Kapitel 4. Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning

Storlek: px
Starta visningen från sidan:

Download "Kapitel 4. Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning"

Transkript

1 Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning

2 Reetition, Kaitel 3 Bernollis tidgade ekation förlster s f g g α α Korrektionsfaktor, se sid ( ) ( )da n g h d g dt d W W Q CS C ss s Ω 1 ˆ 1 ˆ Energiekationen Antag inkomressibel, stationär och endimensionell strömning

3 Reetition, Kaitel g1 g s ˆ 1 Antag n: 1. Stationär strömning, inget tidsberoende. Inkomressibel strömning, lågt Machtal (mindre än 0.3) 3. Friktionsfri strömning, inga förlster 4. Strömning längs en strömlinje 5. Inget aelarbete 6. Ingen ärmeöerföring 1 1 g g Bernollis ekation: ( q)

4 Reetition, Differentialrelationer Betraktelsesätt: Lagrange: Följer med flidartikel Eler: Fit läge i rmmet Materiella deriatan: accelerationen kan skrias som Lokal acceleration D Dt t (, t), 0, 0 0 (,, t), a a t konekti acceleration t D Dt t ( )

5 Reetition, Differentialrelationer Kontinitetsekationen: t ( ) 0 Imlsekationen: I -led: Lokal acceleration t D Dt konekti acceleration g g τ graitation trckkraft τ τ iskös kraft τ

6 Reetition, Deformation a ett flidelement Translation: Rotation: Skjning: olmändring:

7 Reetition, Differentialrelationer Ytkrafter Sänningstensorn: σ σ σ σ ij τ τ τ τ τ τ τ τ τ σ σ σ σ σ σ

8 Reetition, Deformation a ett flidelement t t dβ d dα d t d d t

9 Reetition, Deformation a ett flidelement t Deformationshastighet: Små inklar ger: 1 dα dβ ε dt dt d dα dt d1 dt dβ dt 1 dt t dβ dα d d d t d t

10 Deformation a ett flidelement Reetition, Låt dt d dt d dt β α 0 I en netonsk flid beror sänningen linjärt å deformationshastigheten ε µ τ ( ) om inkomressibel 0 3 ij ij ij δ µ µε τ ij µ τ namisk iskositet d t t d d t t d dα dβ

11 Reetition, Differentialrelationer Imlsekationen: τ g Dt D g t µ g t µ g t µ Kan för inkomressibel strömning a en netonsk flid skrias: g Dt D µ Naier-Stokes ekationer

12 Energiekationen: Differentialrelationer Från kaitel 3: ( ) ed e ( n)da Gör å samma sätt som för kontinitet, ilket ger: ( e) ( ζ ) ( ζ ) ( ζ ) t Q W s Notera att 0 W s W ss d dt C Ω CS dd Q t ingen aeleffekt om C är mcket liten W ζ e

13 Differentialrelationer Energiekationen: Anänd kedjeregeln: ( ) ( ) ( ) ( ) ( ) ( ) dd t t e t e W Q ζ ζ ζ kontinitet Efter en del förenklingar fås: ( ) dd Dt De W Q

14 Differentialrelationer Energiekationen: ärmeflöde Försmma strålning och antag endast kondktion genom CS Foriers lag: q k T Gör å samma sätt i alla riktningar och titta å nettoflödet q T k q q d d Q q q q dd qdd Inför Foriers lag: Q ( k T )dd

15 Differentialrelationer Energiekationen: isköst arbete Från ka.3: ( τ τ τ ) Gör å samma sätt som för ärmeflödet W dd d ( τ )dd d

16 Differentialrelationer Energiekationen: ( ) ( ) ( ) τ T k Dt De Skri om iskös term: ( ) ( ) ( ) T τ τ τ iskös dissiation, alltid ositi ( ) Φ T µ τ För inkomressibel netonsk flid:

17 Differentialrelationer Hela ekationssstemet: Kontinitet t ( ) 0 Imls D Dt g τ Energi De τ Dt ( ) ( k T ) ( )

18 Differentialrelationer För inkomressibel strömning, netonsk flid med konstant densitet, iskositet och kondktiitet: Kontinitet Imls Energi Dt c DT Dt 0 D g µ k T ( T τ ) Eemel å randillkor ägg: ägg T T ägg (alternatit secificeras ärmeflödet) Utlo: t n eller 0

19 Differentialrelationer Rotation/orticitet Definition: ( ) ζ ω rot,, För D-strömning: (,,0) 0,0,

20 orticitet Rotation/orticitet t t dβ d dα d t d d t

21 Rotation a ett flidelement inkelhastighet: dt d dt d β α ω 1 Små inklar ger: dt d ddt d 1 α dt dt d 1 β d t t d d t t d dα dβ

22 t Rotation a ett flidelement Låt dα dt 0 dt dβ dt 1 inkelhastigheten ω 1 På samma sätt: ω 1 ω 1 1 ϖ rot ( ) ( ) orticitet: ζ ω ω ω Notera att i D-fallet är 0 t dβ d dα d d t Strömningen kallas rotationsfri om ζ 0 d t

23 Fråga: Kan en irel ara rotationsfri?

24 Strömlinje och strömfnktion:, Differentialrelationer Definition: Strömlinje är en linje till ilken strömningen alltid är arallell d d 0

25 Strömfnktionen Strömfnktionen: Kontinitet 0 Inför strömfnktionen ( ), ψ 0 ψ ψ För tådimensionell, stationär och inkomressibel strömning gäller: Imls 1 ν 1 ν 0 ψ ψ Idén är att redcera antalet obekanta och ekationer

26 Strömfnktionen 0 ψ ψ Jämför med 0 ψ ψ Hastighetskomoneterna kan n skrias som Tag n rotationen a imlsekationen Dt D µ ψ ψ ψ ζ

27 Strömfnktionen Rotationen a imlsekationen ger ψ ψ ( ) ( ) ψ ψ ν ( ψ ) i har alltså redcerat antalet ariabler men den ekation i fått är mera komle och med högre ordnings deriator

28 Strömfnktionen CS Relation till olmflödet: dq olmflödet: dq ( n )da da bds ψ ψ dq,, ds ψ d ψ b d ds bdψ bds olmflöde er breddenhet: ( ) 1 1 ds ψ Q n ds b ψ d 1 dψ ψ n ψ d,, 0 ds ds

29 Strömfnktionen ψ CS Relation till olmflödet: olmflödet: dq ( n )da da bds dq bdψ ψ 1 1 Q b olmflöde er breddenhet: ( ) 1 1 ψ n ds ψ 1 dψ ψ ψ

30 Friktionsfri strömning Dt D g µ µ 0 D Dt g Elers ekation Ger Bernollis ekation om den integreras längs strömlinje, se sid. 59 Friktionsfri och rotationsfri strömning: Om strömningen är rotationsfri φ,,, t ( ) 0 kan hastighetsotentialen definieras φ φ φ φ (,, ) φ,, φ φ φ

31 Friktionsfri strömning Friktionsfri och rotationsfri strömning: För D-strömning: ψ ψ φ φ Strömlinjer och otentiallinjer alltid inkelräta mot arandra Friktionsfri och rotationsfri strömning kallas otentialströmning

32 Potentialströmning Elementarfall ilka kan kombineras för att skaa andra strömningar: 1. Parallellströmning: ψ U φ U φ U ψ

33 Potentialströmning. Linjekälla/sänka: ψ mθ φ mln r Strrkan m Q πb

34 Potentialströmning 3. Linjeirel: ψ K ln r φ Kθ irelstrrkan

35 Potentialströmning Seronering a elementarfall, eemel: Källasänka

36 Potentialströmning Seronering a elementarfall, eemel: Parallellströmning källa Rankinehalkro

37 Potentialströmning Seronering a elementarfall, eemel: Parallellströmning källa sänka Rankineoal Bilderna är skaade i Ideal Flo Machine, finns å htt://.aoe.t.ed/~deenor/aoe5104/ifm/ifm.html

Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning

Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning Reetition Kaitel 3 Reetition, Kaitel 3 Energiekationen ( ) ( )da n g h d g dt d W W Q CS

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning. Approximativa metoder för analys av komplexa fysiologiska flöden

Bevarandelagar för fluidtransport, dimensionsanalys och skalning. Approximativa metoder för analys av komplexa fysiologiska flöden Bearandelagar för fliransport, dimensionsanals och skalning Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Blodets reologi Balansekationerna på differentiell form Dimensionsanals Naier-Stokes

Läs mer

Approximativa metoder för analys av komplexa fysiologiska flöden

Approximativa metoder för analys av komplexa fysiologiska flöden Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Naier-Stokes ekationer på dimensionslös form Balansekationerna på integralform Gränsskikt Smörjfilmsteori Naier-Stokes ekationer på dimensionslös

Läs mer

Aerodynamik och kompressibel strömning

Aerodynamik och kompressibel strömning Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3) Bearandelagar för flidtransport, dimensionsanals och skalning (Kapitel 3) Idag: Kapitel 3 Blodets reologi (rest från kapitel ) Generella balansekationerna på differentiell form: bearande a massa och rörelsemängd

Läs mer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3) Bearandelaar för flidransor, dimensionsanals och skalnin (Kaiel 3) Ida: Kaiel 3 Blodes reoloi (res från kaiel iår) Generella balansekaionerna å differeniell form Dimensionsanals Naier-Sokes ekaioner å

Läs mer

Introduktion till turbulens och turbulenta gränsskikt

Introduktion till turbulens och turbulenta gränsskikt Introdktion till trblens och trblenta gränsskikt Tå frågor 1. Hr sklle d karaktärisera trblens? Tänk på nckelord.. Ge eempel på sitationer när trblent strömning är bättre än laminär och ice ersa. Trblens

Läs mer

A. Egenskaper hos plana figurer (MTM458)

A. Egenskaper hos plana figurer (MTM458) uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning

Bevarandelagar för fluidtransport, dimensionsanalys och skalning Bearandelagar för flidranspor, dimensionsanals och skalning Innehåll Blodes reologi Balansekaionerna på differeniell form Dimensionsanals Naier-Sokes ekaioner på dimensionslös form Krpsrömning Blodes reologi

Läs mer

Kapitel 8. Kap.8, Potentialströmning

Kapitel 8. Kap.8, Potentialströmning Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v

Läs mer

Energitransport i biologiska system

Energitransport i biologiska system Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym

Läs mer

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform:

BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform: BERNOULLIS EKVATION Friktionsfri strömning, Eulers ekvation på vektorform: dv dt = V t +(V )V = g ρ 1 p (1) Cartesiska koordinater: V = (u,v,w), = ( / x, / y, / z). Vektoridentitet: (V )V = (V 2 /2)+ξ

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Kap.9, Kompressibel strömning

Kap.9, Kompressibel strömning Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,

Läs mer

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag Tentaensskrining i Mekanik Del Dynaik för M 7 ösningsförslag. a) tötnoralen n i. Rörelseängdens earande i stötnoralled ( ): + + + () 0 där etecknar kulornas hastighetskoponenter efter stöt. tudstalet:

Läs mer

Kap.9, Kompressibel strömning

Kap.9, Kompressibel strömning Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,

Läs mer

Textil mekanik och hållfasthetslära

Textil mekanik och hållfasthetslära Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen

Läs mer

(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur.

(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur. Kapitel 1 Inledning MMV025 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Ge en praktisk definition av en fluids densitet. Illustrera med figur. 1.2 Diskutera och illustrera med diagram några tänkbara

Läs mer

6 2D signalbehandling. Diskret faltning.

6 2D signalbehandling. Diskret faltning. D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad

Läs mer

Matematik F-klass. vår-terminen. Anneli Weiland Matematik F-klass VT 1

Matematik F-klass. vår-terminen. Anneli Weiland Matematik F-klass VT 1 Matematik F-klass vår-terminen Anneli Weiland Matematik F-klass VT 1 Följ linjen noga! anneli weiland, Matematik F-klass HT 2 Rita en stor blomma Rita en större blomma Rita den största blomman anneli weiland,

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur!

LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur! LEDNINGR TILL ROLEM I KITEL OS! En fullständig lösning måste innehålla en figur! L.1 Kroppen har en rotationshastighet. Kulan beskrier en cirkelrörelse. För ren rotation gäller = r = 5be O t Eftersom och

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation

Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

1 Potenitallösningen för strömningen kring en cylinder

1 Potenitallösningen för strömningen kring en cylinder Föreläsning 9 1 Potenitallösningen för strömningen kring en cylinder I denna föreläsning ska vi kortfattat behandla potentialströmning, som traditionellt varit ett stort område inom aerodynamiken, men

Läs mer

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5 LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan

Läs mer

Miniräknare, passare, gradskiva och linjal. 50 poäng

Miniräknare, passare, gradskiva och linjal. 50 poäng Textil mek. & hållfasthetslära romoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 6--5 Tid: 9:-3: Hjälpmedel: Miniräknare,

Läs mer

Tentamen i mekanik TFYA kl. 8-13

Tentamen i mekanik TFYA kl. 8-13 TEKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och Biologi Galia Pozina Tentaen i ekanik TFY6 4-- kl. 8- Tillåtna Hjälpedel: Physics Handbook eller Tefya utan egna anteckningar, aprograerad

Läs mer

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna. Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

Parametriska kurvor: Parametriska ytor

Parametriska kurvor: Parametriska ytor Kror och ytor Eplicit form Implicit form Kror och ytor Parametrisk form Procerbaserade Polynom Catmll-Clark ekannan och dess datormotsarighet Martin Newell, 975. Gsta aén CID gstat@nada.kth.se Kbiska (grad

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur.

(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur. Kapitel 1 Inledning MMV211 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Vad är den principiella skillnaden mellan en fluid och en fast kropp (solid)? 1.2 Ge en praktisk definition av en fluids

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s Lösningar till Kaströrelse magnetism Växelström Kaströrelse G1. y 4,6 sin 1 g t ger y (4,6 sin 1 9,8,3) m/s 0,9 m/s Sar: 1 m/s G. För hastigheterna id kaströrelse gäller x csα y sin α g t Om y 8,5 sin

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

Föreläsning 15: Faktorförsök

Föreläsning 15: Faktorförsök Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

Fuktiga området, överhettad ånga,gas MTF 090

Fuktiga området, överhettad ånga,gas MTF 090 Fuktiga området, öerhettad ånga,gas MF 090 ntar luft är en ideal gas Behållare ges index respektie IG: P m 0,870 kj / kg, K enligt tab. P 00 m 0, 87 98 50,8708 500, m 5,846 kg + +,, m tot m m + m 5,846

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

Samtliga Härledningar och Bevis inom Termodynamik för T2. Tony Burden Institutionen för mekanik, KTH, Stockholm

Samtliga Härledningar och Bevis inom Termodynamik för T2. Tony Burden Institutionen för mekanik, KTH, Stockholm Samtliga Härledningar och Beis inom ermodynamik för 2 ony Burden Institutionen för mekanik, KH, Stockholm Version 3.0 mars 2006 Förord Denna lunta innehåller samtliga härledningar och beis som skulle kunna

Läs mer

1.8 Beskriv aerodynamiskt skillnaden mellan en trubbig kropp (eng. blunt or bluff body) och en slank kropp (eng. slender or streamlined body).

1.8 Beskriv aerodynamiskt skillnaden mellan en trubbig kropp (eng. blunt or bluff body) och en slank kropp (eng. slender or streamlined body). MMVN01 Aerodynamik och kompressibel strömning Repetitionsfrågor Kapitel 1 Aerodynamik, inledning 1.1 Betrakta en omströmmad kropp som anströmmas med konstant lufthastighet V vid inkompressibla förhållanden.

