TENTAMEN I TSRT09 REGLERTEORI

Storlek: px
Starta visningen från sidan:

Download "TENTAMEN I TSRT09 REGLERTEORI"

Transkript

1 TENTAMEN I TSRT09 REGLERTEORI SAL: Egypten, Asgård och Olympen TID: kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel , BESÖKER SALEN: cirka kl. 15:00 och 17:00 KURSADMINISTRATÖR: Ninna Stensgård, , TILLÅTNA HJÄLPMEDEL: 1. T. Glad & L. Ljung: Reglerteori. Flervariabla och olinjära metoder 2. T. Glad & L. Ljung: Reglerteknik. Grundläggande teori 3. Tabeller, t.ex.: L. Råde & B. Westergren: Mathematics handbook C. Nordling & J. Österman: Physics handbook S. Söderkvist: Formler & tabeller 4. Miniräknare LÖSNINGSFÖRSLAG: Finns på kursens websida efter skrivningens slut. VISNING av tentan äger rum , kl i Ljungeln, B- huset, ingång 27, A-korridoren till höger. PRELIMINÄRA BETYGSGRÄNSER: betyg 3 23 poäng betyg 4 33 poäng betyg 5 43 poäng OBS! Lösningar till samtliga uppgifter ska presenteras så att alla steg (utom triviala beräkningar) kan följas. All egen skriven kod som används ska skrivas ut och lämnas in med tentan. Bristande motiveringar ger poängavdrag. Lycka till!

2 UTSKRIFTSTIPS (LINUX): Utskrifter av vanliga filer kan skickas till en viss skrivare genom att man skriver kommandon som till exempel lp -d printername file.pdf i ett terminalfönster. (Byt ut printername mot den aktuella skrivarens namn.) Om man väljer File/Print i ett simulinkschema kan man ange en viss skrivare genom att lägga till -Pprintername i rutan vid Device option. AID ska finnas på samtliga inlämnade blad: Man kan lägga in text i matlabplottar med kommandona title och gtext och i scopeplottar i Simulink genom att högerklicka i dem och välja Axes properties. I simulinkscheman kan man dubbelklicka på något blankt ställe och sedan skriva in text. 2

3 1. (a) Beräkna poler och nollställen till systemet ẋ(t) = x(t) u(t) ( ) y(t) = x(t) utan att använda Matlab-kommandona pole eller zero (eller snarlika kommandon). Tips: Tänk på att det är polerna, och inte egenvärdena, som efterfrågas! (3p) (b) Tag fram den statiska förstärkningen för systemet i (a) och ange i vilken riktning förstärkningen är störst/minst. (3p) (c) Lågförstärkningssatsen kan sägas vara ganska konservativ (d.v.s. många system som inte uppfyller den är egentligen ändå stabila). Hur kan man (enkelt) motivera ett sådant påstående, t.ex. med ett exempel? Inga räkningar krävs. (2p) (d) Antag att du vill reglera ett system G(s) = s + 1 (s + 1)(s + 2) Du får i uppdrag att genom en internt stabiliserande återkoppling placera nollstället i s = 3. Kan du lösa den uppgiften, eller inte? Motivera som vanligt noggrant! (2p) 3

4 2. Betrakta en olinjär förenklad modell av en undervattensfarkost som rör sig längs en rät linje ẋ 1 = a m x 1 + b m (x 1 + cx 2 )(cx 2 x 1 ) ẋ 2 = dx 2 + u där x 1 är farkostens hastighet relativt vattnet längs den räta linjen, x 2 propellerns rotationshastighet och u är spänningen till motorn. Konstanterna m, a, b, c och d antas vara kända. (a) Välj en utsignal sådan att det relativa gradtalet blir 2. Visa att så är fallet genom att utföra lämpliga räkningar. (4p) (b) Ta fram en styrlag på formen u = (ū f 1 (x))/f 2 (x) med potentiellt olinjära funktioner f 1 (x) och f 2 (x) sådana att systemet blir exakt linjäriserat och får en ny virtuell insignal ū. (2p) (c) Ta fram en regulator som reglerar farkostens hastighet relativt vattnet ( farthållare ) genom att använda linjär IMC-teknik. Regulatorn ska styra systemet via ū. Stigtiden för det slutna systemet ska vara 3 s och den statiska förstärkningen 1. Din lösning ska innehålla en plot med ett stegsvar för slutna system från referens till hastighet där det tydligt framgår att kraven på stigtid och statisk förstärkning är uppfyllda. Om det krävs för din lösning kan du anta att a = b = c = d = 1. (4p) 4

5 3. En student som precis har klarat kursen i Reglerteori har drabbats av ett vanligt cykelproblem: fälgbromsar som tjuter kraftigt. Studenten fick Bromskloss x 1, x 2 Fälg v Däck Figur 1: Bromsklossens position mot fälgen på cykelhjulet. idén att analysera en modell av bromssystemet och med hjälp av den försöka förstå vad som händer. En enkel modell av en bromskloss rörelse då den har kontakt med en fälg som roterar med den konstanta periferihastigheten v och bromsklossens tryck mot fälgen är konstant ges av ẋ 1 = d m x 1 1 m tan(kx 2) + 1 m F f, π 2 < kx 2 < π 2 ẋ 2 = x 1 där x 1 är klossens hastighet längs fälgen relativt ramen och x 2 är klossens avstånd längs fälgen relativt dess viloläge. Se figur 1. F f är en friktionskraft som antas beskrivas av följande relation k d, x 1 < v F f = dx 1 + tan(kx 2 ), x 1 = v och dx 1 + tan(kx 2 ) k s k d, x 1 > v där k d är en konstant dynamisk friktionskraft och k s den maximala statiska friktionskraften. Bromsklossens massa är m. Låt m = 1, d = 0.1, k = 1, k s = 5, k d = 1 och v = 1. (a) Vilka jämviktspunkter finns och av vilken typ är de (entangentnod, tvåtangentnod, sadelpunkt,...)? (4p) (b) Skissa systemets fasplan. Ange tydligt de eventuella regioner med olika dynamik som det består av. (4p) 5

6 (c) Tjutandet som uppstår från fälgbromsar kan tänkas uppstå om systemet inte konvergerar mot en punkt i fasplanen utan istället hamnar i en bana (som inte är en enda punkt) som det genomlöper gång på gång. Detta kallas för en limit cycle. Rita in denna limit cycle, på ett tydligt sätt, i din skiss av fasplanet. (2p) 6

7 4. I den här uppgiften kommer vi att arbeta med ett system bestående av en backande lastbil med släp, se figur 2. Släpet består av dels en s.k. dolly som är fastsatt i lastbilens dragkrok och på dollyn är en trailer påkopplad. Det är ett svårare problem än att backa med personbil med släpkärra, och kan liknas med att man har två släpkärror efter varandra efter bilen när man ska backa. Konfigurationen kan alltså vika sig kring två punkter, märkta med A och B i figur 2. Uppgiften är att använda v 3 Trailer B Dolly 3 A Lastbil 2 3 y 3 y t Figur 2: Backande lastbil med dolly och trailer sedd uppifrån. LQ-design för att dels stabilisera släpet och dels för att få trailern att följa en bana som i det här något förenklade exemplet antas vara en rät linje. Styrsignalen är styrvinkeln α. Innan du kan börja jobba med uppgiften i Matlab måste du först ändra Matlabsökvägen samt kopiera en fil. Det du ska utföra är följande: 1. Kör kommandot addpath( /site/edu/rt/tsrt09/tenta/ ) i Matlabs kommandofönster. 2. Öppna ett terminalfönster, gå till din arbetskatalog och kör kommandot cp /site/edu/rt/tsrt09/tenta/reversing_truck.m. (notera den sista punkten). 3. Kör chmod 600 reversing_truck.m i terminalfönstret. (a) Filen reversing_truck.m laddar alla nödvändiga data, startar en simulering av systemet från ett förspecificerat initialtillstånd, plottar reglerstorheter och styrsignaler från simuleringen, samt innehåller en sektion där du ska lägga till kod som räknar fram en lämplig återkoppling L. När reversing_truck.m har körts en gång finns systemmatriserna A, B och C tillgängliga i workspace. Systemet har modellerats på linjär tillståndsform ẋ(t) = Ax(t) + Bu(t) z(t) = Cx(t) 7 (1)

8 med reglerstorheterna laterala avvikelsen y 3 som z 1, trailerorientering θ 3 som z 2, vinkeln mellan trailer och dolly β 3 som z 3 och vinkeln mellan lastbil och dolly β 2 som z 4. De fyra tillstånden x 1 x 4 har inte någon direkt fysikalisk tolkning. Styrsignalen u är styrvinkeln α. Designa med hjälp av linjärkvadratisk metodik en regulator på formen u = Lx som minimerar kriteriet V = och uppfyller kraven 0 z T (t)q 1 z(t) + u T (t)q 2 u(t)dt (2) Lateral avvikelse: y Trailerorientering: θ 3 10 Vinkel mellan trailer och dolly: β 3 15 Vinkel mellan lastbil och dolly: β 2 45 Styrvinkelutslag: α 45 under en körning av filen reversing_truck.m. Notera speciellt att det är z(t) som ingår i (2) och inte tillstånden direkt. Den enda filen du ska göra ändringar i är reversing_truck.m. Visa att du har uppfyllt kraven genom att plotta och skriva ut samtliga reglerstorheter och styrsignalen efter att filen reversing_truck.m har körts. Dina plottar ska tydligt illustrera att kraven i uppgiften är uppfyllda. Lämna också in en utskrift av filen reversing_truck.m där det tydligt framgår hur regulatorn har beräknats samt ange numeriskt det L du använt. (6p) (b) I modellen i (1), finns inget brus med. Lastbilstillverkaren skulle vilja ha en regulator som även är optimal för det fallet. För den här applikationen har man kommit fram till att systemet med störningar kan beskrivas av en modell på formen ẋ(t) = Ax(t) + Bu(t) + B w w(t) y(t) = Cx(t) + D v v(t) (3) där B w R 4 1, D v R 4 1, w(t) R är lågfrekvent brus och v(t) R brus med mycket energi kring vinkelfrekvensen 10 rad/s. Efter en kurs i reglerteori vet du att regulatorn från (a)-uppgiften kan modifieras så att störningarna w(t) och v(t) hanteras optimalt (teoretiskt sett) genom att införa ett kalmanfilter och att modellera störningarna på lämpligt sätt i modellen som används i detta filter. Din uppgift blir att utöka tillståndsmodellen i ekvation (3) med en lämplig störningsmodell som ger denna egenskap om den används i ett kalmanfilter tillsammans med en återkopplingen av typen i (a) 8

9 och att skriva denna utökade modell på formen x(t) = Ã x(t) + Bu(t) + Nv 1 (t) y(t) = C x(t) + v 2 (t) där v 1 och v 2 är vita brus. Du behöver alltså inte ta fram själva kalmanfiltret, det räcker med att redovisa vilken modell det ska appliceras på. I ditt svar kan du använda det ursprungliga systemets systemmatriser A, B, C, B w och D v, om du anser det lämpligt (numeriska data för dessa matriser behöver inte sättas in). Utökningen för störningsbeskrivningen ska vara fullständigt specificerad, d.v.s. inga godtyckliga konstanter får finnas med. (4p) 9

10 5. En biltillverkare har bestämt sig för att hänga på trenden med system för aktiv säkerhet. Man bestämmer sig för att utveckla ett s.k. Lane Keeping Assist system som innebär att om föraren är på väg att köra av vägen (korsa sidomarkeringarna) så styr bilen själv tillbaka bilen upp på vägen, se figur 3. Utkastet till systemet är ett reglersystem på formen Figur 3: Bil sedd uppifrån som styr tillbaka in på vägen om den håller på att passera sidomarkeringarna, d.v.s. om e(t) > 1.5. i figur 4 där laterala ( sidled ) dynamiken när föraren inte har händerna e -1.5 w 1.5 e F u G -1 Figur 4: Slutna systemet där e(t) betecknar avvikelse från mitten av den 3 meter breda vägen. på ratten approximeras av G(s) = s12 och regulatorn är F (s) = 100 som enbart blir aktiv när bilen korsar sidomarkeringarna som finns på avståndet ±1.5 m på vardera sidan av centrum av körfältet. D.v.s. w(t) = e(t) 1.5 då e(t) 1.5 e(t) då e(t) då 1.5 < e(t) < 1.5 (a) Analysera systemets beteende när föraren inte har händerna på ratten (d.v.s. systemet ovan) med hjälp av beskrivande funktion. Visa att det troligtvis kan uppstå självsvängning för många olika kombinationer av amplitud och frekvens, genom att plotta självsvängningens frekvens ω som en funktion av amplituden C [0 100]. (7p) 10

11 (b) Svängningens frekvens ω förutsägs vara uppåt begränsad för alla val av C (om vi även betraktar val av C som är fysikaliskt irrelevanta för den här praktiska applikationen). Motivera varför det är rimligt att så är fallet, i termer av vilken betydelse den betraktade olinjäritetens inverkan de facto har för olika amplituder. Beräkna en tajt övre gräns på svängningens frekvens. (3p) 11

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2013-08-27 Sal (1) Egypten (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK SAL: ISY:s datorsalar (Asgård) TID: 2016-08-17 kl. 8:00 12:00 KURS: TSRT07 Industriell reglerteknik PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: TER2 TID: 22 oktober 25, klockan 4-9 KURS: TSRT3 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5., 7. KURSADMINISTRATÖR:

Läs mer

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till! TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,

Läs mer

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06) Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: TER TID: 22 augusti 2, klockan 4. - 9. KURS: TSRT3, TSRT5, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR: ANSVARIG LÄRARE: Svante Gunnarsson, 3-28747,

Läs mer

TENTAMEN I REGLERTEKNIK I

TENTAMEN I REGLERTEKNIK I TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: T,T2 KÅRA TID: januari 27, klockan 8-3 KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 9.3,.3 KURSADMINISTRATÖR:

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 10. Fasplan. Olika typer av jämviktspunkter. Samband linjärt olinjärt: nära jämviktspunkt

TSRT09 Reglerteori. Sammanfattning av föreläsning 10. Fasplan. Olika typer av jämviktspunkter. Samband linjärt olinjärt: nära jämviktspunkt TSRT9 Reglerteori Föreläsning : Exakt linjärisering och prestandagränser Daniel Axehill Reglerteknik, ISY, Linköpings Universitet Reglerteori 27, Föreläsning Daniel Axehill / 32 Sammanfattning av föreläsning

Läs mer

TENTAMEN REGLERTEKNIK TSRT15

TENTAMEN REGLERTEKNIK TSRT15 TENTAMEN REGLERTEKNIK TSRT5 SAL: TER3+4 TID: 8 december 2, klockan 4-9 KURS: TSRT5 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL BLAD: 3 exklusive försättsblad ANSVARIG LÄRARE: Johan Löfberg JOURHAVANDE

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel

Läs mer

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2

Läs mer

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H

Läs mer

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10

Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10 Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning

Läs mer

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik

Läs mer

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till!

TENTAMEN I REGLERTEKNIK M TSRT15 för M3. Lycka till! TENTAMEN I REGLERTEKNIK M TSRT5 för M3 TID: 9 april 006, klockan 4-9. ANSVARIG LÄRARE: Inger Klein, tel 8 665, alt 0730-96 99. TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik, grundläggande teori

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts. Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

Reglerteknik AK. Tentamen kl

Reglerteknik AK. Tentamen kl Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 3. Sammanfattning av Föreläsning 3, forts. Sammanfattning av Föreläsning 3, forts. Reglerteori 2016, Föreläsning 4 Daniel Axehill 1 / 18 Sammanfattning av Föreläsning 3 Kovariansfunktion: TSRT09 Reglerteori Föreläsning 4: Kalmanfiltret & det slutna systemet Daniel Axehill Reglerteknik,

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 25 oktober 2013, kl. 13.00-16.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 018-4713070. Hans kommer och svarar på frågor ungefär kl 14.30. Tillåtna

Läs mer

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 4: Kalmanfiltret & det slutna systemet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 4: Kalmanfiltret & det slutna systemet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 3 2(19) Kovariansfunktion: Spektrum: R u (τ) = Eu(t)u(t τ)

Läs mer

Stabilitetsanalys och reglering av olinjära system

Stabilitetsanalys och reglering av olinjära system Laboration i Reglerteori, TSRT09 Stabilitetsanalys och reglering av olinjära system Denna version: 18 januari 2017 3 2 1 0 1 2 3 0 10 20 30 40 50 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system

Läs mer

Tentamen i Reglerteknik, för D2/E2/T2

Tentamen i Reglerteknik, för D2/E2/T2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Torsdagen den 3 Juni kl.9.-13. 21 Sal: R1122 Tillåtna hjälpmedel: Valfri

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.

Läs mer

TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62

TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62 TENTAMEN I REALTIDSPROCESSER OCH REGLERING TTIT62 Tid: Tisdagen den 2 juni 27, kl 4.-8. Lokal: TER Ansvariga lärare: Inger Klein, 28 665 eller 73-9699, Calin Curescu, 28 937 eller 73-54355 Hjälpmedel:

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4 SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

Välkomna till TSRT15 Reglerteknik Föreläsning 12

Välkomna till TSRT15 Reglerteknik Föreläsning 12 Välkomna till TSRT15 Reglerteknik Föreläsning 12 Sammanfattning av föreläsning 11 Återkoppling av skattade tillstånd Integralverkan Återblick på kursen Sammanfattning föreläsning 11 2 Tillstånden innehåller

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 12

Välkomna till TSRT19 Reglerteknik Föreläsning 12 Välkomna till TSRT19 Reglerteknik Föreläsning 12 Sammanfattning av föreläsning 11 Integralverkan Återkoppling av skattade tillstånd Återblick på kursen LABFLYTT! 2 PGA felbokning datorsal så måste ett

Läs mer

Tentamen i Styr- och Reglerteknik, för U3 och EI2

Tentamen i Styr- och Reglerteknik, för U3 och EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 12 Augusti kl. 9-13, 29 Sal: - Tillåtna hjälpmedel:

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

Tentamen i Reglerteknik, för D2/E2/T2

Tentamen i Reglerteknik, för D2/E2/T2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Lördagen den 15 Augusti kl.9.-13. 29 Sal: Tillåtna hjälpmedel: Valfri

Läs mer

A

A Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus

Läs mer

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

Industriell reglerteknik: Föreläsning 3

Industriell reglerteknik: Föreläsning 3 Industriell reglerteknik: Föreläsning 3 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 19 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

TSRT91 Reglerteknik: Föreläsning 12

TSRT91 Reglerteknik: Föreläsning 12 TSRT91 Reglerteknik: Föreläsning 12 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2012-08-17 Sal TER3 Tid 14-18 Kurskod TSFS04 Provkod TEN1 Kursnamn Elektriska drivsystem Institution ISY Antal uppgifter

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna. Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören

Läs mer

REGLERTEKNIK Inledande laboration (obligatorisk)

REGLERTEKNIK Inledande laboration (obligatorisk) UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK HN, MW 2008-01-23 Rev. HN, 2015-01-15 REGLERTEKNIK Inledande laboration (obligatorisk) Läsanvisningar: 1. Läs igenom instruktionen innan påbörjad laboration

Läs mer

Tentamen i Styr- och Reglerteknik, för U3 och EI2

Tentamen i Styr- och Reglerteknik, för U3 och EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 2 december kl. 9-13, 29 Sal: R1122 Tillåtna hjälpmedel:

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

TENTAMEN: DEL A Reglerteknik I 5hp

TENTAMEN: DEL A Reglerteknik I 5hp TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 december 03, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Tentamen i Reglerteknik, 4p för D2/E2/T2

Tentamen i Reglerteknik, 4p för D2/E2/T2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, 4p för D2/E2/T2 Tid: Måndagen den 28 maj kl.9.-13. 27 Sal: R1122 Tillåtna hjälpmedel: Valfri

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 14-6-5 Sal (1) KÅRA T1 & T (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 9 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 30 september 2013 Tillståndsåterkoppling Antag att vi återkopplar ett system med hjälp av u

Läs mer

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) Innehåll föreläsning 12 2 Reglerteknik, föreläsning 12 Sammanfattning av kursen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006)

Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006) Hans Norlander, IT-inst., Uppsala universitet, 2006-02-07 Reglerteknik Grundläggande teori Torkel Glad och Lennart Ljung En jämförelse mellan andra upplagan (1989) och tredje upplagan (2006) Kursboken

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2012-04-11 Sal (1) TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

Reglerteori, TSRT09. Föreläsning 12: Prestandabegränsningar & målkonflikter Sammanfattning av kursen. Torkel Glad

Reglerteori, TSRT09. Föreläsning 12: Prestandabegränsningar & målkonflikter Sammanfattning av kursen. Torkel Glad Reglerteori, TSRT09 Föreläsning 12: Prestandabegränsningar & målkonflikter Sammanfattning av kursen Reglerteknik, ISY, Linköpings Universitet Sammanfattning av Föreläsning 11 2(31) Syntes för olinjära

Läs mer

Robust reglerdesign till JAS 39 Gripen

Robust reglerdesign till JAS 39 Gripen Reglerteori, TSRT9 Robust reglerdesign till JAS 39 Gripen Denna version: 24 februari 217 F(s) REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: 1 Inledning Denna laboration behandlar

Läs mer

Liten MATLAB introduktion

Liten MATLAB introduktion Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts

Läs mer

REGLERTEKNIK Laboration 3

REGLERTEKNIK Laboration 3 Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)

Läs mer

Industriell reglerteknik: Föreläsning 2

Industriell reglerteknik: Föreläsning 2 Industriell reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 33 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:...

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:... Reglerteknik M3 Inlämningsuppgift 3 Lp II, 006 Namn:... Personnr:... Namn:... Personnr:... Uppskattad tid, per person, för att lösa inlämningsuppgiften:... Godkänd Datum:... Signatur:... Påskriften av

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1

Läs mer

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser

Läs mer

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A, Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE Reglerteknik D Tentamen 5--3 8.3.3 M Examinator: Bo Egardt, tel 37. Tillåtna hjälpmedel: Typgodkänd

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 11. Sammanfattning av Föreläsning 11, forts. Begränsningar på S, Bodes integral

TSRT09 Reglerteori. Sammanfattning av Föreläsning 11. Sammanfattning av Föreläsning 11, forts. Begränsningar på S, Bodes integral Reglerteori 2016, Föreläsning 12 Daniel Axehill 1 / 27 Sammanfattning av Föreläsning 11 TSRT09 Reglerteori Föreläsning 12: Prestandabegränsningar & målkonflikter. Sammanfattning av kursen. Daniel Axehill

Läs mer

Processidentifiering och Polplacerad Reglering

Processidentifiering och Polplacerad Reglering UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap

Läs mer

Reglerteknik Z2. Kurskod: SSY 050 och ERE080. Tentamen 2006-08-24

Reglerteknik Z2. Kurskod: SSY 050 och ERE080. Tentamen 2006-08-24 Reglerteknik Z2 Kurskod: SSY 050 och ERE080 Tentamen 2006-08-24 Tid: 14:00-18:00, Lokal: V-huset Lärare: Goran Cengic tel 3729, 073-903 70 10 Tentamen omfattar 25 poäng, där betyg tre fordrar 10 poäng,

Läs mer

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2

Läs mer

TENTAMEN I REGLERTEKNIK Y (TSRT12)

TENTAMEN I REGLERTEKNIK Y (TSRT12) TENTAMEN I REGLERTEKNIK Y (TSRT12) SAL: U1, U3, U4 TID: 10 juni 2011, klockan 14-19 KURS: TSRT12 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR: 12 ANSVARIG LÄRARE: David Törnqvist, 013-281882,

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

Överföringsfunktioner, blockscheman och analys av reglersystem

Överföringsfunktioner, blockscheman och analys av reglersystem Övning 3 i Mät- & Reglerteknik 2 (M112602, 3sp), MT-3, 2013. Överföringsfunktioner, blockscheman och analys av reglersystem Som ett led i att utveckla en autopilot för ett flygplan har man bestämt följande

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6 freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 7

Välkomna till TSRT19 Reglerteknik Föreläsning 7 Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare.

Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare. Tentamen i Reglerteknik (IE1304) 20/3-2014 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 20/3-2014 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,

Läs mer