Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10"

Transkript

1 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet

2 Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w)

3 Sammanfattning av föreläsning 9. Cirkelkriteriet 3(25) Linjärt system G(s) återkopplat med en statisk olinjäritet f (x) f (0) = 0, k 1 f (x) k 2 x Stabilt om nyquistkurvan till G(iω) inte omcirklar eller går in i cirkeln. Im 1 k 1 1 k 2 Re G(iω)

4 Sammanfattning av föreläsning 9, forts. 4(25) Beskrivande funktion: självsvängningar i denna struktur: G f f representeras av amplitudberoende förstärkning Y f (C), C amplitud. Självsvängningsvillkor: Y f (C)G(iω) = 1. Grafisk representation: Skärning mellan Nyquistkurvan G(iω) och 1/Y f (C). Stabilitet hos svängningen. Metoden är bara approximativ.

5 Amplitudstabilitet hos svängningar 5(25) Indikation på stabil (vänster) respektive instabil (höger) självsvängning. Im Im G(iω) G(iω) 1 Y f (C) Re 1 Y f (C) Re Rör sig 1/Y f (C) mot eller bort från skärningspunkten med G(iω)?

6 Amplitudstabilitet forts. 6(25) Indikation på utdöende (vänster) respektive obegränsat växande (höger) svängningar. Im Im G(iω) G(iω) 1 Y f (C) Re 1 Y f (C) Re 1/Y f (C) skär aldrig G(iω). Omcirklas 1/Y f (C), eller inte?

7 Föreläsning 10 7(25) Fasplan. Att approximativt kunna skaffa sig en uppfattning om ett olinjärt systems lösningar ( banor ).

8 Fasplan 8(25) Fasrum: gammalt namn på tillståndsrum. Fasplan: tvådimensionellt tillståndsrum. Fasplan är lätta att illustrera grafiskt. En hel del kan generaliseras till högre dimensioner.

9 Linjära system. Egenvektorer 9(25) x 2 egenvektor x 1 ẋ = Ax, x = e λt v Av = λv är en lösning

10 Klassificering av jämviktspunkter 10(25) Beroende på om egenvärdena är reella eller komplexa, samt realdelens tecken, fås principiellt olika beteenden.

11 Tvåtangentnod 11(25) Stabil (vänster) och instabil (höger) tvåtangentnod: Stabil: Två reella olika negativa egenvärden. Instabil: Två reella olika positiva egenvärden. Principiella utseendet bestäms av egenvektorerna och relationen mellan beloppen av egenvärdena. Hastigheten bestäms av beloppet av egenvärdet.

12 Tvåtangentnod, forts. 12(25) 10 t=10s x Snabb egenvektor : λ 1 = 2.4 Långsam egenvektor : λ 2 = x 1

13 Sadelpunkt 13(25) Två reella egenvärden med olika tecken. Principiella utseendet och hastigheten enl. tidigare. Startar man precis rätt slutar man i origo, annars...

14 Sadelpunkt, forts. 14(25) 50 t=10s x Instabil egenvektor : λ 1 = 0.18 Stabil egenvektor : λ 2 = x 1

15 Entangentnod och stjärnnod 15(25) Sammanfallande egenvärden λ = λ 1 = λ 2. Stabil entangentnod till vänster (instabil: byt riktning). Det gick inte att hitta 2 st linjärt oberoende egenvektorer. Lösningen byter struktur. Stabil stjärnnod till höger (instabil: byt riktning). Man kan välja 2 st linjärt oberoende egenvektorer.

16 Fokus och centrum 16(25) Komplexkonjugerade egenvärden σ ± iω. [ ] σ ω ẋ = x ω σ Om systemet inte redan är på denna form kan man göra ett variabelbyte x = T x för att komma dit.

17 Fokus och centrum 16(25) Utför variabelbyte x 1 = r cos φ och x 2 = r sin φ: ṙ = σr φ = ω Lösningen blir spiraler eftersom φ växer (ω > 0 imaginärdelen). Avståndet till origo avtar om σ < 0 och ökar om σ > 0.

18 Fokus och centrum 16(25) Om σ = 0 så är avståndet konstant till origo, resultatet blir alltså cirklar kring origo.

19 Fokus och centrum 16(25) Vi har alltså två fall: Stabilt fokus till vänster (instabilt fokus: byt riktning på pilarna). Centrum till höger.

20 Fokus och centrum, forts. 17(25) t=10s 10 5 x x 1

21 Samband linjärt olinjärt: nära jämviktspunkt 18(25) Om det linjära systemet ẋ = Ax har en jämviktspunkt av typen en/tvåtangentnod, fokus eller sadelpunkt för x = 0 så har det olinjära systemet ẋ = Ax + g(x), g(x) / x 0, x 0 samma kvalitativa uppförande nära origo (så snart lösningen befinner sig tillräckligt nära ).

22 Samband linjärt olinjärt, forts. 19(25) På samma sätt, om det linjäriserade systemets jämviktspunkt är ett centrum så kan det olinjära beteendet både vara av typen (instab./stab.) fokus som centrum. en stjärnnod, kan man i princip inte säga något om det olinjära systemets fasplan nära jämviktspunkten.

23 Fasplanet långt från jämviktspunkter 20(25) Givet ett olinjärt andra ordningens system ẋ 1 = f 1 (x 1, x 2 ) ẋ 2 = f 2 (x 1, x 2 ) Bilda derivatan dx 2 = dx 2 dt = ẋ2 = f 2(x 1, x 2 ) dx 1 dt dx 1 ẋ 1 f 1 (x 1, x 2 ) Detta är alltså lutningen för x 2 som en funktion av x 1, oberoende av tiden t. Speciellt är banan vågrät för de (x 1, x 2 ) där f 2 (x 1, x 2 ) = 0 och lodrät där f 1 (x 1, x 2 ) = 0. Beteendet långt ut i fasplanet kan fås från gränsvärdena f 2 (x 1, x 2 ) lim x 1 ± f 1 (x 1, x 2 ), lim f 2 (x 1, x 2 ) x 2 ± f 1 (x 1, x 2 )

24 Två exempel med tre tillståndsvariabler 21(25) Exempel på generalisering till högre dimension: Stabilt nodfokus (vänster). Fokus + ett reellt egenvärde. Stabil tretangentnod (höger). Generalisering av tvåtangentnod, nu med tre reella egenvärden. Och alla kombinationer av dessa

25 Fasplan för generator 22(25) Jämviktspunkten i origo är ett stabilt fokus. Jämviktspunkterna i (±π, 0) är sadelpunkter (röda linjerna visar egenvektorerna). Jmf. utseendet hos Lyapunovfunktionen på tidigare föreläsning!

26 Instabilitet hos järnvägsfordon 23(25) Tvärsrörelsen hos lok och järnvägsvagnar blir ibland instabil: (Källa: La vie du rail)

27 Instabilitet hos järnvägsfordon 23(25) Tvärsrörelsen hos lok och järnvägsvagnar blir ibland instabil: (Källa: Wikipedia)

28 Hjulaxelns fasplan 24(25) En förenklad linjäriserad modell för en hjulaxel till en järnvägsvagn är: [ ] [ d λ αv = 2 ] [ ] ɛ 1 λ dt θ β αv 2 (1) θ där λ är förskjutningen i sidled och θ är axelns vridningsvinkel i horisontalplanet. α, β och ɛ är positiva konstanter. V är hastigheten i rälsens riktning. Vid måttliga hastigheter är diagonalelementen små så att egenvärdena är nästan rent imaginära med imaginärdelar ± β. Realdelarna har samma tecken som 2αV 2 ɛ. Vid låga hastigheter är fasplanet alltså ett stabilt fokus, över gränshastigheten V = 0.5ɛ/α ett instabilt fokus.

29 Hjulaxeldynamik, forts. 25(25) Att titta på en ensam axel är naturligtvis mycket förenklat, men en början. Sedan måste man ta hänsyn till att axlarna sitter i boggier, som bär upp vagnarna, som är hopkopplade till tågsätt. Även i mer realistiska fall är slutsatsen densamma: det finns en kritisk hastighet och över den är rörelsen instabil. Utvecklingen mot höghastighetståg har bl.a. möjliggjorts av att man teoretisk förstår och kan räkna på instabilitetsfenomenen. Man tittar numera på möjligheten att styra hjulaxlarna aktivt i ett återkopplat system.

