ej asymptotiskt stabila system kallas marginellt stabila)

36 Exempel Asymptotiskt stabila system: Vattentank med hål i botten Temperaturen i en ugn Hastigheten i en bil Stabila system: Vattentank utan hål i botten Massa fjäder-system utan dämpning Tillryggalagd sträcka i en bil Instabila system: Pendel i inverterat läge Segway

37 Stabilitet i det skalära fallet dx(t) = ax(t) dt x(t) =e at x(0) 2 a < 0 a = 0 a > x 1 x 1 x t t t asymptotiskt stabilt om a < 0 stabilt om a 0 instabilt om a > 0

38 Stabilitet i det allmänna fallet Egenvärdena λ i till A-matrisen avgör stabiliteten. Ett linjärt system är: Asymptotiskt stabilt om alla Re(λ i )<0 Instabilt om något Re(λ i )>0 Stabilt om alla Re(λ i ) 0och eventuella egenvärden på imaginära axeln har multiplicitet 1

39 Routh Hurwitz stabilitetskriterum 2:a ordningens karakteristiskt polynom (för 2 2-matris A): det(λ I A) =P(λ) =λ 2 + p 1 λ + p 2 Alla rötter ligger i vänster halvplan (alltså alla Re(λ i )<0) omoch endast om p 1 > 0 och p 2 > 0 3:e ordningens karakteristiskt polynom (för 3 3-matris A): det(λ I A) =P(λ) =λ 3 + p 1 λ 2 + p 2 λ + p 3 Alla rötter ligger i vänster halvplan (alltså alla Re(λ i )<0) omoch endast om p 1 > 0, p 2 > 0, p 3 > 0 och p 1 p 2 > p 3.

40 Exempel: mekaniska systemet dx dt = d m y = 0 k m x 1 x + m u 0 Karakteristisk ekvation: det(λ I A) = λ + d m 1 k m λ = λ2 + d m λ + k m = 0 Antag m, k, d > 0: Asymptotiskt stabilt Antag m, k > 0, d = 0: Vi får egenvärden k λ 1,2 =±i m Alltså är systemet stabilt (men ej asymptotiskt stabilt)

41 Simulering av mekaniska systemet m = k = d = 1: z v m = k = 1, d = 0: z v x 0 x t t

42 Linjära system på tillståndsform i MATLAB % Definiera systemmatriser A = [1 2; 3 4]; B = [0; 1]; C = [1 0]; D = 0; % Skapa tillståndsmodell sys = ss(a,b,c,d); % Beräkna egenvärden till A-matrisen eig(a) % Simulera systemet utan insignal från ett % visst initialvärde initial(sys,x0)

Olinjära system (11, 12.1)

Olinjära system (11, 12.1) Föreläsning 2 Olinjära system (11, 121) Introduktion Vad menas med ett olinjärt system? Betrakta ett system där insignalerna u 1 (t) och u 2 (t) ger utsignalerna y 1 (t) respektive y 2 (t), d v s och u

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts. Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

Systemteknik/Processreglering F6

Systemteknik/Processreglering F6 Systemteknik/Processreglering F6 Linjärisering Återkopplade system ett exempel Läsanvisning: Process Control: 5.5, 6.1 Jämviktspunkter Olinjär process på tillståndsform: dx = f (x, u) dt y = (x, u) Processens

Läs mer

Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 8 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 27 september 2013 Introduktion Förra gången: Tillståndsmodell: ẋ(t) = Ax(t) + Bu(t), x(0) =

Läs mer

Systemteknik/Processreglering F2

Systemteknik/Processreglering F2 Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med

Läs mer

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06) Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast

Läs mer

TSRT91 Reglerteknik: Föreläsning 10

TSRT91 Reglerteknik: Föreläsning 10 TSRT91 Reglerteknik: Föreläsning 10 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

Föreläsning 1 Reglerteknik AK

Föreläsning 1 Reglerteknik AK Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

Reglerteori. Föreläsning 11. Torkel Glad

Reglerteori. Föreläsning 11. Torkel Glad Reglerteori. Föreläsning 11 Torkel Glad Föreläsning 11 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 10. Fasplan Linjärisering av ẋ = f(x) kring jämviktspunkt x o, (f(x o ) = 0) f 1 x 1...

Läs mer

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2

Läs mer

ERE103 Reglerteknik D Tentamen

ERE103 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Stabilitet m.a.p. begynnelsedata

Stabilitet m.a.p. begynnelsedata Stabilitet m.a.p. begynnelsedata Begreppet stabilitet används i flera olika sammanhang. I kap.9-14 tänker man på black-box system och insignal-utsignalstabilitet begränsad insignal = begränsad utsignal

Läs mer

Diagonalisering och linjära system ODE med konstanta koe cienter.

Diagonalisering och linjära system ODE med konstanta koe cienter. Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på

Läs mer

1 Repetition - Övning 3.8

1 Repetition - Övning 3.8 Repetition - Övning 38 Spåret av en matris definieras som: T r(a) = n i= a ii = n i= y z = y + y 2 + + y n = A y = Vi vill definiera när ett system kan ta emot input och leverera output utan att systemet

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Robust flervariabel reglering

Robust flervariabel reglering Föreläsning 2 Anders Helmersson andersh@isy.liu.se ISY/Reglerteknik Linköpings universitet Vad gör vi i dag Normer Representation av system Lyapunovekvationer Gramianer Balansering Modellreduktion Lågförstärkningssatsen

Läs mer

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik

Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Matematisk modellering 3. Matematisk modellering 3.1 Modelleringsprinciper 3.1.1 Modelltyper För design och analys av reglersystem behöver man en matematisk modell, som beskriver systemets dynamiska

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden Exponentialmatrisen Moment (kapitel i Spanne) Övningar Denna stencil i första hand! Def. med serie (5.2) 8,(2) diagonaliserbar A (5.) b,2 (utnyttja svartill 3.2&3.5) Lösn. av tillståndsekv. Cayley-Hamiltons

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 10

Välkomna till TSRT19 Reglerteknik Föreläsning 10 Välkomna till TSRT19 Reglerteknik Föreläsning 10 Sammanfattning av föreläsning 9 Tillståndsbeskrivningar Överföringsfunktion vs tillståndmodell Stabilitet Styrbarhet och observerbarhet Sammanfattning föreläsning

Läs mer

Formalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge

Formalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge Formalia Modellbygge & Simulering, TSRT62 Föreläsning 1 Labanmälan via länk på kurshemsidan Datortenta i datorsal Fem av lektionerna i datorsal Reglerteknik, ISY, Linköpings Universitet Identifieringslabben

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning

Läs mer

TSRT91 Reglerteknik: Föreläsning 11

TSRT91 Reglerteknik: Föreläsning 11 Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp

ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) Innehåll föreläsning 9 2 Reglerteknik, föreläsning 9 Tillståndsbeskrivning, styr- och observerbarhet Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik

Läs mer

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s) Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare.

Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare. Tentamen i Reglerteknik (IE1304) 20/3-2014 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 20/3-2014 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,

Läs mer

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2

Läs mer

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1. MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med

Läs mer

Välkomna till Reglerteknik Föreläsning 2

Välkomna till Reglerteknik Föreläsning 2 Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H

Läs mer

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter

Läs mer

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29

Läs mer

Välkomna till TSRT15 Reglerteknik Föreläsning 2

Välkomna till TSRT15 Reglerteknik Föreläsning 2 Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

x 1(t) = x 2 (t) x 2(t) = x 1 (t)

x 1(t) = x 2 (t) x 2(t) = x 1 (t) Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:

Läs mer

Reglerteori. Föreläsning 8. Torkel Glad

Reglerteori. Föreläsning 8. Torkel Glad Reglerteori. Föreläsning 8 Torkel Glad Föreläsning 8 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 7 H 2 och H syntes. Gör W u G wu, W S S, W T T små. H 2 : Minimera ( W u G wu 2 2 + W SS

Läs mer

6. Stabilitet. 6. Stabilitet

6. Stabilitet. 6. Stabilitet 6. Stabilitet 6. Stabilitet Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist

Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor

Läs mer

1 Diagonalisering av matriser

1 Diagonalisering av matriser 1 Diagonalisering av matriser Kan alla matriser diagonaliseras? Nej, det kan de inte. Exempel: ẋ 1 = x 1 + 2x 2, Integrerande faktor: e t x 2 = x 2 x 2 (t) = c 2 e t och ẋ 1 x 1 = 2c 2 e t. e t x 1 e t

Läs mer

Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y

Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback

Läs mer

6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner

6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt kan bli instabilt genom för

Läs mer

Biokemi. SF1538 Projekt i simuleringsteknik. Skolan för teknikvetenskap. Introduction. Michael Hanke. Kemiska reaktioner

Biokemi. SF1538 Projekt i simuleringsteknik. Skolan för teknikvetenskap. Introduction. Michael Hanke. Kemiska reaktioner 1 (35) : Biokemi Skolan för teknikvetenskap SF1538 Projekt i simuleringsteknik 2 (35) Innehåll : 1 2 3 : 4 5 6 7 8 3 (35) Introduktion : Biokemiska är basen till livet Undersökningen av reaktionskedjor

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner

6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt kan bli instabilt genom för

Läs mer

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)

Läs mer

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00. Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.

Läs mer

IV, SF1636(5B1210,5B1230).

IV, SF1636(5B1210,5B1230). Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?

Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

Reglering av inverterad pendel

Reglering av inverterad pendel Reglerteknik grk Lab 3 Reglering av inverterad pendel Denna version: 9 mars 2012 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: Innehåll 1 Inledning 1 2 Systembeskrivning 3 3

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)

Läs mer

1. Lös ut p som funktion av de andra variablerna ur sambandet

1. Lös ut p som funktion av de andra variablerna ur sambandet Matematiska institutionen Stockholms universitet Avd matematik Eaminator: Torbjörn Tambour Tentamensskrivning i Matematik för kemister K den 0 december 2003 kl 9.00-4.00 LÖSNINGAR. Lös ut p som funktion

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

Reglerteori. Föreläsning 4. Torkel Glad

Reglerteori. Föreläsning 4. Torkel Glad Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =

Läs mer

Analys av jämviktslägen till differentialekvationer

Analys av jämviktslägen till differentialekvationer Analys 360 En webbaserad analyskurs Ordinära differentialekvationer Analys av jämviktslägen till differentialekvationer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Analys av jämviktslägen

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp

Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )

Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( ) Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Övningar i Reglerteknik

Övningar i Reglerteknik Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 8-8-8. (a) RGA(G()) = med y. ( ), dvs, vi bör para ihop u med y och u s+ (b) Underdeterminanter till systemet är (s+)(s+3), s+, s+3, s+, s (s+)(s+)(s+3). MGN är p(s) =

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.

Läs mer

Reglerteori. Föreläsning 10. Torkel Glad

Reglerteori. Föreläsning 10. Torkel Glad Reglerteori. Föreläsning 10 Torkel Glad Föreläsning 10 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x): f(0)

Läs mer

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer