Stokes sats och dess motsvarigheter i vektoranalysen

Storlek: px
Starta visningen från sidan:

Download "Stokes sats och dess motsvarigheter i vektoranalysen"

Transkript

1 Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com

2 Stokes sats och dess motsvarigheter i vektoranalysen 1 (12) 1 Introduktion I det här kapitlet ska vi diskutera differentialformer på undermångfalder till R n. Speciellt ska vi se hur vi integrerar k-former på undermångfalder av dimension k, alltså 1-former på kurvor, 2-former på ytor osv. en inte bara det, på en mångfald med rand finns det ett samband mellan integralen av en form på mångfalden och en integral av en relaterad form på randen som kallas Stokes sats. Relationen handlar om differentialoperatorn och denna enkla, kompakta, formel innehåller alla vektoranalysens klassiska integrationssatser: Gauss sats, Greens sats och Stokes sats. 2 Differentialformer på mångfalder En k-dimensionell undermångfald till R n är en delmängd sådan att varje punkt har en omgivning U sådan att vi kan skriva skärningen U som ett k-stycke {ψ(t); t ω R k } där ψ : ω U är C 1 och bijektiv. Vi kallar ψ för en lokal parametrisering (en parametrisering av en del) av mångfalden. Om ω = I a Idx I är en m-form i R n så blir tillbakadragningen ψ ω(t) = I a I (ψ(t))dψ I (t) en m-form på. Exempel 1 Vi vet att ψ(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ), ω = {(θ, φ); 0 < θ < π, 0 < φ < 2π} parametriserar nästan hela enhetssfären. Låt, ω = x 3 dx 1 dx 2 + x 1 dx 2 dx 3 x 2 dx 1 dx 3 vara en 1-form i rummet. Då gäller att ψ ω = ψ 3 dψ 1 dψ 2 + ψ 2 dψ 2 dψ 3 ψ 2 dψ 1 dψ 3. Här har vi att dψ 1 = cos θ cos φdθ sin θ sin φdφ, dψ 2 = cos θ sin φdθ+sin θ cos φdφ, dψ 3 = sin θdθ, så dψ 1 dψ 2 = cos θ sin θdθ dφ, dψ 1 dψ 3 = sin 2 θ sin φdφ dθ, dψ 2 dψ 3 = sin 2 θ cos φdφ dθ Det följer att ψ ω = (cos 2 θ sin θ + sin 3 θ cos 2 φ + sin 3 θ sin 2 φ)dθ dφ = sin θdθ dφ är tillbakadragningen av ω till S 2.

3 Stokes sats och dess motsvarigheter i vektoranalysen 2 (12) Som den är definierad är den definierad i en speciellt parametrisering, men differentialens invarians gör att formen faktiskt är väldefinierad som ett objekt på k-stycket, oberoende av vilken parametrisering vi väljer. För att se det använder vi att vi kan skriva varje annan parametrisering som ψ 1 = ψ φ där φ är en avbildning på R k. Kalla den nya parametern s. Då gäller enligt differentialens invarians att ψ 1ω(s) = (φ ψ ω)(s) = (ψ ω)(φ(s)) = ψ ω(t). Vi ser alltså att värdet på differentialformen i en punkt på inte beror av vilken parametrisering vi väljer att använda. Därmed kan vi också definiera differentialformer på godtyckliga undermångfalder i R n. Anmärkning Att vi kan definiera differentialformer på godtyckliga mångfalder (alltså även abstrakta) följer på väsentligen samma sätt. Vi arbetar då istället med inversen till parametriseringen, alltså kartorna. Vidare kan utvidga den yttre differentialen till att verka på differentialformer på mångfalder. Detta beror på differentialens invarians. På ett ytstycke Σ = ψ(u) kan vi definiera dω som (ψ 1 ) d(ψ ω) och med en annan parametrisering ψ 1 = ψ φ har vi att (ψ 1 1 ) d(ψ 1ω) = (ψ 1 ) (φ 1 ) d(φ ψ ω) = (ψ 1 ) (φ 1 ) φ d(ψ ω) = (ψ 1 ) d(ψ ω). 3 Integration på mångfalder Den kanske viktigaste egenskapen hos differentialformer är att de är objekt som kan integreras på mångfalder. För att se varför, betrakta först den vanliga Riemannintegralen av en funktion definierad i R n. Om φ definierar ett koordinatbyte i R n så gäller för Riemann-integralen att f(x)dx = f(φ(y)) det dφ(y) dy. För att vi ska kunna utvidga detta till integration på undermångfalder till något R n måste integralen vara oförändrad om vi gör ett koordinatbyte, men det gäller inte i allmänhet, eftersom koordinatbyten förvränger volymer. en om vi istället integrerar ω = f(x)σ, där σ = dx 1... dx n och definierar ω = f(x)dx, där integralen i högerledet är den vanliga Riemannintegralen på R n, så vet vi att φ ω = f φ det(dφ)dy 1... dy n. Det betyder att om φ bevarar orienteringen, alltså det dφ > 0, så gäller att φ ω = ω. Integration över ett öppet område U R n definieras genom att funktionen χ U f ska vara integrerbar, där χ U är den karakteristiska funktionen på U, alltså den funktion som är

4 Stokes sats och dess motsvarigheter i vektoranalysen 3 (12) 1 på U och 0 utanför, och vi sätter då ω = χ U U fdx. Ur det och observationen ovan följer att om φ är ett koordinatbyte sådant att det dφ > 0 så gäller att ω = φ ω. φ(u) er precist: antag att f : V U är ett koordinatbyte mellan öppna delmängder i R n eller i det övre halvplanet H n1 och ω är en n-form i U. Då gäller att ω = φ ω. U Om φ istället kastar om orienteringen ska vi ha ett minustecken i högerledet. Anmärkning Det är intressant att notera att denna fundamentala egenskap härleds bak till att 1-former är antikommutativa: dx i dx j = dx j dx i. en från detta följer att om Σ = ψ(u) är ett orienterad k-stycke i R n och ω en k-form på, så kan vi definiera ω = ψ ω. Σ Denna definition blir oberoende av val av parametrisering enligt diskussionen ovan, så länge vi håller oss till samma orientering av ytstycket; två olika parametriseringar skiljer sig ju åt på ett koordinatbyte med positiv funktionaldeterminant. Om vi byter orientering kommer dock integralen att byta tecken. Slutligen, om är en orienterad k-dimensionell undermångfald till R n så kan vi med hjälp av en partition av enheten skriva ω = i ω i, där varje ω i har sitt stöd i ett k-stycke Σ i och summan i en omgivning av varje punkt består av ändligt många termer. Vi kan då definiera ω som summan i Σ i ω, och man ser lätt att denna definition blir oberoende av vilken partition av enheten vi väljer. Anmärkning Vi har definierat integralen med hjälp av en partition av enheten, därför att det är det matematiskt enklaste. I praktiken beräknar man emellertid en integral över en mångfald så att man delar upp mångfalden i ytstycken som hänger ihop i olika randbitar. Integralen över en randbit är noll, så vi kan beräkna den totala integralen genom att summera integralerna över de olika ytstyckena. Om vi t.ex. ska integrera över enhetssfären, kan vi beräkna en integral över den övre halvsfären och en över den undre halvsfären. Utan att bry oss om vart ekvatorn hör. Om Σ = {ψ(t); t ω} är k-stycke så finns det en k-form på Σ som är speciellt intressant. Den definieras genom ds = det ψ (t) t ψ (t)dt 1... t k. Denna form, som volymsformen på Σ, beror inte av vilken parametrisering vi använder: med ψ 1 = ψ φ får vi nämligen att det ψ 1 (t) t ψ 1(t)dt 1... t k = det(φ (t) t ψ (φ(t)) t ψ (φ(t))φ (t))dt 1... t k V U U det ψ (φ(t)) t ψ (φ(t)) det φ(t)dt 1... dt k = det ψ (s) t ψ (s)ds 1... ds k,

5 Stokes sats och dess motsvarigheter i vektoranalysen 4 (12) där s = φ(t). Det följer att ds är globalt definierad på en orienterad k-dimensionell mångfald. Att ds definierar arean av när är tvådimensionell och en motsvarande k-area i andra dimensioner diskuteras närmare i XXX. Följande exempel är de vanligaste i praktiken. Exempel 2 Om k = 1, dvs γ = c(i) är en kurva, så får vi ds = c (t) t c (t)dt = c (t) dt, Om ω(x) = k u k(x)dx k och γ är en orienterad kurva, så gäller att c ω = k u k (c(t))c k(t)dt = u(c(t)) c (t) = (u(x) T (x))ds där x = c(t) och T (x) = c (t)/ c(t) är enhetstangenten i rörelsens riktning och u = (u 1,..., u n ) är vektorfältet svarande mot ω. Exempel 3 För tvåformen ω = u 1 dx 2 dx 3 + u 2 dx 3 dx 1 + u 3 dx 1 dx 2 i rummet gäller att den tillbakadragen till Σ = {ψ(t); t U} ges av ψ ω = ψ u 1 dψ 2 dψ 3 + ψ u 2 dψ 3 dψ 1 + ψ u 3 dψ 1 dψ 2 = u(ψ(t)) ( 1 ψ(t) 2 ψ(t))dt 1 dt 2. Inför vi här x = ψ(t), u(x) = (u 1 (x), u 2 (x), u 3 (x)) och N = 1ψ(t) 2 ψ(t) 1 ψ(t) 2 ψ(t), ds = 1ψ(t) 2 ψ(t) dt 1 dt 2, så kan detta skrivs u(x) N(x) ds. Här är N enhetsnormal till ytstycket och ds är inget annat än areaformen på Σ. Detta sista exempel generaliseras till godtyckliga hyperytor. Vi skriver en godtycklig n 1-form på formen ω = ( 1) k 1 u k dx k k=1 (notera hur tecknet stämmer med diskussionen för fallet n = 3). Då gäller att ψ u 1 1 ψ 1... n 1 ψ 1 ψ ω = ( 1) k 1 ψ u k dψ k = det dt 1... dt n 1, k=1 ψ u n 1 ψ n... n 1 ψ n vilket är precis u(x) N(x) ds, x = ψ(t), där N(x) är enhetsnormal till ytstycket. Det finns två enhetsnormaler, och den aktuella är sådan att basvektorerna N(ψ(t)), 1 ψ(t),..., n 1 ψ(t) blir positivt orienterade. Den sista likheten följer av att determinanten ger (hyper-)volym med tecken av den parallellepiped som spänns upp av kolonnvektorerna och denna kan också beräknas genom att vi tar basvolymen ds och multiplicerar med höjden som är u N.

6 Stokes sats och dess motsvarigheter i vektoranalysen 5 (12) 4 Stokes sats Den vanliga insättningsformeln b a f (x)dx = f(b) f(a) i endim har en långtgående generalisering som kallas Stokes sats. Innan vi formulerar och bevisar den tar vi ett exempel. Exempel 4 Låt ω = i a i (x)dx i vara en godtycklig (n 1)-form på R n och K n enhetskuben i R n K n = {x R n ; 0 x i 1, i = 1,..., n}. Dess rand består då av alla de sidor där vi för ett i har antingen att x i = 0 eller x i = 1 och de övriga variablerna varierar fritt i [0, 1]. Vi orienterar den genom att välja normalen N som den utåtriktade normalen; då blir K positivt orienterad som rand till K. Vi mål är då att beräkna K n ω. Summan av integralerna över två motstående sidor blir nu en vi har att så vi ser att K n ω = K n 1 (a i (x 1,..., 1,..., x n ) a i (x 1,..., 0,..., x n ))dx i. a i (x 1,..., 1,..., x n ) a i (x 1,..., 0,..., x n ) = i=1 1 ( K n 1 0 i a i dx i )dx i = K n ( 1 0 i a i (x) dx i, ( 1) i 1 i a i (x))σ = i=1 K n dx i i ω. en här känner vi igen differentialen av en (n 1)-form i högerledet och vi ser att vi för allmänna (n 1)-former ω har att ω = dω. K n K n Detta är ett specialfall av Stokes sats, men samtidigt så allmänt att det implicierar den totala satsen genom att vi använder differentialens invarians och en partition av enheten. Vi börjar med att exemplifiera det förra. Exempel 5 Vi ska visa att det även gäller att dω = ω, B n S n 1 i=1

7 Stokes sats och dess motsvarigheter i vektoranalysen 6 (12) där B n är enhetsklotet i R n och S n 1 dess rand. För att se det definierar vi φ som den funktion som avbildar en punkt på K på den punkt på S n 1 som ligger på strålen från origo som går igenom punkten. Sedan utvidgar vi denna till en funktion φ : K n B n genom kravet att φ(tx) = tφ(x), x K n, 0 t 1. Då gäller alltså att φ(k n ) = B n och φ( K n ) = S n 1 och eftersom det alltid gäller att d(φ ω) = φ dω, så får vi dω = d(φ ω) = φ ω = ω. B n K n K n S n 1 Vi formulerar nu Stokes sats i sin helhet. De två exemplen indikerar varför den är sann. Sats 1 (Stokes sats) För en differentierbar k-form ω och en orienterad (k+1)-dimensionell mångfald gäller att dω = ω, där har den av orienteringen på ärvda orienteringen. Bevis. Antag först att = ψ(k) där K är en k-kub. Då gäller enligt definitionen och första exemplet att dω = ψ dω = d(ψ ω) = ψ ω = ω. K K Vi kan nu övertäcka med uppräkneligt många k-stycken av denna typ och sedan skriva ω = i ω i där varje ω i har sitt stöd i ett k-stycke U i = ψ i (K). Om är kompakt kan denna summa tas ändlig, annars så att den i en omgivning av varje punkt endast har ändligt många termer 0. Notera att om p U i är en randpunkt till, så gäller att ψ 1 i (p) ligger på en begränsningssida av K. Vi har nu dω = dω i = ω i = i i Denna sats är en kraftfull generalisering av många kända satser. Enklast är följande exempel. Exempel 6 ed = [a, b], som är 1-dimensionell, ska vi ta en 0-form ω, alltså en funktion f. Det gäller att = {a, b} och då är f = [f(x)] b a = f(b) f(a). Vidare är df(x) = b a K f (x)dx, så Stokes sats är inget annat än insättningsformeln. Tar vi som en kurva γ från en punkt p 0 till en punkt p 1 i R n får vi på samma sätt att df = f(p 1 ) f(p 0 ), som ju är flerdims motsvarighet till insättningsformeln. γ ω.

8 Stokes sats och dess motsvarigheter i vektoranalysen 7 (12) Andra exempel är formler som dyker upp inom vektoranalysen. Exempel 7 Låt u = (u 1,..., u n ) vara ett vektorfält och sätt α = u = u dx. Då gäller att α = u dx och alltså att d( α) = (div u)σ, där σ = dx 1... dx n. Stokes sats innebär då att om Ω är ett öppet område i R n med C 1 rand Ω så gäller att u N ds = div u dx, Ω där N är den utåtriktade enhetsnormalen till Ω och div u = k ku k kallas divergensen av vektorfältet u = (u 1,..., u n ). Denna formel kallas i vektoranalysen Gauss sats. En konsekvens av exemplet är att divergensen för ett vektorfält i R n kan beskrivas genom 1 div u(x) = lim u N ds, r 0 m B ) Ω B(x,r) där B(x, r) är klotet med radien r och medelpunkt i x i R och m B dess volym. Eftersom N betecknar den utåtriktade enhetsnormalen betyder det att divergensen av u i en punkten representerar nettoflödet ut genom en infinitesimalt liten sfär runt punkten. Om vi tänker på u som att det beskriver ett flöde av en gas eller vätska, så säger man att en punkt x där div u(x) > 0 är en källa, medan en punkt där div u(x) < 0 sägs vara en brunn. Gauss sats säger då att nettoflödet ut ur ett område är lika med nettomängden källor och brunnar i området. Exempel 8 Betrakta ett ämne som flyter i en vätska som befinner sig i stationär strömning och låt ämnets densitet beskrivas av funktionen ρ(x, t). Låt B vara ett godtyckligt klot i det område där vätska strömar. Den totala massan i B av ämnet vid tiden t ges då av (t) = ρ(x, t)σ. B Om vi nu antar att inget ämne nybildas eller ombildas till något annat och låt J(x, t) vara en en 2-form som beskriver vätskans flöde runt B. Då ger massbalans att (t) = ρ(x, t)j(x, t). B Flyttar vi in derivationen i vänsterledet under integraltecknet och använder Stokes sats får vi att ( t ρ(x, t)σ + d(ρ(x, t)j(x, t)) = 0. B Eftersom detta gäller för alla klot B följer kontinuitetsekvationen t ρ(x, t) + d(ρ(x, t)j(x, t)) = 0 Exempel 9 Antag nu att vi har en 1-form ω = i u kdx k och en 2-dimensionell yta Σ i R n. Då gäller att dω = k du k dx k = i<j ( i u j j u i )dx i dx j.

9 Stokes sats och dess motsvarigheter i vektoranalysen 8 (12) I rummet (n = 3) inför vi och får då att rot u = ( 2 u 3 3 u 2, 3 u 1 1 u 3, 1 u 2 2 u 1 ), Σ dω = Σ rot u(x) N(x) ds, där N är en enhetsnormal N på Σ. Samtidigt kan vi skriva u 1 dx 1 + u 2 dx 2 + u 3 dx 3 = (u T )ds, Σ där T är en enhetstangent till kurvan Σ. Relationen mellan N och T är att randen Σ ska vara positivt orienterad sett från spetsen av N (d.v.s sett från spetsen av N ska Σ ligga till vänster då man genomlöper Σ i den riktning som definieras av T ). Den formel vi får är alltså rot u(x) N(x) ds = u T ds, vilken kallas Stokes formel i vektoranalysen. Σ Anmärkning Ur denna formel får vi följande tolkning av rotationen. Betrakta ett liten sfär runt en punkt x och lägg ett litet ytstycke Σ genom x ortogonalt mot klotet. Om vi uppfattar u som strömningshastighet för en vätska, så mäter u(x) T (x) hur mycket vätska som strömmar igenom Σ per area- och tidsenhet. Att integralen i högerledet är skild från noll betyder att det finns ett inslag av virvelrörelse i vätskeströmningen. Om rot u(x 0 ) 0 så är vänsterledet som störst då N har samma riktning som rot u(x 0 ). an kan alltså uppfatta riktningen av rot u(x 0 ) som rotationsaxel för virvelrörelsen. Längden av rot u(x 0 ) är ett mått på virvelns styrka. Exempel 10 Ur formeln Σ Σ d(α β) = dα β + ( 1) k α dβ och Stokes sats får vi partialintegrationsformeln dα β = α β ( 1) k α dβ. Som exempel på detta har vi för en godtycklig funktion f och k-form α att fdα = fα df α. När α = g är en funktion (0-form) står här den vanliga formeln för partialintegration b a fdg = [fg] b a b a gdf. Ett annat exempel på Stokes sats är följande fundamentala observation.

10 Stokes sats och dess motsvarigheter i vektoranalysen 9 (12) Exempel 11 Vinkelformen i R n \{0} definieras genom Den har egenskapen att τ = k=1 ( 1) k 1 x k dx k x n = dr r n 1. r n 1 dr τ = dr dr = σ där σ = dx 1... dx n är volymsformen i R n. Dessutom gäller att den är homogen av grad noll, dvs om vi multiplicerar x med ett tal a, så ändras inte τ. Dess differential ges av dτ = d(r 1 n dr) = (1 n)r n dr dr + r 1 n d( dr) = 0, eftersom d( dr) = k=1 ( 1) k 1 d( x k r ) dx k = k=1 ( 1) k 1 ( dx k r x kdr r ) dx 2 k = n 1 σ. r Stokes sats medför då att om Ω R n inte innehåller origo, så gäller att Ω τ = 0. Om emellertid 0 Ω, så kan vi inte använda Stokes sats direkt. Istället får vi först ta bort ett litet klot B ɛ med medelpunkt i origo och så liten radie att B ɛ Ω. ed Ω ɛ = Ω\B ɛ har vi då att origo inte ligger i området och det vi visat är just att Ω ɛ τ = 0. en Ω ɛ = Ω B ɛ, där minustecknet refererar till att klotranden har omvänd orientering, så vi har att τ = τ = τ = τ. B ɛ x =ɛ x =1 Ω en enligt ovan har vi att τ = S n 1 dτ = n B 1 dx = n volymen av enhetsklotet. B 1 Vi har alltså att integralen över enhetssfären av vinkelformen är arean av enhetssfären. Om vi betecknar arean av enhetssfären i R n med m(s n 1 ) så har vi alltså att { 0 om 0 / τ = Ω m(s n 1 ) om 0 Ω. Ω Det sista exemplet har intressanta konsekvenser. Betrakta 1-formen τ = för n > 2. Då vet vi från exemplet att dr m(s n 1 r n 1 Ω τ = 1 för varje öppen delmängd Ω som innehåller origo. Låt nu därför ρ vara en funktion på R n som är noll utanför en begränsad delmängd och definiera 1-formen G(x) = ρ(y)τ(x y)dy,

11 Stokes sats och dess motsvarigheter i vektoranalysen 10 (12) Då ser vi att dg(x) = ρ(y)dτ(x y)dy = 0 och dessutom visar omkastning av integrationsordning att G = ρ(y)dy. Om vi använder Stokes sats på vänsterledet får vi att d( G) = ρdy, och eftersom detta är sant för alla öppna delmängder Ω följer att ed andra ord, 1-formen G löser problemet Ω Ω Ω Ω d( G) = ρ dg = 0, d( G) = ρ. I sig innehåller denna observation mycket av Newtons gravitationsteori och elektrostatiken baserad på Colombs lag, men den diskussionen tar vi i en annan artikel. Anmärkning Den duala formen τ, som alltså är en normerad vinkelform, kallas Kroneckerformen. För n = 1 är den dθ/2π. 5 Brower s fixpunktssats Låt vara en mångfald, möjligen med rand. En retraktion av på en delmängd A är en avbildning φ : A sådan att φ(x) = x då x A. Exempel 12 Avbildningen φ(x) = x/ x är en retraktion av det punkterade enhetsklotet på dess rand, enhetssfären. Ett punkterat enhetsklot är inte en kompakt mångfald, vilket också visar sig av att det finns en sats som säger att om är en kompakt, orienterad, mångfald med en icke-tom rand, så finns det ingen retraktion av på. För att se att så är fallet, antag att det finns en sådan retraktion φ : och förse med den ärvda orienteringen från. Låt σ = µ vara volymsformen på randen och sätt α = φ σ. Av dimensionsskäl gäller då att dσ = 0, varför dα = φ dσ = 0. Stokes sats ger därför att α = 0. en å andra sida, om φ är en retraktion av på så gäller att α = σ på randen, och σ = Vol( ) 0. Denna observation leder till det äldsta resultatet i toplogin, nämligen att varje kontinuerlig avbildning från det slutna enhetsklotet på sig själv måste ha en fixpunkt. För att se att detta är sant för glatta avbildningar, låt B vara det slutna enhetsklotet och antag att avbildningen f : B B saknar fixpunkter. Vi kan då definiera en avbildning φ : B B genom att låta φ(x) vara den punkt på randen som fås som skärning med kordan genom x och f(x). Den är uppenbarligen en retraktion av B på B, men sådana finns ju inte, så vi har en motsägelse. Alltså måste f ha minst en fixpunkt.

12 Stokes sats och dess motsvarigheter i vektoranalysen 11 (12) Anmärkning an kan tänka på denna sats som att om man rör om i en kaffekopp, så måste minst en molekyl återvända till sin ursprungsplats. Att få satsen för en kontinuerlig funktion kan göras genom att först observera att varje kontinuerlig funktion är homotop med en glatt funktion. Naturligtvis gäller satsen även för allmännare mängder än klot, så länge de topologiskt är klot. A Appendix: Partition av enheten Funktionen χ(t) = { 0 då t 0 e 1/t då t > 0 är en C (R)-funktion. Detta följer av att en godtycklig derivata har formen q(1/t)χ(t), t > 0 och då t 0 + gäller att detta går mot noll. Det följer att funktionen är deriverbar i origo hur många gånger som helst. Vidare är det klart att 0 χ 1. Om vi sätter φ(x) = χ(r 2 x a 2 ) så blir då φ en glatt funktion som är positiv då x a < r och lika med noll då x a r. ed hjälp av den ska vi nu konstruera s.k. partitioner av enheten på undermångfalder till R n. Låt nu K vara en kompakt delmängd av R n och antag att vi kring varje punkt x K finns en öppen omgivning ω(x). Till varje punkt x K finns då också ett öppet klot B ɛ(x) (x) ω(x) och enligt Heine-Borels lemma kan vi övertäcka K med ändligt många sådana klot. Kalla dem B 1,..., B m. Till var och en av dem kan vi ta en funktion g i sådan att g i > 0 i B i men g i = 0 utanför B i. Summan G(x) = i g i(x) är då positiv i K och = 0 i komplementet till en omgivning av K. Dividerar vi därför med summan, alltså definierar φ i (x) = g i (x)/g(x) får vi funktioner sådana att 0 φ i (x) 1 och uppfyller n 1 φ i(x) = 1 då x K. Att överföra detta till ett påstående på en mångfald är direkt om är kompakt. Varje punkt ligger då i en koordinatomgivning, och vi kan välja ut ett ändligt antal sådana och därifrån konstruera en partition av enheten sådan att varje funktion är skild från noll endast i en koordinatomgivning. Om inte är kompakt är situationen lite mer komplicerad. Det räcker då inte med ändligt många funktioner, utan vi behöver bilda en oändlig summa, och med det har vi ett konvergensproblem. en för en undermångfald i R n gäller att vi kan konstruera våra klot så att varje punkt ligger i endast ändligt många av kloten. Det betyder att summan är sådan att i varje punkt är endast ändligt många termer skilda från noll, varför vi inte har några konvergensproblem. otsvarande kan göras på en allmän mångfald det topologiska rum som bildar basen för en glatt mångfald har just denna egenskap. Vi går inte in på detaljerna men formulerar följande sats. Sats 2 Givet en atlas på en mångfald finns en partition av enheten {ψ i } sådan att a) Stödet för varje ψ i ligger helt i en koordinatomgivning b) 0 ψ i 1 överallt

13 Stokes sats och dess motsvarigheter i vektoranalysen 12 (12) c) i ψ i = 1 på hela, där summan i varje punkt endast består av ändligt många termer. Anmärkning Vi har använt begreppet stödet av en funktion. ed stödet av en funktion menas den minsta slutna mängd som innehåller alla punkter där funktionen inte är noll.

Stokes sats och dess motsvarigheter i vektoranalysen

Stokes sats och dess motsvarigheter i vektoranalysen Analys 360 En webbaserad analyskurs Analys på mångfalder Stokes sats och dess motsvarigheter i vektoranalysen Anders Källén atematikcentrum LTH anderskallen@gmail.com Stokes sats och dess motsvarigheter

Läs mer

Primitiva funktioner i flerdim

Primitiva funktioner i flerdim Analys 36 En webbaserad analyskurs Differentialkalkyl Primitiva funktioner i flerdim Anders Källén MatematikCentrum LTH anderskallen@gmail.com Primitiva funktioner i flerdim 1 (11) 1 Introduktion Att bestämma

Läs mer

Vektoranalys i rummet

Vektoranalys i rummet Vektoranalys i rummet Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Vektoranalys görs bäst med hjälp av differentialformer, men i detta kapitel tar vi och går igenom de viktigaste

Läs mer

Differentialformer och lite vektoranalys

Differentialformer och lite vektoranalys Analys 360 En webbaserad analyskurs Analys på mångfalder Differentialformer och lite vektoranalys Anders Källén MatematikCentrum LTH anderskallen@gmail.com Differentialformer och lite vektoranalys 1 (15)

Läs mer

Läsanvisningar till Analys B, HT 15 Del 1

Läsanvisningar till Analys B, HT 15 Del 1 Läsanvisningar till Analys B, HT 15 Del 1 Dag 1 Avsnitt 6.1 Definition av trappfunktion och integral av en trappfunktion. Räkneregler (de är mer eller mindre uppenbara). Definition av Riemannintegralen

Läs mer

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén Tavelpresentation Grupp 6A avid Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén 3 mars 2017 1 Potentialfält Vi har tidigare introducerat vektorfält i planet som funktioner

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Om Gauss skosnöreformel och planimetrar

Om Gauss skosnöreformel och planimetrar Om Gauss skosnöreformel och planimetrar Anders Källén MatematikCentrum TH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi härleda en formel för arean av ett område som innesluts av ett

Läs mer

Om mångfalder, abstrakta och som delmängder i olika rum

Om mångfalder, abstrakta och som delmängder i olika rum Analys 360 En Webbaserad Analyskurs Differentialtopologi Om mångfalder, abstrakta och som delmängder i olika rum Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om mångfalder, abstrakta och som

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4

Läs mer

Dubbelintegraler och volymberäkning

Dubbelintegraler och volymberäkning ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),

Läs mer

Spiralkurvor på klot och Jacobis elliptiska funktioner

Spiralkurvor på klot och Jacobis elliptiska funktioner Spiralkurvor på klot och Jacobis elliptiska funktioner Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com I den här artikeln ska vi ta en titt på en tillämpning av Jacobis elliptiska

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

Om konvergens av serier

Om konvergens av serier Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie

Läs mer

Tentamen i Flervariabelanalys, MVE , π, kl

Tentamen i Flervariabelanalys, MVE , π, kl Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

2.5 Partiella derivator av högre ordning.

2.5 Partiella derivator av högre ordning. 2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

Analys på en torus. MatematikCentrum LTH

Analys på en torus. MatematikCentrum LTH Analys på en torus Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi diskutera differentialgeometri på en torus, både inbäddad som en badring i rummet och

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

Om lösningar till glatta ekvationer

Om lösningar till glatta ekvationer Analys 360 En Webbaserad Analyskurs Differentialtopologi Om lösningar till glatta ekvationer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om lösningar till glatta ekvationer 1 (15) 1 Introduktion

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

LAPLACES OCH POISSONS EKVATIONER

LAPLACES OCH POISSONS EKVATIONER TH Matematik Olle tormark LAPLACE OCH POION EVATIONE Poissons ekvation φ(x) = (där ρ är en given funktion och φ söks) satisfieras till exempel av den elektrostatiska potentialen i ett område som innehåller

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2 Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z

Läs mer

Omtentamen (med lösningar) MVE085 Flervariabelanalys

Omtentamen (med lösningar) MVE085 Flervariabelanalys Omtentamen (med lösningar) MVE85 Flervariabelanalys 26--4 kl. 8.3 2.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Anna Persson, telefon: 73 88 34 Hjälpmedel: endast bifogat

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Differentialens geometriska betydelse

Differentialens geometriska betydelse Analys 360 En webbaserad analyskurs Differentialkalkyl Differentialens geometriska betydelse Anders Källén MatematikCentrum LTH anderskallen@gmail.com Differentialens geometriska betydelse 1 (9) Introduktion

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

Integranden blir. Flödet ges alltså av = 3

Integranden blir. Flödet ges alltså av = 3 Lektion 7, Flervariabelanals den 23 februari 2 6.4.2 Använd Gauss sats för att beräkna flödet av ut ur sfären med ekvationen där a >. Flödet ut ur sfären ges av F e e + 2 e e + e 2 + 2 + 2 a 2 F d, som

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

1 Några elementära operationer.

1 Några elementära operationer. Föreläsning Några elementära operationer. Ett skalärfält är en reellvärd eller komplexvärd funktion Φ(x, y, z). Ett vektorfält är en vektorvärd funktion A(x, y, z). I ett kartesiskt koordinatsystem kan

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df

5 Gauss sats. div. dv = A V. Noterbart är att V AdV = A ˆNdS, dvs Gauss sats, har strukturella likheter med b df 5 Gauss sats Betrakta ett vektorfält A. i låter en sluten ta, med utåtriktad normal ˆN, begränsa ett område. Antag nu att A är kontinuerligt deriverbart i hela. Under dessa premisser gäller Gauss sats

Läs mer

Flervariabelanalys E2, Vecka 6 Ht08

Flervariabelanalys E2, Vecka 6 Ht08 Flervariabelanalys E2, Vecka 6 Ht08 Omfattning 6., 6.3-6.5 Innehåll: Gradient, divergens, rotation, Greens sats/formel, divergenssatsen i två och tre dimensioner, tokes sats tma043 V6, Ht08 bild Mål: För

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

Om immersioner och Whitneys inbäddningssats

Om immersioner och Whitneys inbäddningssats Analys 360 En Webbaserad Analyskurs Differentialtopologi Om immersioner och Whitneys inbäddningssats Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om immersioner och Whitneys inbäddningssats

Läs mer

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande

Läs mer

Kursens Kortfrågor med Svar SF1602 Di. Int.

Kursens Kortfrågor med Svar SF1602 Di. Int. Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå

Läs mer

Fourierserier: att bryta ner periodiska förlopp

Fourierserier: att bryta ner periodiska förlopp Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska

Läs mer

Lektionsblad 9, tis 16/2 2010

Lektionsblad 9, tis 16/2 2010 Lektionsblad 9, tis 16/2 2010 Först en gång till optimering med bivillkor. Lös uppgifterna 4.25 (om du har problem med denna väldigt typiska uppgift, så studera även lösningen till 4.24), 4.26 (nästan

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se Flervariabelanalys E2, Vecka 6 Ht09 Kapitel 6. -

Läs mer

21 Flödesintegraler och Gauss sats

21 Flödesintegraler och Gauss sats Nr 2, maj -5, Amelia 2 2 Flödesintegraler och Gauss sats 2. DivergensochGausssats 2.. Flöden genom slutna ytor I detta avsnitt beräknar vi flödesintgraler på slutna ytor. Låt oss tänka oss en vind, som

Läs mer

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna.

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna. Uppgift Beräkna kurvintegralen + d där är kurvan = från (, ) till (4, ). Lösning Här har vi ett fält F =(P, Q), där d, () så integralen är på formen P = +, Q = d, P d + Qd. Innan vi kan använda t.e. Greens

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Lösningar till Matematisk analys 4,

Lösningar till Matematisk analys 4, Lösningar till Matematisk analys 4, 05054. a Sätt a k k + k +, b k k e /k Serien k a k är positiv. Vi har att och c k k! 4 k k! för k,,... a k k + k + k k för stora k k och mera precist att / a k k k +

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA044 Flervariabelanalys E2 205-0-05 kl. 4.00-8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09

Outline. TMA043 Flervariabelanalys E2 H09 Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se 7 oktober 2009 1 Flervariabelanalys E2, Vecka 5 Ht09

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Om att rita funktioner av två variabler

Om att rita funktioner av två variabler Analys 360 En webbaserad analyskurs Differentialkalkyl Om att rita funktioner av två variabler Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om att rita funktioner av två variabler 1 (10) Introduktion

Läs mer