F10: Strömreglering (PE-Kap 3)
|
|
- Malin Bergström
- för 7 år sedan
- Visningar:
Transkript
1 F10: Strömreglerg PE-Kap 3
2 Allmät om trömreglerg V har tgare tttat om hatgat på trömreglerg och lte mer etalj på varvtalreglerg. Varvtalreglerg av eletra maer bygger tor omfattg på valg reglerteor och reglerte e mege att et te räver ågra reta elma eller rafteletroaper. Momet- eller trömreglerg är ofta tart moellbaera. Detta betyer att ma te allt aväer g av trt formellt rtg reglerteor ta tället föröer göra approxmatoer å att reglerparametrara a ttryca eletra torheter om reta och ta ombato me amplgtervallet läg. Samplgtervallet läg opplat tll wtch-frevee påverar approxmatoera om gör lom amplg-meto. vertet / tea högola / Itrell Eletrote / PK
3 Samplg-meto vertet / tea högola / Itrell Eletrote / PK
4 Sampla trömreglator ta förröjgar - DC-lat eller efag AC-lat I Aarrete på e ltrömma eller e allmä lat alte tll e lpägomvalare eller e efag AC-lat a rta om fgre ea. Krchoff päglag för e åa lat me lämpäg va ocå ea. t e Om ma tegrerar över ett ampeltervall [..+1] och elar me e läg erhålle e meelvärebla fferetalevato: t t t t et vertet / tea högola / Itrell Eletrote / PK
5 vertet / tea högola / Itrell Eletrote / PK Sampla trömreglator ta förröjgar - DC-lat eller efag AC-lat II Dea fferetalevato övergår alltå e ffereevato: Där trecet över torhete erar meelväre över tervallet. Detta a alltå rva om om och ete av härlege går t på att tola e gåee torhetera och era meelväre. 1, 1 1, 1, e 1, 1 1 1, e 1, 1 1, e
6 Sampla trömreglator ta förröjgar - DC-lat eller efag AC-lat III Klämpäge meelväre motvarar j meelpäge om molator tyr t vlet förhoppgv motvarar börväret v tervallet börja. Alltå:, 1 Vare å atar v att trömreglator är mplemetera om ea-beat v att: 1 V atar ocå att e, em: v varvtalet eller tpäge om ea torhet motvarar flteroeatorpäge ho e SMPS, te ära er ett amplgtervall: e, 1 e Strömme atella väre v ampel är mma av alla tgare reglerfel och blar ärför e tret I-el: 1 0 vertet / tea högola / Itrell Eletrote / PK
7 vertet / tea högola / Itrell Eletrote / PK Sampla trömreglator ta förröjgar - DC-lat eller efag AC-lat IV Sammataget: ger 1 0 1, 1 1, e e 1, 1 1, e e e
8 vertet / tea högola / Itrell Eletrote / PK Sampla trömreglator eglator är e ampla PI-reglator me framopplg av em: eller päge över tgågfltret oeator: Om galproceor aväer hela amplgtervallet för att beräa och ärefter lägga t e öae päge på omvalare tgågar å får ma e förröjg motvarae ett ampel-tervall. Detta ebär att ea-beat förtärg ej a aväa! 1 0 e
9 vertet / tea högola / Itrell Eletrote / PK Sampla trömreglator me förröjg Det elate ättet att va problemet är att ma förtärge å att e är lägre ä ea-beat-förtärg: Där motvarar e per-t förtärg me ea-beat- förtärge om baväre! Ett lämplgt val av är 0.5 eller 0.5! 1 0 e
10 Sampla trömreglator me förröjg Ett aat mer elegat ätt att hatera förröjge me är me hjälp av e Smth-pretor. E Smth-pretor gör e pp- attg av va trömförärge bore bl me e pålaga päge och aerar ea tll e mätta trömme. Obervera att oggrahete ho ea attg blr tart beroee av att late parametrar är äa me tor oggrahet, pecellt tae. vertet / tea högola / Itrell Eletrote / PK
11 Q-omvalare me ampla trömreglator Exempel 1: Uta förröjgar, äa parametrar 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
12 Q-omvalare me ampla trömreglator Exempel 1: Uta förröjgar, äa parametrar 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
13 Q-omvalare me ampla trömreglator Exempel : Me förröjg, felatgt väre på 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
14 Q-omvalare me ampla trömreglator Exempel 3: Me förröjg, felatgt väre på 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
15 4Q-omvalare me ampla trömreglator Exempel 4: Uta förröjgar, äa parametrar 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
16 4Q-omvalare me ampla trömreglator Exempel 4: Uta förröjgar, äa parametrar 10 mh m Uc 100 V vertet / tea högola / Itrell Eletrote / PK
17 olerabareglerg Detta avtt alla Drect Crret Cotrol DCC rmateralet. Detta är ett ålgt och prcp felatgt am på et om berv. Det orreta egela amet på et om berv är tolerace ba cotrol. Det aväa amet pelar på Drect ore Cotrol DC om är e reglermeto om avä för framförallt ayromaer är vrmometet eg. ore och äve flöet tolerabareglera. Hr om helt å yftar te Drect på att tolerabareglerg avä ta att ma reglerar momet me äve flöet amplt ltorheter v tatoärtet ret ta att gå va tröm och päg. Detta betyer att ma te behöver övergå roterae ooratytem för att bl av me et tatoära felet. vertet / tea högola / Itrell Eletrote / PK
18 Q-omvalare me tolerabareglera Fgre våvaratomvalare me tolerabareglator verae på trömme mplemetera om ett relä. Swtch-tlltået ge av OBS tgare: [0,1], : [-1,1]: 1 1 f f f Δ Δ Δ Δ vertet / tea högola / Itrell Eletrote / PK
19 Q-omvalare me tolerabareglera 10 mh 1 U c 100 V Δ 3A Fgre 3.1. Strömrppel v varerae em e och trömbörväre =0 A. vertet / tea högola / Itrell Eletrote / PK
20 Q-omvalare me tolerabareglera 10 mh 1 U c 100 V Δ 3A Fgre Stegvar för e tvåvaratomvalare v tolerabareglera tröm. vertet / tea högola / Itrell Eletrote / PK
21 4Q-omvalare me tolerabareglera Fgre Fyrvaratomvalare me tolerabareglator verae på trömme. Swtch-ftoe mer omplcera -- två wtch-tlltå me bara e tröm! Fgre vertet / tea högola / Itrell Eletrote / PK
22 4Q-omvalare me tolerabareglera 10 mh 1 U c 100 V Δ 4 A Fgre Stegvar för e tvåvaratomvalare v tolerabareglera tröm. vertet / tea högola / Itrell Eletrote / PK
23 Strömreglerg trefaga ytem Det om agt tgare om trömreglerg för lpäg- och efaga växelpäglater går att tvga äve tll trefaga later och ytem. De eletra ele av e yroma eller ett trefaät et eare fallet motvarar em: e ätpäge a berva me fferetalevatoe t e et tatoära ooratytemet. I etta ooratytem ommer em-vetor att rotera me e eletra velfrevee v v effetvarat traformato e E e jt et E e jt vertet / tea högola / Itrell Eletrote / PK
24 Strömreglerg trefaga ytem Ur etta er ma att em: och flöet är 90 åtlja. Om ma låter flöet och e cerae päge efera två axlar ett roterae - ooratytem å ommer em och flöe att vara ltorheter etta ooratytem. t jt e e j jt vertet / tea högola / Itrell Eletrote / PK e e t e t jt e e jt jt E E e e e jt y y t e j Fgre 3.4.
25 Strömreglerg trefaga ytem Om ma ätter Så a ma rva om fferetalevatoe frå vetorform tll ompoetform v j t t y t y e jy e Fgre 3.4. Obervera att ovatåee fferetalevatoer är eta me e om gäller för e DC-ma om ma borter frå oropplgtermera. Detom är alla gåee torheter ltorheter. vertet / tea högola / Itrell Eletrote / PK
26 vertet / tea högola / Itrell Eletrote / PK Strömreglerg trefaga ytem e e t t Om ma härleer e ampla trömreglator frå ea fferetalevatoer å blr ea ttryc ocå välgt la et om härlee för e DC-ma.
Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem
Lög tll tll tetame EIEF0 Elmaer och drvytem 04 05 30. Ltrömmae, tatoär drft E eletrt mageterad ltrömmotor har följade data agva på märylte: P = 000 W, = 5000 rpm, U a = 0 V, I a = 0 A och I f = 0.5 A.
Läs merTentamen del 2 i kursen Elinstallation, begränsad behörighet ET
Tetame del 2 i kure Elitallatio, begräad behörighet ET1013 2013-06-03 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara
Läs merVäntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Läs merTentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29
Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara
Läs merD 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Läs merKorrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Läs merOrderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Läs merKONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )
Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merFörslag till beslut. Sammanfattning. Till Exploateringsnämnden
2009-09-0 DNR E2008--029 Britta Eliao Avelig för projektutvecklig Telefo: 08-08 26 6 britta.eliao@expl.tockholm.e Till Exploaterigäm 2009-- Markiig iom fatighet Örby : vi kv Stillbil i Högal till AGA Ga
Läs merTENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.
HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:
Läs merSOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
Läs merSannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Läs merOm dagens föreläsning!
F8: Krafthalvledarförluter och kylning Om dagen föreläning! Termik deign är en av de viktigate ingredienerna i kraftelektrik deign, i ynnerhet för effekter högre än någ kw. Även om verkninggraden för en
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merFyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merTentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03
Tentamen del 2 i kuren Elintallation, begränad behörighet ET1013 2013-06-03 Tentamen omfattar 60 poäng. För godkänd tentamen kräv 30 poäng. Tillåtna hjälpmedel är räknedoa amt bifogad formelamling Beräkningar
Läs merKTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar
KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi
Läs merTentamen med lösningar i IE1304 Reglerteknik Måndag 16/
Tetme me löigr i IE4 Reglertei Måg 6/ 9.-. Allmä iformtio Emitor: Willim Sqvit. Avrig lärre: Willim Sqvit, tel 8-79 4487 Cmpu Kit, Tetmeuppgifter behöver ite återläm är u lämr i i rivig. Hjälpmeel: Räre/rfräre.
Läs merPPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08
Sruvörband ar Bar MdH/IDT 1 Innebär att: - olla att ruvarna håller - olla att örbandet håller hop vd pålagd lat ar Bar MdH/IDT 2 Sruven - σ = a / A - a : p.g.a. lat och örpännng - A E : pännngarea nn bland
Läs merInterpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
Läs merF9: Elementär motorreglering (EMS-Kap 11) och Varvtalsreglering (PE-Kap 9)
F9: Elementär motorreglerng EMS-Kp och Vrvtlreglerng PE-Kp 9 Allmänt om motorreglerng I de flet ppltoner med roternde elmner efterträvr nvändren: En önd poton potonreglerng Ett önt vrvtl vrvtlreglerng
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs mer3-fastransformatorn 1
-fastrasformator TRANSFORMATORN (-fas) A B C N φa φb φc rimärsida N E -fastrasformator består i pricip av st -fastrasformatorer som är sammaopplade. Seudärsida N YNy trafo. a b c KOLNGSSÄTT rimärsida a
Läs merUPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor
Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista
Läs merFördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
Läs merInduktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
Läs merMekaniska vibrationer. Hjulupphängning. Fria odämpade svängningar. Svängningstiden för pendelrörelsen. Approximationen sin
--9 Meaisa vibraioer Hjulupphäi ria oäpae sväiar Sväisie för peelrörelse 9 7 S e ( S) r ( ) P; e r e 7 9 De aeaisa peel (parielpeel) ( ) (...) 7 Approxiaioe si Rörelseevaioe.99.9.97 si.9.9.9 P ; si, (
Läs merFärgscheman Bengal [by Jez]
Vilke färg har egale? Färgchema Begal [y Jez] 24 24 33 24 32 24 31 vartpotted (ru) eal lyxpoit potted eal mik potted eal epia potted 22 22 33 22 32 22 31 vartmarle (ru) eal lyxpoit marle eal mik marle
Läs merDatum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
Läs merOrderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Läs merFILTER: Tvåportar. Tvåportar, impedansparametrar (z-par.) Uttryck två av storheterna V 1, V 2, I 1 och I 2 som funktion av de andra två.
V I 7 - Filterteori FILTER: Tvåortar V I Paivt RLMC-ät Kaualt LTI-ytem Uttryck två av torhetera V, V, I och I om fuktio av de adra två. T.ex V f I, I V f I, I Lijärt ytem uero. z I + z I z I + z I Coyright
Läs mer4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Läs merFormler, grundläggande statistik
Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample
Läs merLösningsförslag till tentamen i TSRT19 Reglerteknik Tentamensdatum: Svante Gunnarsson
Löningförlag till tentamen i TSRT9 Reglerteknik Tentamendatum: 207-0-03 Svante Gunnaron. (a) Styrignaler: Gapådrag, rattvinkel Utignaler: Hatighet, poition på vägbanan Störignaler: Vind, uppför-/nedförbackar
Läs merAPPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Läs merförekommer i uttrycket. och vidstående blockschema, Figur 8.1. Vi kan direkt säga att filtrets impulssvar blir
8 Traverella ilter Vi har tidigare delat upp tiddireta ytem i två huvudgrupper traverella och reuriva ytem och amma uppdelig är aturligtvi giltig är vi börjar tala om tiddireta ilter eterom de är e typ
Läs merär ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.
Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer
Läs merligger sydväst o m Norrköping och på ett afstånd af endast 20 minuters väg från staden,
: 29 (604) P M P P Å : 5: M M P B > 5 : M P > 3 : - V Ö : VJ ÖMMP: 8 Ö B P P V 2 P Ö WÖ V: B Ä Ä 2 3 : J 2: Å 899 MM XP: ÖV PÅ Y 6 Ä ÖMÅ V ÖPP 0 5 BYÅ M 6 4 7 6 4 6 20 w B w M V B B P JÖM! V V ' W 0 V
Läs mervara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )
rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------
Läs merLösningar till tentamen i Reglerteknik
Löningar till tentamen i Reglerteknik Tentamendatum: 8 Juni 205. (a) Välj t.ex. tyrbar kanonik form 5 4 3 ẋ(t) = 0 0 x(t) + 0 u(t) 0 0 0 y(t) = ( 0 ) x(t) (b) Stabilt ytem och tationär förtärkning G(0)
Läs merNågot om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Läs merTENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
Läs merF15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett
Läs merTentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Läs merTillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna
UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:
Läs merFörsöket med trängselskatt
STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då
Läs merBegreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Läs mer= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2
Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +
Läs merFöljande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Läs merEkvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Läs merSyfte I den här laborationen skall du undersöka egenskaper hos en asynkronmotor.
Karltad uiveritet ELGB0 Elrafttei och rafteletroi Sida 1 av 9 Avd. för fyi och eletrotei Ayromotor Nam: Godäd laboratio: Syfte I de här laboratioe all du uderöa egeaper ho e ayromotor. Förberedeleuppgift
Läs merKarlstads universitet ELGB02 Elkraftteknik och kraftelektronik Sidan 1 av 7 Avd. för fysik och elektroteknik. Godkänd laboration:
Karltad uiveritet ELGB0 Elrafttei och rafteletroi Sida 1 av 7 Avd. för fyi och eletrotei Ayromotor Nam: Godäd laboratio: Syfte I de här laboratioe all du uderöa egeaper ho e ayromotor. Förberedeleuppgift
Läs mer13. DIKTÖRNS SÅNG. l l l l. a 2 2 ff f l. l l l l. a2 ff f l. l l l l. b 2 2f f f. k k k k k k k k
13. DIKTÖRNS SÅNG 70 a 2 2 ff f a2 ff f Ditörn: Ficor: b 2 2f f f Pirater: a 2 2 ff f b2f f f e e f n n J mz o Jag Jag är ett fö-re-dö-me för en ä-ta fö-re - ta - ga-re, en fö-re-bid för star-a - re som
Läs merBetong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater
Nvåmätg Betg Cemet Guv Pappe & Cellula Afalt Gu Kem Plat Läkemedel Lvmedel Avlpp & Vatte Vätk Pulve Sluy Flg Gaulate Nvåmätg fö pcedut Nvåktll fö: Övefylladkydd Batchktll Pduktmätg Lagektll Säkehetlam
Läs mer7,5 25 Blandade tider. 7,5 25 Blandade tider. 7,5 25 Blandade tider
REGISTRERINGSINFORMATION Kurserna är lisade i boksavsordning. OBS! WEBBREGISTRERING SKA ALLTID GÖRAS I FÖRSTA HAND! Du som redan är suden på ÖU ska webbregisrera dig via Sudenforum. Du kan ine webbregisrera
Läs merFöreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005
Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de
Läs merVäntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Läs merjz j k k k k k k k kjz j k k j j k k k k j j
Avsedet I Podoen melodi ur gamla Valamo losters oihod a d j j Kom, låt oss ge den sista ssen åt den dö de, tac an de Gud. j jz j a d j j j j j j För hon/han har gått ort från si na nä ra och sri der nu
Läs merSensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Läs merAV SKÅP LB+S AV DISKBÄNK MOBIL SKRIVTAVLA 131 PL 48 PL UTSTÄLLNING 2 A123 UTSTÄLLNING 2 A123 SA1-G1 75 DISKBÄNK E+N E+N
ÅP + Å P I UTTI Ad + I I IVTA 3 P 48 P UTTI 2 A3 UTTI 2 A3 ATJÉ 2 A4 + 6 E 6 6 43 TYCUFT 8 I Å UTTI 42 CC - F A9 AT VETA A7 TTA VT ÅP 6 A3 A- T-F ÅP FA V A T- F V3-2 6 A--7 V 336 Ö A--7 V 348 Ö 3X 2X :
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merKarlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn
Karltad univeritet Tel 0 Elraftteni och rafteletroni Bilaga Avd. för eletroteni Aynronmotorn 1(1) Aynronmotorn Namn: Godänd laboration: Syfte Du all underöa egenaperna ho en trefa aynronmotor. Underöningen
Läs merMultiplikationsprincipen
Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter
Läs merAutomationsteknik Implementering av diskret PID-regulator 1(9)
Automationteni Implementering av iret PID-regulator 1(9) Laboration Implementering av iret PID-regulator En PID-regulator an ontruera me enbart analog eletroni. Doc vill man ofta integrera fler funtioner
Läs merDigital signalbehandling Föreläsningsanteckningar Uppdateringar, vecka 7
Itittioe r data- oc elektrotekik Freläiateckiar Uppdateriar, vecka 7 -- CALERS LINDOLEN Sida Itittioe r data- oc elektrotekik Sve Kto Box 8873 4 7 Gtebor Bekdre: relåe 4 Teleo: 3-77 57 7 Fax: 3-77 57 3
Läs merLinköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.
Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.
Läs mer2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.
Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig
Läs mer7 Inställning av PID-regulatorer
7 Intällnng av PID-regulatorer 7. PID-regulatorer 7. Spekatoner oh pretanakrterer. Pretana (elmnerng av törnngar, börväreöljnng). Stabltet (tabltetmargnal, robuthet) Stabltet har kuterat, pretana kan enera
Läs merFöreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen?
Föreläning 7 Föreläning 7: Känlighetfunktionen och Stationära fel 4 Februari, 29. 2. Standardkreten 3. Känlighetfunktion Förra veckan Stabilitet är viktigt! yquitkriteriet Im G(iω) Amplitud- och famarginal
Läs mer27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.
27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u
Läs merSensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
Läs merKontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
Läs merFör länge sen hos Beethoven
Ludwig van Beethoven ör länge sen hos Beethoven Arrangemang Christian Ljunggren SATB calluna musik hb ör länge sen hos Beethoven Sopran Alt Tenor/Bas 4 8 12 ör länge sen hos Beethoven 4 2 4 2 4 2 j ör
Läs merJADO Gislavedsvägen 18, AMBJÖRNARP Tel UPPDRAG NR RITAD/KONSTR AV UPPDRAGSLEDARE 1143 J.A DATUM
FORESKRFTER. se x -. - PA B1 3289 EAST FÖRSAG PÅ MOUER OCH PACERG 9x4Ö 7 r l 1627 PTPA 3255 / 7 1628 l BS EA PTRA 1 mm ÄGRE se- se- 1-----J n 1627 3255 7 3187 34x12 W 1 n [ [ h h 34x12 BJAKAGSPA 34x12
Läs merVad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Läs merTidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.
Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller
Läs merHYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen.
HPOTESPRÖVNING De tatitika metodera om aväd för att fatta dea typ av belut baera på två komplemetära atagade om populatioe. Partiet produkter har atige de utlovade kvalitete eller å har de de ite. Atige
Läs merKVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio
Läs mer(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.
Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
03-0-4 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då
Läs mer0. Ingenting 0. Ingenting. >KA GALLUP INSTITUTET ÅB.eholmstorg 14-> Stockholm. U: 585 April 1954 KONFIDENTIELLT
>KA GALLUP INSTITUTET ÅB.eholmstorg 14-> Stockholm KONFIDENTIELLT U: 585 April 1954 Goddag, mitt am ar «frå Sveska Gallup Istitutet. Vi håller f.. på med e udersökig beträffade sveska folkets matvaor och
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merHambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
Läs merEgna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Läs merBröderna fara väl vilse ibland (epistel nr 35)
Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me
Läs merLösningsförslag Fråga 3, 4 och 5 Tentamen i Turbomaskiner 7,5 hp
UMEÅ UNIVERSIE 0--08 illämpa fysik och elektronik Lars Bäckström ners Strömberg Lösningsförslag Fråga 3, 4 och 5 entamen i urbomaskiner 7,5 hp i: 0--08 9:00 5:00 Hjälpmeel: Valfri formelsamling, miniräknare
Läs merBeteckningar för områdesreserveringar: T/kem Landskapsplanering
kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12
Läs merFöreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
Läs mer+ + om systemet har M transversalkonstanter
9 Vi har tidigare ett att polera placerig har törre ivera på frevegåge ä vad olltällea placerig har, vilet gör att reuriva filter är effetivare ä traveralfilter. Vi a därför apa reuriva filter om a geerera
Läs merKap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
Läs merPLACERING I STADSBIBLIO- TEKET.
KOTOR ETRÉ FRÅ GLASSKJUTDÖRRAR 13,9 KVM UTSTÄLLIGSYTA 121,5 KVM TAKHÖJD 3,2 m SOLID VÄGG GLASVÄGG GLASVÄGG H U V U D - E TRÉ GLASVÄGG PLACERIG I STADSBIBLIO- TEKET. GLASVÄGG HALMSTADS YA STADSGALLERIET
Läs mer============================================================ ============================================================
Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)
Läs merBegreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Läs mer