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H

Läs mer

TENTAMEN I TSRT09 REGLERTEORI

TENTAMEN I TSRT09 REGLERTEORI TENTAMEN I TSRT09 REGLERTEORI SAL: Egypten, Asgård och Olympen TID: 2016-03-17 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill,

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) Innehåll föreläsning 12 2 Reglerteknik, föreläsning 12 Sammanfattning av kursen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-53 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet december Ekvationssytem och matrisräkning 3 Gauss metod, LU-uppdelning 3 Egenvärden 4 Projektioner 9 Principalkomponenter Differentialekvationssystem

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Algoritm, potensmetoden

Algoritm, potensmetoden Algoritm, potensmetoden Algoritm för att finna största reella egenvärde och tillhörande egenvektor till en reell matris. givet en startvektor x 0 i = 0 y i+1 = A x i x i+1 = y i+1 / y i+1 2 λ i+1 = x T

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc) 1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab

Läs mer

Populationsdynamik en ekologisk modell

Populationsdynamik en ekologisk modell 22 oktober 2015 FYTA11 Datoruppgift 7 Populationsdynamik en ekologisk modell Handledare: Jonas Wessen Email: jonas.wessen@thep.lu.se Individuell rapport inlämnas före angiven deadline. 1 1 Bakgrund Ienekologiskmiljöpåverkasolikaarteravväxterochdjuravvarandra

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Mat Grundkurs i matematik 3-II

Mat Grundkurs i matematik 3-II Mat-1.1532 Grundkurs i matematik 3-II G. Gripenberg Aalto-universitetet 23 november 2010 1 Matriser....................... 4 Grundläggande definitioner.............. 4 LU-uppdelningen..................

Läs mer

K 4-1. Introduktion till Egenvärden och SVD. Egenvärdesproblemet. Egenvektorn. Egenskaper

K 4-1. Introduktion till Egenvärden och SVD. Egenvärdesproblemet. Egenvektorn. Egenskaper Introduktion till Egenvärden och SVD Har detta något egenvärde? Egenvärdesproblemet Lösning till system av ODE s Egenvärdena är den viktigaste egenskapen i praktiskt taget alla dynamiska system, ofta med

Läs mer

Lite sfärisk geometri och trigonometri

Lite sfärisk geometri och trigonometri Lite sfärisk geometri och trigonometri Torbjörn Tambour 8 april 2015 Geometri och trigonometri på sfären är ett område som inte nämns alls i de vanliga matematikkurserna, men som ändå är värt att stifta

Läs mer

P L P N P L P N L π(p) Kartprojektioner Ett bonusproblem: longitudproblemet Lätt att på öppet hav bestämma latitud (nord-sydlig position). Lösning: mät solens höjd över horisonten med sextant. Tabell

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm Koordinatsystem Koordinatsystem För att verktygen i en CNC-maskin skall kunna styras exakt till samtliga punkter i maskinens arbetsrum, använder man sig av ett koordinatsystem. Den enklaste formen av koordinatsystem

Läs mer

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4 SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU STUDIO TMV036c - 0/03 Matematiska vetenskaper Linjära system av differentialekvationer Analys och Linjär Algebra, del C, K/Kf/Bt Inledning Vi har i tidigare studioövningar sett på allmäna system

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Reglerteknik 6. Kapitel 10. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se

Reglerteknik 6. Kapitel 10. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist william@kth.se Reglerteknik 6 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 6 kap Reglersystemets egenskaper Stabilitet är den viktigaste egenskapen. Ett ostabilt system är oanvändbart. Stabilitet är

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0).

1. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x 1 = (2, 3, 5), x 2 = (3, 1, 1) och x 3 = (1, 3, 0). TM-Matematik Mikael Forsberg Linjär algebra mk4a Övningstenta LA-. Bestäm volymen för den parallellepiped som ges av de tre vektorerna x = (,, ), x = (,, ) och x = (,, ).. För alla värden på parametern

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 4. Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner)

Välkomna till TSRT19 Reglerteknik Föreläsning 4. Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner) Välkomna till TSRT19 Reglerteknik Föreläsning 4 Sammanfattning av föreläsning 3 Rotort Mer specifikationer Nollställen (om vi hinner) Sammanfattning av förra föreläsningen 2 Vi introducerade PID-regulatorn

Läs mer

1. Lös ekvationen (2 i) sin z + cos z = 2 i. Svara med komplexa tal på formen a + bi. u(x, y) = φ(x)(1 y),

1. Lös ekvationen (2 i) sin z + cos z = 2 i. Svara med komplexa tal på formen a + bi. u(x, y) = φ(x)(1 y), Tentamensproblem 003-0-3 Lös ekvationen ( i) sin z + cos z = i Svara med komplexa tal på formen a + bi Bestäm alla analytiska funktioner f = u + iv med realdel u(x, y) = φ(x)( y), där φ är en två gånger

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

TENTAMEN I REGLERTEKNIK I

TENTAMEN I REGLERTEKNIK I TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG

Läs mer

Bästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5

Bästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5 Bästa däcken fram eller bak? Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 5 Viktig

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

Matematikrepetition inför Reglerteknik AK

Matematikrepetition inför Reglerteknik AK Matematikrepetition inför Reglerteknik AK Maria Karlsson 005 I kursen Reglerteknik AK används en hel del matematik från gymnasiet och kursernaianalysochlinjäralgebra.fråntidigareårvetviattendelstudenter

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 5

Ellära och Elektronik Moment AC-nät Föreläsning 5 Ellära och Elektronik Moment A-nät Föreläsning 5 Visardiagram Impendans jω-metoden Komplex effekt, effekttriangeln Visardiagram Om man tar projektionen på y- axeln av en roterande visare får man en sinusformad

Läs mer

FÖRNYELSEBARA RESURSER ETT RÄKNEEXEMPEL. Utgå från en logistisk tillväxtfunktion: = f ( x) = rx 1, där x är populationen, r är den

FÖRNYELSEBARA RESURSER ETT RÄKNEEXEMPEL. Utgå från en logistisk tillväxtfunktion: = f ( x) = rx 1, där x är populationen, r är den FÖRNYELSEBARA RESURSER ETT RÄNEEXEMPEL dx x Utgå från en logistisk tillväxtfunktion: = f ( x) = rx, där x är populationen, r är den dt inneboende tillväxttakten (alltid ett tal mellan noll och ett), och

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterationer på ett intervall av Fredrik Bratt 2011 - No 3 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Läs mer

Industriell reglerteknik: Föreläsning 4

Industriell reglerteknik: Föreläsning 4 Föreläsningar / 25 Industriell reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15)

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Vågor och Optik Mekaniska vågor (Kap. 15) D Alemberts allmäna lösning i 1D En mekanisk våg är en störning i ett medium som fortplantar sig. 1 $ 1 '$ 1 ' =& )& + ) = 0 x v t %

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) ösningsskiss för tentamen Vektorfält och klassisk fysik FFM232) Tid och plats: ösningsskiss: Måndagen den 24 oktober 2016 klockan 14.00-18.00 i M-huset. Christian Forssén och Tobias Wenger Detta är enbart

Läs mer

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till!

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till! TENTAMEN I REGLERTEKNIK M TSRT5 för M3 TID: 9 april 006, klockan 4-9. ANSVARIG LÄRARE: Inger Klein, tel 8 665, alt 0730-96 99. TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik, grundläggande teori

Läs mer

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 4: Kalmanfiltret & det slutna systemet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 3 2(19) Kovariansfunktion: Spektrum: R u (τ) = Eu(t)u(t τ)

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts. Reglerteori 2016, Föreläsning 4 Daniel Axehill 1 / 18 Sammanfattning av Föreläsning 3 Kovariansfunktion: TSRT09 Reglerteori Föreläsning 4: Kalmanfiltret & det slutna systemet Daniel Axehill Reglerteknik,

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: TER2 TID: 22 oktober 25, klockan 4-9 KURS: TSRT3 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5., 7. KURSADMINISTRATÖR:

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Tordag 3 oktober 04, kl. 3.00-6.00 Plat: Fyrilundgatan 80, Sal Anvarig lärare: Kjartan Halvoren, tel. 073-776 090. Tillåtna hjälpmedel: Kurboken (Glad-Ljung), miniräknare,

Läs mer

8.2.2 Bodediagram System av första ordningen K =, antages K > 0

8.2.2 Bodediagram System av första ordningen K =, antages K > 0 8. Frekvensanalys 8.2 Grafiska representationer av frekvenssvaret 8.2.2 Bodediagram System av första ordningen K G ( s) =, antages K > 0 Ts + A R ( ω) = G( jω) = K + ( ωt ) ϕ( ω) = arg G( jω) = arctan(

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

Att beräkna:: Avstånd

Att beräkna:: Avstånd Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

Kvantmekanik II - Föreläsning 7

Kvantmekanik II - Föreläsning 7 Kvantmekanik II - Föreläsning 7 Identiska partiklar Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 7 Joakim Edsjö 1/44 Innehåll 1 Generalisering av Schrödingerekvationen till fler partiklar

Läs mer

Mat Grundkurs i matematik 3-I

Mat Grundkurs i matematik 3-I Mat-1.1531 Grundkurs i matematik 3-I G. Gripenberg Aalto-universitetet 24 oktober 2010 G. Gripenberg (Aalto-universitetet) Mat-1.1531 Grundkurs i matematik 3-I 24 oktober 2010 1 / 90 G. Gripenberg (Aalto-universitetet)

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Föreläsning 3 Heisenbergs osäkerhetsprincip

Föreläsning 3 Heisenbergs osäkerhetsprincip Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education

Läs mer