Läs mer

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar 17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

Miniräknare, passare och linjal. 50 poäng

Miniräknare, passare och linjal. 50 poäng Textil mek. & hållfasthetslära Promoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH0 Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 05-0-6 Tid: 09:00-3:00 Hjälpmedel:

Läs mer

Stokes sats och dess motsvarigheter i vektoranalysen

Stokes sats och dess motsvarigheter i vektoranalysen Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com Stokes sats och dess motsvarigheter

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

Stokes sats och dess motsvarigheter i vektoranalysen

Stokes sats och dess motsvarigheter i vektoranalysen Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com Stokes sats och dess motsvarigheter

Läs mer

TYP-TENTAMEN I TURBOMASKINERNAS TEORI

TYP-TENTAMEN I TURBOMASKINERNAS TEORI Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida

Läs mer

Kap Inversfunktion, arcusfunktioner.

Kap Inversfunktion, arcusfunktioner. Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.

Läs mer

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5. February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

FORMELSAMLING. Produktionsteknik

FORMELSAMLING. Produktionsteknik 2008-01-10 FORMELSAMLING i Produktionsteknik Sammanställd av Peter Bjurstam för kurserna TMPT04, TMPT33 och TMMI06 Nomenklatura med enheter: (Storheter i alfabetisk ordning) W Arbete (Nm) A Area (mm 2

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Onsdag /0 008, kl. 08.30-.30 i V-huset. Examinator: Mats

Läs mer

Teori för flervariabelsanalys

Teori för flervariabelsanalys Teori för flervariabelsanalys Robin Andersson 28 otober 2013 1 Innehåll 1 Differentierbarhet 3 2 Kedjeregeln 4 3 Formel för beräning av ritningsderivatan av en differentierbar funtion 5 4 Taylors formel

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

TENTAMEN I TURBOMASKINERNAS TEORI

TENTAMEN I TURBOMASKINERNAS TEORI Kraftverksteknik TMT JK/MG/IC 9-4- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den te april 9, kl. 8.-., sal M:L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för varje ny

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

TATM79: Föreläsning 5 Trigonometri

TATM79: Föreläsning 5 Trigonometri TATM79: Föreläsning 5 Trigonometri Johan Thim augusti 016 1 Enhetscirkeln Definition. Enhetscirkeln är cirkeln med centrum i origo och radie ett. En punkt P = (a, b på enhetscirkeln uppfyller alltså a

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

KAP. 2 Kinetiska egenskaper (gäller både dispersioner och lösningar av makromolekyler)

KAP. 2 Kinetiska egenskaper (gäller både dispersioner och lösningar av makromolekyler) KAP. Kinetiska egenskaer (gäller både disersioner oh lösningar av akroolekyler) Hur rör sig kolloidala artiklar i en vätska? Hur kan studier av rörelsen ge ugift o artiklarnas storlek oh for? Sedientation

Läs mer

Sammanfattning av formler i balkteoripärm PJG,

Sammanfattning av formler i balkteoripärm PJG, Saafattig a frler i balkteripär JG -- sitt B: Böj- ch stågerka eligt Berlli/Eler-balkteri Defratisatagade: öjig: ε w Späig: Sittstrheter: σ Eε σ N σ d σ d σ d V τ d V τ d Sittstrheter id ll töjig: N σ

Läs mer

2.5 Partiella derivator av högre ordning.

2.5 Partiella derivator av högre ordning. 2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,

Läs mer

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition

Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt

Läs mer

Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0

Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0 Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.

Läs mer

Teori- och räkneuppgifter

Teori- och räkneuppgifter Teori- och räkneuppgifter Version December 7 014 1 Fel- och störningsanalys 11 Värdet på x är uppmätt till 0956 med ett absolutfel på högst 00005 Ge en öre gräns för absolutfelet i y exp(x + x Motiera

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Appendix A: Differentialoperatorer i olika koordinatsystem

Appendix A: Differentialoperatorer i olika koordinatsystem Appendix A: Differentialoperatorer i olika koordinatsystem [Arfken,BETA,Lahtinen] A. 1. Kurvilineära koordinatsystem Antag att i ett Cartesiskt (x, y, z) koordinatsystem med basvektorerna bx, by, bz existerar

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer