Formelsamling i Hållfasthetslära för F

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Formelsamling i Hållfasthetslära för F"

Transkript

1 Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017

2 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent tangentiellt till snittta Spänningstillstånd i ett plan, vinkelrätt mot en huvudspänning σ σ τ τ τ τ σ σ τ τ ϕ τ(ϕ) π ϕ σ(ϕ) ϕ σ σ σ ϕ = σ cos ϕ+σ sin ϕ+τ sinϕcosϕ τ ϕ = σ σ sinϕ+τ cosϕ Huvudspänningar och huvudspänningsriktningar σ α α 1 σ 1 σ 1 σ } = σ +σ ± (σ σ ) +τ σ 1 σ tanα 1 = σ 1 σ τ tanα = σ σ τ σ 1 +σ = σ +σ

3 Maimala skjuvspänningen i planet är (τ ma ) planet = σ 1 σ Maimala skjuvspänningen är ( σ1 σ τ ma = ma ; σ 1 ; σ ; ) Töjningar Normaltöjning: ε = relativ ländändring = L L o L o där L o =ursprunglig längd, L=n längd Skjuvtöjning: γ = minskning av ursprunglig rät vinkel (orsakad av deformation) Deformationstillståndet i ett plan, vinkelrätt mot en huvudspänningsriktning η ξ ϕ där ε ξ = ε cos ϕ+ε sin ϕ+γ sinϕcosϕ γ ξη = (ε ε )sinϕ+γ cosϕ ε är töjningen av ett linjeelement i -riktningen ε ε ξ är töjningen av ett linjeelement i -riktningen är töjningen av ett linjeelement i ξ-riktningen γ är skjuvningen av aelkorset, dvs. minskningen av den räta vinkeln mellan - och -riktningen γ ξη är skjuvningen av aelkorset ξη, dvs. minskningen av den räta vinkeln mellan ξ- och η-riktningen

4 3 Huvudtöjningar och huvudtöjningsriktningar ε α α 1 ε 1 ε 1 ε } = ε +ε tanα 1 = (ε 1 ε ) γ tanα = (ε ε ) γ (ε ) ε ± + ( γ ) ε 1 +ε = ε +ε Maimala skjuvningen i planet är (γ ma ) planet = ε 1 ε Samband mellan spänningar och töjningar Enalig belastning F A,E F σ = F A ε = σ E σ = σ = τ = τ = τ = 0 ε = ε = νε ; γ = γ = γ = 0 Termisk belastning ε T = α T Vridning För en roterande ael gäller M v = P ω

5 4 där M v är vridmomentet i en ael som överför effekten P vid vinkelhastigheten ω För maimal vridskjuvspänning τ vma gäller τ vma = M v W v W v är vridmotståndet (se tabell) För förvridningsvinkel ϕ mellan aelns ändtor gäller ϕ = M vl GK L är aellängden K är vridstvhetens tvärsnittsfaktor (se tabell) Tunnväggigt cirkulärt slutet tvärsnitt med konstant väggtjocklek t Tvärsnitt W v K d πd t πd 3 t 4 Tjockväggigt cirkulärt slutet tvärsnitt π(d 4 d 4 i ) π(d 4 d 4 i ) d i d 16d 3 Massivt cirkulärt tvärsnitt d πd 3 16 πd 4 3 Balkböjning Positiva definitioner på belastningsintensitet, tvärkraft och böjande moment. q w T För balkens totala belastning, positiv riktad uppåt, gäller = L 0 qd

6 5 Jämviktsdifferentialekvationerna för balken ges av dt d = q d d = T Böjspänningar (ingen normalkraft) e σ medellinje ρ neutralplane böjningsael tp Koordinatsstemet ligger sådant att -aeln går genom tvärsnittets tngdpunkt. σ = E ρ σ = I ρ är neutralplanets krökningsradie. I är ttröghetsmomentet kring -aeln. För maimal böjspänning σ b i ett snitt gäller σ b = W b W b är böjmotståndet För W b gäller W b = I e e = ma är största avståndet från neutralplanet till ttersta fibern

7 6 Tunnväggigt cirkulärt slutet tvärsnitt med konstant väggtjocklek d Tvärsnitt I W b t πd 3 t πd t 8 4 Massivt cirkulärt tvärsnitt d πd 4 64 πd 3 3 Massivt rektangulärt tvärsnitt h b bh 3 1 bh 6 Allmänt om ttröghetsmoment tp Yttröghetsmomentet kring -ael I = da Yttröghetsmomentet kring -ael I = da Deviationsmomentet kring aelkorset D = da Steiners sats För ttrögetsmomenteti 1 kring en ael parallel med en ael genom tngdpunkten gäller a tp 1 I 1 = I +a A A är tvärsnittsarean a är avståndet mellan alarna.

8 7 För tröghetsradien i gäller I i = A Elastiska linjen För neutralplanets krökningsradie gäller ρ 1 ρ = EI där I är tvärsnitttans tröghetsmoment kring böjningsaeln. Elastiska linjens differentialekvation är EI d w d = Sammansatt belastning + = N + = N σ = N A σ = Mb I σ = N A + Mb I Balk utsatt för böjande moment och normalkraft σ = I + N A

9 8 Elementarfall för fritt upplagd balk 1.1 βp θ A 1. M/L M A θ A αl αl M P θ(α) βl βl αp θ B M/L θ B 1 1 θ A θ B θ A R A θ A θ B R B θ B M B θ A = PL 6EI αβ(1+β) = PL3 6EI β[(1 β )ξ ξ 3 ] för δ(α) = PL3 3EI α β θ A = ML 6EI (1 3β ) PL θb = 6EI αβ(1+α) ξ α θ B = ML 6EI (1 3α ) = ML 6EI [(1 3β )ξ ξ 3 ] för δ(α) = ML 3EI αβ(α β) θ A = θ B = L 4EI = L3 4EI (ξ ξ3 +ξ 4 ) δ( 1 ) = 5L3 384EI θ A = 7L 180EI θ B = 8L 180EI = L3 180EI (7ξ 10ξ3 +3ξ 5 ) MA MB R A = R B = L θ A = MAL 3EI + MBL 6EI ξ α ML θ(α) = 3EI (1 3αβ) θ B = MAL 6EI + MBL 3EI = L 6EI [MA(ξ 3ξ +ξ 3 )+M B(ξ ξ 3 )]

10 9 Elementarfall för konsolbalk.1 θ(ξ) αl P βl { = PL3 6EI [ β 3 +3β (1 ξ)] ξ α [(ξ α) 3 3β (ξ α)+β 3 ] ξ > α { θ(ξ) = PL EI β ξ α [β (ξ α) ] ξ > α..3 αl θ(ξ) θ(ξ) M βl { = ML EI β(1 ξ 1 β)] ξ α [(ξ α) β(ξ α)+β ] ξ > α { θ(ξ) = ML EI β ξ α (1 ξ) ξ > α = L3 4EI (ξ4 4ξ +3) θ(ξ) = L 6EI (1 ξ3 ).4.5 θ(ξ) = L3 60EI (ξ5 5ξ +4) θ(ξ) = L 1EI (1 ξ4 ) θ(ξ) = L3 60EI ( ξ5 +5ξ 4 15ξ +11) θ(ξ) = L 1EI (ξ4 4ξ 3 +3)

11 10 Materialtabeller Material E[GPa] ν[ ] ρ[kg/m 3 ] stål höglegerat rostfritt aluminium duraluminium koppar volfram magnesium Stålkvalitéer E[GPa] ν[ ] σ s [MPa] SS SS SS SS Elasticitetsmodulen för stål varierar mellan 180 och 40 GPa. Variationer beroende på materialets volm förekommer.

5 Fleraxliga spänningstillstånd Plant (tvåaxligt) spänningstillstånd: Mohr s Cirkel Treaxliga spänningstillstånd...

5 Fleraxliga spänningstillstånd Plant (tvåaxligt) spänningstillstånd: Mohr s Cirkel Treaxliga spänningstillstånd... VT15 Innehållsförteckning 1 Allmänt... 1 1.1 Enheter och storheter... 1 1.2 Matematik och geometri... 4 1.2.1 Räkneregler... 4 1.2.2 Derivator och Integraler... 5 1.2.3 Trigonometri... 6 1.2.4 Area- och

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Tentamen i Balkteori, VSMF15, , kl

Tentamen i Balkteori, VSMF15, , kl Tentamen i Balkteori, VSMF15, 2011-10-18, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs maimalt 18 poäng. Tentamen består av två delar: En del med frågor och en del

Läs mer

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal Textil mekanik och hållfasthetslära Provmoment: tentamen Ladokkod: 51MH01 Tentamen ges för: Textilingenjörsprogrammet TI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Textil mekanik och hållfasthetslära. 7,5 högskolepoäng. Ladokkod: 51MH01. TentamensKod: Tentamensdatum: 12 april 2012 Tid:

Textil mekanik och hållfasthetslära. 7,5 högskolepoäng. Ladokkod: 51MH01. TentamensKod: Tentamensdatum: 12 april 2012 Tid: Textil mekanik och hållfasthetslära 7,5 högskolepoäng Provmoment: Ladokkod: 51MH01 Tentamen ges för: Tentamen Textilingenjörsprogrammet TI2 TentamensKod: Tentamensdatum: 12 april 2012 Tid: 14.00-18.00

Läs mer

H Å L L FA S T H E T S L Ä R A

H Å L L FA S T H E T S L Ä R A L I N D S T R Ö M ( R E D. ) U P P L A G A 1 - β P R O B L E M S A M L I N G H Å L L FA S T H E T S L Ä R A Denna problemsamling är riktad till ingenjörsstudenter på teknisk högskola, och omfattar problem

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur. K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014 Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok

Läs mer

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

Material, form och kraft, F2

Material, form och kraft, F2 Material, form och kraft, 2 Repetition Genomgång av orcepd uppgift 1 Spänning Töjning Huvudspänning Stvhet Krafter Krafter Vektorstorhet: storlek, riktning, angreppspunkt Kontaktkraft, kraft som verkar

Läs mer

Material, form och kraft, F5

Material, form och kraft, F5 Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Exempel 3: Bumerangbalk

Exempel 3: Bumerangbalk Exempel 3: Bumerangbalk 3.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera bumerangbalken enligt nedan. Bumerangbalk X 1 600 9 R18 000 12 360 6 000 800 10 000 10 000 20 000 Statisk modell

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Rättelseblad 1 till Boverkets handbok om betongkonstruktioner, BBK 04

Rättelseblad 1 till Boverkets handbok om betongkonstruktioner, BBK 04 Rättelseblad till Boverkets handbok om betongkonstruktioner, BBK 04 I den text som återger BBK 04 har det smugit sig in tryckfel samt några oklara formuleringar. Dessa innebär att handboken inte återger

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2

Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2 Dimensionering för moment och normalkraft stål/trä KAPITEL 9 DEL 2 oment och normalkraft Laster Q (k) Snittkrafter och moment L q (k/m) max = ql 2 /8 max =Q Snittkrafterna jämförs med bärförmågan, t.ex.

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

Miniräknare, passare och linjal. 50 poäng

Miniräknare, passare och linjal. 50 poäng Textil mek. & hållfasthetslära Promoment: Tentamen i textil mekanik & hållfasthetslära Ladokkod: 5MH0 Tentamen ges för: TI3 TentamensKod: 7,5 högskolepoäng Tentamensdatum: 05-0-6 Tid: 09:00-3:00 Hjälpmedel:

Läs mer

INNEHÅLL LAST- KONSTAN- TER U-STÅNG U-BALK UPE- BALK IPE- BALK HEA- BALK HEB- BALK HEM- BALK VKR- RÖR KKR- RÖR KONSTR- RÖR VINKEL- STÅNG T-STÅNG

INNEHÅLL LAST- KONSTAN- TER U-STÅNG U-BALK UPE- BALK IPE- BALK HEA- BALK HEB- BALK HEM- BALK VKR- RÖR KKR- RÖR KONSTR- RÖR VINKEL- STÅNG T-STÅNG INNEHÅLL LAST- KONSTAN- TER U-STÅNG U-BALK UPE- BALK IPE- BALK HEA- BALK HEB- BALK sid Lastkonstanter 4 U-stång, U-balk 6 UPE-balk 8 IPE-balk 10 HEA-balk 12 HEB-balk 14 HEM-balk 16 VKR-rör 18 KKR-rör 22

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Material, form och kraft, F11

Material, form och kraft, F11 Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning

Läs mer

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration

Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Sensorer, effektorer och fysik Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Töjning Betrakta en stav med längden L som under inverkan av en kraft F töjs ut en

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 27 Pelaren i figuren nedan i brottgränstillståndet belastas med en centriskt placerad normalkraft 850. Kontrollera om pelarens bärförmåga är tillräcklig. Betong C30/37, b 350, 350, c 50,

Läs mer

Dimensionering i bruksgränstillstånd

Dimensionering i bruksgränstillstånd Dimensionering i bruksgränstillstånd Kapitel 10 Byggkonstruktion 13 april 2016 Dimensionering av byggnadskonstruktioner 1 Bruksgränstillstånd Formändringar Deformationer Svängningar Sprickbildning 13 april

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

Tentamen i Hållfasthetslära för I2

Tentamen i Hållfasthetslära för I2 Department of pplied Mecanics FORMLI Tentamen i Hållfastetslära för I2 18 december 2001 14.15 19.15 (skrivningstid 5 timmar) Hjälpmedel 1. Läroböcker i ållfastetslära oc mekanik. 2. Handböcker, formelsamlingar

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

Material, form och kraft, F9

Material, form och kraft, F9 Material, form och kraft, F9 Repetition Skivor, membran, plattor, skal Dimensionering Hållfasthet Styvhet/Deformationer Skivor Skiva: Strukturelement som är tunt i förhållande till utsträckningen i planet

Läs mer

3: 24p 4: 36p 5: 48p. 18 uppgifter, 60 p

3: 24p 4: 36p 5: 48p. 18 uppgifter, 60 p Luleå tekniska universitet TENTAMEN Kurskod: K000b Kursnamn: Byggmaterial Tentamensdatum: 01-1-19 Skrivtid: 09.00-15.00 Tillåtna hjälpmedel: Räknedosa Jourhavande lärare m fullständigt telefonnr: Ulf Ohlsson

Läs mer

Tentamen i Hållfasthetslära för K4 MHA 150

Tentamen i Hållfasthetslära för K4 MHA 150 Tentamen i Hållfasthetslära för K4 MHA 150 28 augusti 2004, 8 45 12 45 (4 timmar) Lärare: Anders Ekberg, tel: 772 480 Maximal poäng är 18. För godkänt krävs 9 poäng Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

6 Vägledning till övningar

6 Vägledning till övningar 6 Vägledning till övningar Deforation 1.2 Tag reda på längden, L, avdcefter deforationen. Använd att töjningen =(L L o )/L o. Ibland underlättar det att använda L =(1+ )L o. Studera den rätvinkliga triangeln

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Tillämpade analysuppgifter för V och W

Tillämpade analysuppgifter för V och W Tillämpade analysuppgifter för V och W 1. (V,W) Med vattenföring menas den volym vatten som rinner fram per tidsenhet i ett vattendrag och uttrycks vanligen i m 3 /s. En graf som visar hur vattenföringen

Läs mer

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring. Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Hållfasthetslära; grundkurs för M2, kurskod TMHL22, läsperiod 1, ht 2017

Hållfasthetslära; grundkurs för M2, kurskod TMHL22, läsperiod 1, ht 2017 ; grundkurs för M2, kurskod TMHL22, läsperiod 1, ht 2017 Allmänt: Kursen löper över en läsperiod. Tentamen kommer att ges efter läsperiodens slut. För godkänd kurs krävs godkänt på skriftlig tentamen samt

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation

Läs mer

2 november 2016 Byggnadsmekanik 2 2

2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Dimensionering för moment Betong

Dimensionering för moment Betong Dimensionering för moment Betong Böjmomentbelastning x Mmax Böjmomentbelastning stål och trä σmax TP M σmax W x,max z I y M I z max z z y max x,max M W z z Bärförmåga: M R f y W Betong - Låg draghållfasthet

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Ingrid Svensson LTH Samling med introducerande exempel till föreläsningarna i Teknisk mekanik

Ingrid Svensson LTH Samling med introducerande exempel till föreläsningarna i Teknisk mekanik Ingrid Svensson LTH 2009 Samling med introducerande exempel till föreläsningarna i Teknisk mekanik Förord Föreliggande exempelsamling är avsedd att användas i samband med föreläsningarna i Teknisk mekanik.

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:

Läs mer

Kursprogram Strukturmekanik FME602

Kursprogram Strukturmekanik FME602 Kursprogram Strukturmekanik FME602 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

Speciella övningar för V och W

Speciella övningar för V och W Speciella övningar för V och W VW 1. Med vattenföring menas den volym vatten som rinner fram per tidsenhet i ett vattendrag. Den uttrycks vanligen i m 3 /s. En graf som visar hur vattenföringen ändras

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6)

Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6) Föreläsningsdel 3: Spänningar i jord (motsvarande Kap 3 i kompendiet, dock ej mätavsnittet 3.6) Spänningar i jord Olika spänningstillstånd Krafter och spänningar i ett kornskelett Torrt kornskelett Vattenmättat

Läs mer

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som .

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som . BÖJNING AV EN BALK 1 Inledning Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som σσ = FF AA, (1) där A är stavens

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Inverkan av krav på sprickbegränsning för spännarmerade betonglådbroar av Freivorbau-typ

Inverkan av krav på sprickbegränsning för spännarmerade betonglådbroar av Freivorbau-typ Inverkan av krav på sprickbegränsning för spännarmerade betonglådbroar av Freivorbau-typ Jesper Janzon-Daniel & Erik Kjellberg November 26 TRITA-BKN. Eamensarbete 243, Betongbyggnad 26 ISSN 3-4297 ISRN

Läs mer

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet.

δx 1, (1) u 1 + u ) x 1 där den andra termen är hastighetsförändringen längs elementet. Föreläsning 3. 1 Töjningstensorn I denna föreläsning kommer vi konsekvent att använda oss utav Cartesisk tensornotation i vilken vi benämner våra koordinater med (x 1, x 2, x 3 ) och motsvarande hastighetskomponenter

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

LABORATION I HÅLLFASTHETSLÄRA AK1

LABORATION I HÅLLFASTHETSLÄRA AK1 LABORATION I HÅLLFASTHETSLÄRA AK1 Laborationer i hållfasthetslära är obligatoriska moment. I AK1M sker laborationer vid två stationer och arbetet genomförs med fyra teknologer i varje grupp, vilka tillsammans

Läs mer

b) Vanliga konstruktionsstål klarar töjningar på några få h. Beräkna hur många mm stången AB kan förlängas om maximal töjning är

b) Vanliga konstruktionsstål klarar töjningar på några få h. Beräkna hur många mm stången AB kan förlängas om maximal töjning är 5 Övningar Deforation 1.1 a) Stången AB har längden 1.2 i obelastat tillstånd. En yttre last förlänger stången ed BB = 0.2. Hur stor blir töjningen? b) Vanliga konstruktionsstål klarar töjningar på några

Läs mer

INTRODUKTION TILL HÅLLFASTHETSLÄRAN. P. Ståhle

INTRODUKTION TILL HÅLLFASTHETSLÄRAN. P. Ståhle . ı INTRODUKTION TILL HÅLLFASTHETSLÄRAN P. Ståhle tom P. Ståhle, hållfasthetslära, LTH, Lunds universitet INTRODUKTION TILL HÅLLFASTHETSLÄRAN P. Ståhle Hållfasthetslära, LTH Innehåll 1 DEFORMATION OCH

Läs mer

1. Ett material har dragprovkurva enligt figuren.

1. Ett material har dragprovkurva enligt figuren. 1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,

Läs mer

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid användning inte går sönder. Detta förutsätter att vi väljer

Läs mer

FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL

FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL Jonas Faleskog, KTH Hållfasthetslära Januari 3 FEM för Ingenjörstillämpningar, VT3 / J.Faleskog SE5, FEM för ingenjörstillämpningar (6 hp) fortsättningskurs i

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Hållfasthetsanalys av gaffeltruckar

Hållfasthetsanalys av gaffeltruckar DEPARTMENT OF MECHANICAL ENGINEERING Hållfasthetsanalys av gaffeltruckar Eamensarbete utfört för SB Truck AB vid Avdelningen för Hållfasthetslära, IKP Linköpings universitet Mathias Bylow LITH-IKP-EX--05/8--SE

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Tentamen i Elkraftteknik för Y

Tentamen i Elkraftteknik för Y TMEL0 07 10 13 1 Energisystem/Elektroteknik/IEI Tentamen i Elkraftteknik för Y Kurs: TMEL0 007-10 - 13 kl 08-1 -------------------------------------------------------------------------------------- Sal

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del (FFM50) Tid och plats: Tisdagen den 5 maj 010 klockan 08.30-1.30 i V. Lösningsskiss: Per Salomonsson och Christian Forssén. Obligatorisk del 1. Rätt svar på de fyra deluppgifterna

Läs mer

Material, form och kraft, F7

Material, form och kraft, F7 Material, form och raft, 7 Repetition Stång, bal, facver, och ramver Styvhet Material, form och raft orm och raftflöde Statist bestämda/obestämda onstrutioner Struturelement Verligheten är D omplext! örenlande

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Manual för ett litet FEM-program i Matlab

Manual för ett litet FEM-program i Matlab KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet

Läs mer

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν

Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär

Läs mer

Du är välkommen till grundkursen i hållfasthetslära!

Du är välkommen till grundkursen i hållfasthetslära! KTH - HÅLLFASTHETSLÄRA 1 Program för Hållfasthetslära grundkurs, HT 2010 SE1010 för MPT (12 hp), SE1020 för BD och SE1012 för IPI/MEI (9 hp) Varför läsa hållfasthetslära i civilingenjörsutbildningen? All

Läs mer

Dimensionering av byggnadskonstruktioner. Dimensionering av byggnadskonstruktioner. Förväntade studieresultat. Förväntade studieresultat

Dimensionering av byggnadskonstruktioner. Dimensionering av byggnadskonstruktioner. Förväntade studieresultat. Förväntade studieresultat Dimensionering av Dimensionering av Kursens mål: Kursen behandlar statiskt obestämda konstruktioner såsom ramar och balkar. Vidare behandlas dimensionering av balkar med knäckning, liksom transformationer

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer