Kapitel 4. Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning
|
|
- Isak Öberg
- för 5 år sedan
- Visningar:
Transkript
1 Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning
2 Reetition, Kaitel 3 Bernollis tidgade ekation förlster s f g g α α Korrektionsfaktor, se sid ( ) ( )da n g h d g dt d W W Q CS C ss s Ω 1 ˆ 1 ˆ Energiekationen Antag inkomressibel, stationär och endimensionell strömning
3 Reetition, Kaitel g1 g s ˆ 1 Antag n: 1. Stationär strömning, inget tidsberoende. Inkomressibel strömning, lågt Machtal (mindre än 0.3) 3. Friktionsfri strömning, inga förlster 4. Strömning längs en strömlinje 5. Inget aelarbete 6. Ingen ärmeöerföring 1 1 g g Bernollis ekation: ( q)
4 Reetition, Differentialrelationer Betraktelsesätt: Lagrange: Följer med flidartikel Eler: Fit läge i rmmet Materiella deriatan: accelerationen kan skrias som Lokal acceleration D Dt t (, t), 0, 0 0 (,, t), a a t konekti acceleration t D Dt t ( )
5 Reetition, Differentialrelationer Kontinitetsekationen: t ( ) 0 Imlsekationen: I -led: Lokal acceleration t D Dt konekti acceleration g g τ graitation trckkraft τ τ iskös kraft τ
6 Reetition, Deformation a ett flidelement Translation: Rotation: Skjning: olmändring:
7 Reetition, Differentialrelationer Ytkrafter Sänningstensorn: σ σ σ σ ij τ τ τ τ τ τ τ τ τ σ σ σ σ σ σ
8 Reetition, Deformation a ett flidelement t t dβ d dα d t d d t
9 Reetition, Deformation a ett flidelement t Deformationshastighet: Små inklar ger: 1 dα dβ ε dt dt d dα dt d1 dt dβ dt 1 dt t dβ dα d d d t d t
10 Deformation a ett flidelement Reetition, Låt dt d dt d dt β α 0 I en netonsk flid beror sänningen linjärt å deformationshastigheten ε µ τ ( ) om inkomressibel 0 3 ij ij ij δ µ µε τ ij µ τ namisk iskositet d t t d d t t d dα dβ
11 Reetition, Differentialrelationer Imlsekationen: τ g Dt D g t µ g t µ g t µ Kan för inkomressibel strömning a en netonsk flid skrias: g Dt D µ Naier-Stokes ekationer
12 Energiekationen: Differentialrelationer Från kaitel 3: ( ) ed e ( n)da Gör å samma sätt som för kontinitet, ilket ger: ( e) ( ζ ) ( ζ ) ( ζ ) t Q W s Notera att 0 W s W ss d dt C Ω CS dd Q t ingen aeleffekt om C är mcket liten W ζ e
13 Differentialrelationer Energiekationen: Anänd kedjeregeln: ( ) ( ) ( ) ( ) ( ) ( ) dd t t e t e W Q ζ ζ ζ kontinitet Efter en del förenklingar fås: ( ) dd Dt De W Q
14 Differentialrelationer Energiekationen: ärmeflöde Försmma strålning och antag endast kondktion genom CS Foriers lag: q k T Gör å samma sätt i alla riktningar och titta å nettoflödet q T k q q d d Q q q q dd qdd Inför Foriers lag: Q ( k T )dd
15 Differentialrelationer Energiekationen: isköst arbete Från ka.3: ( τ τ τ ) Gör å samma sätt som för ärmeflödet W dd d ( τ )dd d
16 Differentialrelationer Energiekationen: ( ) ( ) ( ) τ T k Dt De Skri om iskös term: ( ) ( ) ( ) T τ τ τ iskös dissiation, alltid ositi ( ) Φ T µ τ För inkomressibel netonsk flid:
17 Differentialrelationer Hela ekationssstemet: Kontinitet t ( ) 0 Imls D Dt g τ Energi De τ Dt ( ) ( k T ) ( )
18 Differentialrelationer För inkomressibel strömning, netonsk flid med konstant densitet, iskositet och kondktiitet: Kontinitet Imls Energi Dt c DT Dt 0 D g µ k T ( T τ ) Eemel å randillkor ägg: ägg T T ägg (alternatit secificeras ärmeflödet) Utlo: t n eller 0
19 Differentialrelationer Rotation/orticitet Definition: ( ) ζ ω rot,, För D-strömning: (,,0) 0,0,
20 orticitet Rotation/orticitet t t dβ d dα d t d d t
21 Rotation a ett flidelement inkelhastighet: dt d dt d β α ω 1 Små inklar ger: dt d ddt d 1 α dt dt d 1 β d t t d d t t d dα dβ
22 t Rotation a ett flidelement Låt dα dt 0 dt dβ dt 1 inkelhastigheten ω 1 På samma sätt: ω 1 ω 1 1 ϖ rot ( ) ( ) orticitet: ζ ω ω ω Notera att i D-fallet är 0 t dβ d dα d d t Strömningen kallas rotationsfri om ζ 0 d t
23 Fråga: Kan en irel ara rotationsfri?
24 Strömlinje och strömfnktion:, Differentialrelationer Definition: Strömlinje är en linje till ilken strömningen alltid är arallell d d 0
25 Strömfnktionen Strömfnktionen: Kontinitet 0 Inför strömfnktionen ( ), ψ 0 ψ ψ För tådimensionell, stationär och inkomressibel strömning gäller: Imls 1 ν 1 ν 0 ψ ψ Idén är att redcera antalet obekanta och ekationer
26 Strömfnktionen 0 ψ ψ Jämför med 0 ψ ψ Hastighetskomoneterna kan n skrias som Tag n rotationen a imlsekationen Dt D µ ψ ψ ψ ζ
27 Strömfnktionen Rotationen a imlsekationen ger ψ ψ ( ) ( ) ψ ψ ν ( ψ ) i har alltså redcerat antalet ariabler men den ekation i fått är mera komle och med högre ordnings deriator
28 Strömfnktionen CS Relation till olmflödet: dq olmflödet: dq ( n )da da bds ψ ψ dq,, ds ψ d ψ b d ds bdψ bds olmflöde er breddenhet: ( ) 1 1 ds ψ Q n ds b ψ d 1 dψ ψ n ψ d,, 0 ds ds
29 Strömfnktionen ψ CS Relation till olmflödet: olmflödet: dq ( n )da da bds dq bdψ ψ 1 1 Q b olmflöde er breddenhet: ( ) 1 1 ψ n ds ψ 1 dψ ψ ψ
30 Friktionsfri strömning Dt D g µ µ 0 D Dt g Elers ekation Ger Bernollis ekation om den integreras längs strömlinje, se sid. 59 Friktionsfri och rotationsfri strömning: Om strömningen är rotationsfri φ,,, t ( ) 0 kan hastighetsotentialen definieras φ φ φ φ (,, ) φ,, φ φ φ
31 Friktionsfri strömning Friktionsfri och rotationsfri strömning: För D-strömning: ψ ψ φ φ Strömlinjer och otentiallinjer alltid inkelräta mot arandra Friktionsfri och rotationsfri strömning kallas otentialströmning
32 Potentialströmning Elementarfall ilka kan kombineras för att skaa andra strömningar: 1. Parallellströmning: ψ U φ U φ U ψ
33 Potentialströmning. Linjekälla/sänka: ψ mθ φ mln r Strrkan m Q πb
34 Potentialströmning 3. Linjeirel: ψ K ln r φ Kθ irelstrrkan
35 Potentialströmning Seronering a elementarfall, eemel: Källasänka
36 Potentialströmning Seronering a elementarfall, eemel: Parallellströmning källa Rankinehalkro
37 Potentialströmning Seronering a elementarfall, eemel: Parallellströmning källa sänka Rankineoal Bilderna är skaade i Ideal Flo Machine, finns å htt://.aoe.t.ed/~deenor/aoe5104/ifm/ifm.html
Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning
Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning Reetition Kaitel 3 Reetition, Kaitel 3 Energiekationen ( ) ( )da n g h d g dt d W W Q CS
Bevarandelagar för fluidtransport, dimensionsanalys och skalning. Approximativa metoder för analys av komplexa fysiologiska flöden
Bearandelagar för fliransport, dimensionsanals och skalning Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Blodets reologi Balansekationerna på differentiell form Dimensionsanals Naier-Stokes
Approximativa metoder för analys av komplexa fysiologiska flöden
Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Naier-Stokes ekationer på dimensionslös form Balansekationerna på integralform Gränsskikt Smörjfilmsteori Naier-Stokes ekationer på dimensionslös
Aerodynamik och kompressibel strömning
Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelagar för flidtransport, dimensionsanals och skalning (Kapitel 3) Idag: Kapitel 3 Blodets reologi (rest från kapitel ) Generella balansekationerna på differentiell form: bearande a massa och rörelsemängd
Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer
Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelaar för flidransor, dimensionsanals och skalnin (Kaiel 3) Ida: Kaiel 3 Blodes reoloi (res från kaiel iår) Generella balansekaionerna å differeniell form Dimensionsanals Naier-Sokes ekaioner å
Introduktion till turbulens och turbulenta gränsskikt
Introdktion till trblens och trblenta gränsskikt Tå frågor 1. Hr sklle d karaktärisera trblens? Tänk på nckelord.. Ge eempel på sitationer när trblent strömning är bättre än laminär och ice ersa. Trblens
A. Egenskaper hos plana figurer (MTM458)
uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.
Bevarandelagar för fluidtransport, dimensionsanalys och skalning
Bearandelagar för flidranspor, dimensionsanals och skalning Innehåll Blodes reologi Balansekaionerna på differeniell form Dimensionsanals Naier-Sokes ekaioner på dimensionslös form Krpsrömning Blodes reologi
Kapitel 8. Kap.8, Potentialströmning
Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v
Energitransport i biologiska system
Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym
BERNOULLIS EKVATION. Friktionsfri strömning, Eulers ekvation på vektorform:
BERNOULLIS EKVATION Friktionsfri strömning, Eulers ekvation på vektorform: dv dt = V t +(V )V = g ρ 1 p (1) Cartesiska koordinater: V = (u,v,w), = ( / x, / y, / z). Vektoridentitet: (V )V = (V 2 /2)+ξ
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tentaensskrining i Mekanik Del Dynaik för M 7 ösningsförslag. a) tötnoralen n i. Rörelseängdens earande i stötnoralled ( ): + + + () 0 där etecknar kulornas hastighetskoponenter efter stöt. tudstalet:
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
Textil mekanik och hållfasthetslära
Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen
(14 januari 2010) Vad representerar de två sista termerna? Illustrera ingående storheter i figur.
Kapitel 1 Inledning MMV025 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Ge en praktisk definition av en fluids densitet. Illustrera med figur. 1.2 Diskutera och illustrera med diagram några tänkbara
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Matematik F-klass. vår-terminen. Anneli Weiland Matematik F-klass VT 1
Matematik F-klass vår-terminen Anneli Weiland Matematik F-klass VT 1 Följ linjen noga! anneli weiland, Matematik F-klass HT 2 Rita en stor blomma Rita en större blomma Rita den största blomman anneli weiland,
LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur!
LEDNINGR TILL ROLEM I KITEL OS! En fullständig lösning måste innehålla en figur! L.1 Kroppen har en rotationshastighet. Kulan beskrier en cirkelrörelse. För ren rotation gäller = r = 5be O t Eftersom och
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation
Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
1 Potenitallösningen för strömningen kring en cylinder
Föreläsning 9 1 Potenitallösningen för strömningen kring en cylinder I denna föreläsning ska vi kortfattat behandla potentialströmning, som traditionellt varit ett stort område inom aerodynamiken, men
1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5
LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan
Miniräknare, passare, gradskiva och linjal. 50 poäng
Textil mek. & hållfasthetslära romoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 6--5 Tid: 9:-3: Hjälpmedel: Miniräknare,
Tentamen i mekanik TFYA kl. 8-13
TEKNISK HÖGSKOLN I LINKÖPING Institutionen för Fysik, Kei och Biologi Galia Pozina Tentaen i ekanik TFY6 4-- kl. 8- Tillåtna Hjälpedel: Physics Handbook eller Tefya utan egna anteckningar, aprograerad
Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.
Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm
Laborationsuppgift om Hertzsprung-Russell-diagrammet
Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet
Parametriska kurvor: Parametriska ytor
Kror och ytor Eplicit form Implicit form Kror och ytor Parametrisk form Procerbaserade Polynom Catmll-Clark ekannan och dess datormotsarighet Martin Newell, 975. Gsta aén CID gstat@nada.kth.se Kbiska (grad
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
(14 januari 2010) 1.2 Ge en praktisk definition av en fluids densitet. Illustrera med figur.
Kapitel 1 Inledning MMV211 Strömningslära Repetitionsfrågor (14 januari 2010) 1.1 Vad är den principiella skillnaden mellan en fluid och en fast kropp (solid)? 1.2 Ge en praktisk definition av en fluids
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss
Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s
Lösningar till Kaströrelse magnetism Växelström Kaströrelse G1. y 4,6 sin 1 g t ger y (4,6 sin 1 9,8,3) m/s 0,9 m/s Sar: 1 m/s G. För hastigheterna id kaströrelse gäller x csα y sin α g t Om y 8,5 sin
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Föreläsning 15: Faktorförsök
Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =
1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =
1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
Fuktiga området, överhettad ånga,gas MTF 090
Fuktiga området, öerhettad ånga,gas MF 090 ntar luft är en ideal gas Behållare ges index respektie IG: P m 0,870 kj / kg, K enligt tab. P 00 m 0, 87 98 50,8708 500, m 5,846 kg + +,, m tot m m + m 5,846
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν
RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär
har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Samtliga Härledningar och Bevis inom Termodynamik för T2. Tony Burden Institutionen för mekanik, KTH, Stockholm
Samtliga Härledningar och Beis inom ermodynamik för 2 ony Burden Institutionen för mekanik, KH, Stockholm Version 3.0 mars 2006 Förord Denna lunta innehåller samtliga härledningar och beis som skulle kunna
1.8 Beskriv aerodynamiskt skillnaden mellan en trubbig kropp (eng. blunt or bluff body) och en slank kropp (eng. slender or streamlined body).
MMVN01 Aerodynamik och kompressibel strömning Repetitionsfrågor Kapitel 1 Aerodynamik, inledning 1.1 Betrakta en omströmmad kropp som anströmmas med konstant lufthastighet V vid inkompressibla förhållanden.
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Miniräknare, passare och linjal. 50 poäng
Textil mek. & hållfasthetslära Promoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH0 Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 05-0-6 Tid: 09:00-3:00 Hjälpmedel:
Stokes sats och dess motsvarigheter i vektoranalysen
Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com Stokes sats och dess motsvarigheter
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Bra tabell i ert formelblad
Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare
τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.
Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är
Stokes sats och dess motsvarigheter i vektoranalysen
Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com Stokes sats och dess motsvarigheter
TYP-TENTAMEN I TURBOMASKINERNAS TEORI
Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida
Kap Inversfunktion, arcusfunktioner.
Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.
en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.
February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR
DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska
FORMELSAMLING. Produktionsteknik
2008-01-10 FORMELSAMLING i Produktionsteknik Sammanställd av Peter Bjurstam för kurserna TMPT04, TMPT33 och TMMI06 Nomenklatura med enheter: (Storheter i alfabetisk ordning) W Arbete (Nm) A Area (mm 2
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Onsdag /0 008, kl. 08.30-.30 i V-huset. Examinator: Mats
Teori för flervariabelsanalys
Teori för flervariabelsanalys Robin Andersson 28 otober 2013 1 Innehåll 1 Differentierbarhet 3 2 Kedjeregeln 4 3 Formel för beräning av ritningsderivatan av en differentierbar funtion 5 4 Taylors formel
Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)
Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att
TENTAMEN I TURBOMASKINERNAS TEORI
Kraftverksteknik TMT JK/MG/IC 9-4- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den te april 9, kl. 8.-., sal M:L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för varje ny
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
TATM79: Föreläsning 5 Trigonometri
TATM79: Föreläsning 5 Trigonometri Johan Thim augusti 016 1 Enhetscirkeln Definition. Enhetscirkeln är cirkeln med centrum i origo och radie ett. En punkt P = (a, b på enhetscirkeln uppfyller alltså a
Kvantmekanik II (FK5012), 7,5 hp
Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.
KAP. 2 Kinetiska egenskaper (gäller både dispersioner och lösningar av makromolekyler)
KAP. Kinetiska egenskaer (gäller både disersioner oh lösningar av akroolekyler) Hur rör sig kolloidala artiklar i en vätska? Hur kan studier av rörelsen ge ugift o artiklarnas storlek oh for? Sedientation
Sammanfattning av formler i balkteoripärm PJG,
Saafattig a frler i balkteripär JG -- sitt B: Böj- ch stågerka eligt Berlli/Eler-balkteri Defratisatagade: öjig: ε w Späig: Sittstrheter: σ Eε σ N σ d σ d σ d V τ d V τ d Sittstrheter id ll töjig: N σ
2.5 Partiella derivator av högre ordning.
2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,
Vektorer En vektor anger en riktning i rummet (eller planet) och en längd (belopp). Vektorer brukar ritas som pilar, Vektoraddition
Vektorer En ektor anger en riktning i rmmet (eller planet) och en längd (belopp). Vektorer brkar ritas som pilar, Vektoraddition Smman a tå ektorer och får i på följande is: lacera i pnkten och placera
K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen
Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik
Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt
Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:
Tenta 56 svar Uppgift a) På grund av sfäriskt symmetri ansätter vi att: E(r) = E(r)ˆr Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r: 2π π Q innesluten
Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.
Teori- och räkneuppgifter
Teori- och räkneuppgifter Version December 7 014 1 Fel- och störningsanalys 11 Värdet på x är uppmätt till 0956 med ett absolutfel på högst 00005 Ge en öre gräns för absolutfelet i y exp(x + x Motiera
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
Appendix A: Differentialoperatorer i olika koordinatsystem
Appendix A: Differentialoperatorer i olika koordinatsystem [Arfken,BETA,Lahtinen] A. 1. Kurvilineära koordinatsystem Antag att i ett Cartesiskt (x, y, z) koordinatsystem med basvektorerna bx, by, bz existerar
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad: