Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.
|
|
- Christoffer Berglund
- för 9 år sedan
- Visningar:
Transkript
1 Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär sökträd för strängr Klls oft trie Finit utomter Består v: en mängd tillstånd (K) en mängd symoler (Σ) ett strttillstånd (q 0 ) en mängd giltig vslutningstillstånd (F) en mängd övergångr (δ) Funktion: K Σ K Finit utomter K = {,, } Σ = {, } q 0 = δ = {<, >=, <, >=, <, >=} F = {} Olik finit utomter Indeterministisk Tillåter epsilonövergångr Tillåter tt δ är en reltion Fler måltillstånd för vrje tillstånd symol-pr Kn determinisers mskinellt Deterministisk Tillåter ing epsilonövergångr Tvingr δ tt vr en funktion I ll prktisk hänseenden kn mn etrkt finit utomter som deterministisk Finit utomter Beskriver reguljär språk Vrje finit utomt motsvrr ett reguljärt språk Om mn driver en utomt med en sträng hmnr mn i ett giltigt vslutningstillstånd om strängen ingår i det reguljär språk utomten eskriver Mn kn etrkt strängr som en slgs drivmedel för utomter Sträng = Σ*
2 Provkörning med Provkörning med Provkörning med Provkörning med Totl funktion som δ δ ör vr en totl funktion Potentiell övergångr som utelämns ehndls som om de gick till ett återvändstillstånd x Implementtioner v finit utomter Hur sk mn gå till väg för tt modeller en finit utomt? Modeller delrn för sig K: All tillstånd Σ: All symoler q 0 : Strttillståndet F: All giltig vslutningstillstånd δ: Övergångsfunktionen
3 K och q 0 All tillstånd måste vr unik Vnligtvis numrerde Kn modellers som heltl Vrje heltl motsvrr ett tillstånd Vi kn modeller K som ntlet tillstånd q 0 är i så fll ett specifikt heltl som pekr ut strttillståndet Σ En mängd unik symoler Kn modellers som en list med tecken Teckenuppsättningen är en list med tecken! Kn li joigt med UTF-8 Läs yteström istället? Vrje tecken tolks som en egen utomt, somlig med ett tillstånd, ndr med fler Begränsr teckentellen till 55 unik symoler Kn modellers genom en seprt klss Måste kunn ge ett heltl givet en symol F Eftersom tillstånden modellers som heltl ehöver en oolen ssociers till vrje heltl Svrr på frågn är dett ett giltigt vslutningstillstånd? En rry med oolener pssr δ En funktion sk leverer ett svr för vrje tänkrt input Tänkr input är komintioner v tillstånd och symoler (K Σ) Tillstånd och symoler är heltl Vi ehöver ssocier två heltl (strttillståndet och en symol) till ett tredje (måltillståndet) Arry med rryer med heltl! Mtris med heltl Smmnfttning K: Heltl (ntl tillstånd) Σ: Assocition: symol heltl Dtorns egn teckentell Måste kunn svr på ntlet tecken q 0 : Heltl (som pekr ut strttillståndet) F: Arry (storlek = K) med oolener δ: Mtris (storlek = K size(σ)) med heltl I Jv pulic clss FSA { privte int k; privte int q0; privte oolen[] f; privte int[][] delt; pulic FSA(int k, int q0) { this.k = k; this.q0 = q0; f = new oolen[k]; delt = new int[k][56]; } pulic oolen ccepts(string s) { int q = q0; for (yte : s.getbytes()) { -= Byte.MIN_VALUE; //Sklning q = delt[q][]; } return f[q]; } }
4 Exempelutomten i Jv 0 k = 4 q0 = f = [ flse, flse, flse, true ] delt = [ [, 0, 0, ], [,, 0, ], [,,, ], [, 0, 0, ] ] Smmnfttning Finit utomter Beskriver reguljär språk Genom tt svr på frågn om en given sträng ingår i språket eller inte Kn implementers reltivt enkelt Reguljär uttryck Beskriver ett reguljärt språk Kn kominers med Kleene stjärn (*) Union (U) Snitt ( ) Konktenering (_) Exempel A = {}, B = {} A_B = {} AB U BA = {, } A*B = {,,,, } Reguljär uttryck Reguljär språk kn vr oändlig Vi kn inte räkn upp ll strängr som ingår i ett språk Kn vi vgör ifll en given sträng tillhör ett givet reguljärt språk? Om vi hde en utomt Reguljär uttryck och finit utomter Båd eskriver reguljär språk Går tt översätt mskinellt melln reguljär uttryck och finit utomter Två spekter v smm sk Reguljär språk Reguljär uttryck i Jv (.4 +) jv.util.regex Pttern Klss som representerr reguljär uttryck Byggs med en strängrepresenttion v det reguljär uttrycket Dokumenttionssidn innehåller llt mn kn tänks vilj vet om Jvs reguljär uttryck Mtcher Byggs med ett Pttern och en String Svr på frågor om hur strängen mtchr det reguljär uttrycket 4
5 Reguljär uttryck i String Vnligste nvändningsområden finns inäddde i String oolen mtches(regex) String replceall(regex, replcement) String replcefirst(regex, replcement) String[] split(regex) String[] split(regex, limit) Reguljär uttryck i progrmmering Förkorts oft re (regulr expression) perlre = Perls mnulsid för reguljär uttryck regex (regulr expression) Jv.util.regex regexp (regulr expression) re(gex(p)?)? Oft utyggd för tt t tillvr på sker mn får grtis vid implementering Stöd för dtorns inyggd teckentell Reguljär uttryck i progrmmering Bonusfunktioner Färdig symolklsser Anpssning till dtorns teckentell Mång tecken är redn klssificerde Exkt vd i strängen vr det som mtchde uttrycket? Möjlighet tt få ut delsträngr som mtchde delr v uttrycket Reguljär uttryck i Jv Tecken Teckenklsser [-zåäö] All tecken melln och z smt åäö (intervll enligt gällnde teckentell) [^ ] Negerd klss Mång färdig klsser Kvntifierre Hur mång v föregående tecken, klss eller grupp? Grupperingr Görs med prenteser Teckenklsser (se jv.util.regex.pttern) Mängdteoretisk opertioner [-z&&[def]] = [def] [-z&&[^def]] = [-cg-z] Escpetecken \\ ckslsh \n \t \r \f Vnlig system etydelse \Onn Tecken nn enligt oktl värde \xnn Tecken nn enligt hexdecimlt värde Fördefinierde klsser. Mtchr vilket tecken som helst \s \S spce \w \W word \d \D digit \p{nmn} \P{nmn} posix Ankre ^ Börjn v input $ Slutet v input Kvntifierre Grundkvntifierre? Noll eller en gång * Noll eller fler gånger + En eller fler gånger {n} Exkt n gånger {n,} Minst n gånger {n,m} Minst n gånger, högst m gånger Är normlt girig Kn görs ovillig genom tt lägg på ett? efter (??, *?, +?, ) 5
6 Girig/ovillig kvntifierre (greedy/reluctnt) Viktigt koncept när mn fångr olik grupper Girig kvntifierre försöker mtch så mycket som möjligt Ovillig kvntifierre försöker mtch så lite som möjligt, 0, 4, 4 sk mtchs mot.*, Girig mtchning:, 0, 4, Ovillig mtchning:, Grupperingr Hel uttrycket etrkts som en grupp Grupper kn skps genom prenteser Grupper fångr upp den delsträng de mtchr Går tt stäng v: (?:RegExp) Exempel: (A)(B(C)) Hel uttrycket lir grupp 0 Därefter ts vrje strtprentes från vänster till höger ut som en grupp: A, BC, C Mtchnde delsträngr i Jv Klssen Mtcher kn hämt ut en grupp efter index Exempel: (A)(B(C)) groupcount() = 4 group(0) = ABC group() = A group() = BC group() = C Förhållndet melln Pttern, Mtcher och String Pttern hr en sttisk metod som heter compile Tr en strängrepresenttion v ett reguljärt uttryck och returnerr en Pttern Pttern hr en metod som heter mtch Tr en ChrSequence (supertyp till String) som rgument och returnerr en Mtcher Mtcher representerr resulttet v en mtchning Hr metoder för tt eskriv hur det gick (se grupper) Förhållndet melln Pttern, Mtcher och String Smmnfttning: reguljär uttryck String String Pttern compile Pttern mtch Enkelt tt ehndl strängr Krftfull meknism Tidskomplexitet: O(n) där n är strängens längd Mtcher group(int) String 6
7 (trie) Aretr på sekvenser ex. strängr Jg kommer genomgående tl om strängr istället för sekvenser v tecken Hr mycket gemensmt med utomter Informtionen om vd mn läst in hittills i en utomt vspegls i vilket tillstånd mn efinner sig i I prefixträd motsvrr vrje tillstånd (eller nod om mn så vill) ett unikt prefix Nodern kn ssociers med informtion om det ktuell prefixet egenskper Vi kn ssocier informtion med en sträng Vi kn komm åt informtionen i O(n) tid där n är längden på strängen Jättesnt! Lexikon? Exempel Insättning v runjörn : Automtsättet run i s t j ö r n e r i s t j ö r n e r? run i Insättning v runjörn : s j ö r n t j ö r n e r Skillnder melln utomter och prefixträd Automter Går tt minimer Kn svr på ifll strängen tillhör språket eller inte Går inte tt minimer spretigre och större Vet lltid vilken sträng som krävdes för tt hmn där mn efinner sig 7
8 eller inär sökträd? s = stränglängd, n = ntl noder Binär sökträd O(log n) Behöver gör log n strängjämförelser Hur lång tid tr en strängjämförelse? O(s) O(s) Behöver gör s symolssocitioner Hur lång tid tr en symolssocition Beror på vilken meknism som nvänds eller inär sökträd? Symolssocition Omvndl symolen till ett nummer Slå upp i rry Snt Tr stor plts Slå upp med hshning Långsmmre Tr mindre plts Prioriteringsfråg Svårt tt säg vd som är snst Beror till stor del på konstnter som inte syns i O-nottion eller inär sökträd? Snre Tr större plts Binär sökträd Långsmmre Tr mindre plts Avvägning melln tid och plts Hur ser växlingskursen ut? Olik tillämpningr hr olik ehov Stämmer det? Smmnfttning nses r för lexikonhntering Br tt känn till som språkteknolog Frmtiden (för kursen) Br len på måndg kvr! Kursutvärdering kommer upp på hemsidn inom kort Gör den! Tvek inte tt kontkt mig om ni undrr något mrkus.sers@lingfil.uu.se 8
6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.
1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",
Programmering för språkteknologer II, HT2014. Rum
Progrmmering för språkteknologer II, HT2014 Avncerd progrmmering för språkteknologer, HT2014 evelin.ndersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelin/uv/uv14/pst2/ Idg - Ändlig utomter -
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
AUBER 95 9 jan LÖSNINGAR STEG 1:
AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.
Grundläggande textanalys, VT2012
Grundläggnde textnlys, VT2012 evelin.ndersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelin/uv/uv12/gt/ (Tck till Sofi Gustfson-Cpkovâ för mteril.) Idg - Kurspln - Kort historik - Ändlig utomter
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
definitioner och begrepp
0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Föreläsning 3: Strängmatchning
2D1458, Prolemlösning oh progrmmering under press Föreläsning 3: Strängmthning Dtum: 2006-09-18 Srienter: Miel Elisson, Joim Erisson oh Mts Linnder Föreläsre: Miel Goldmnn Denn föreläsning ehndlr prolemet
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Belöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp
Belöningsbserd Inlärning Reinforcement Lerning 1 2 3 4 1 2 3 4 Belöningsbserd inlärning Reinforcement Lerning Inlärning v ett beteende utn tillgång till fcit. En belöning ger informtion om hur br det går
Nya regler för plåtbalkar-eurokod 3-1-5
Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller
Internetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd
Föreläsning 7 Sply-träd. rioritetsköer oh hepr. Union/Find TDDC70/1: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 7 septemer 01 Tommy Färnqvist, IDA, Linköpings universitet 7.1 Innehåll
Bokstavsräkning. Regler och knep vid bokstavsräkning
Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Rationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Addition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik
Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet
Råd och hjälpmedel vid teledokumentation
Råd och hjälpmedel vid teledokumenttion Elektrisk Instlltörsorgnistionen EIO Innehåll: Vd skiljer stndrdern åt När sk vilken stndrd nvänds Hur kn gmml och ny stndrd kominers Hur kn dokumenttionen förenkls
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Lexikon och lexikonorganisation. Lexikal information. Reguljära uttryck i implementeringar. Reguljära uttryck. Olika sätt att definiera strängmängder
Språkteknologi (Lrs Ahrenberg) Språkteknologi (Lrs Ahrenberg) Lexikon och lexikonorgnistion Reguljär språk, ändlig utomter och trnsduktorer Lexikonorgnistion fullformslexikon minilexikon (= morfembserde
Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
INNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3
INNEHALL 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 DATORER Allmänt Digitl dtorer Orgnistion Ordmm Minnesenheten Aritmetisk enheten Styrenheten In/utenheten Avbrott Spräk och proglmm
MEDIA PRO. Introduktion BYGG DIN EGEN PC
BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående
Lödda värmeväxlare, XB
Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler
Kvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Ett förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.
REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som
Oleopass Bypass-oljeavskiljare av betong för markförläggning
Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,
MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12
Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Grundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Analys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
Kallelse till årsstämma i Samfälligheten Askträdet
Kllelse till årsstämm i Smfälligheten Askträdet Hej, Vrmt välkomn till års stämm för medlemmrn i Smfälligheten Askträdet; Torsdg mrs 9. på Förskoln Tårpilsgränd Väl mött, Styrelsen . Vl v mötesordförnde
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Tentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Tommy Färnqvist, IDA, Linköpings universitet. 2 Hashtabeller Kollisionshantering Att välja hashfunktion... 10
Föreläsning 18 Sply-träd, hshning, skip-listor TDDD86: DAL Utskriftsversion v föreläsning i Dtstrukturer, lgoritmer oh progrmmeringsprdigm 11 novemer 2015 Tommy Färnqvist, IDA, Linköpings universitet 18.1
> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck
> VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
CD5560 FORMELLA SPRÅK, AUTOMATER, OCH BERÄKNINGSTEORI, 5 p 10 AUGUSTI 2007 LÖSNINGAR
CD556 FORMELLA SPRÅK, AUTOMATER, OCH BERÄKNINGSTEORI, 5 p AUGUSTI 27 LÖSNINGAR REGULJÄRA SPRÅK (8p + 6p). DFA och reguljär uttryck (8 p) ) Konstruer en miniml DFA som ccepterr strängr över lfetet Σ = {,}
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013
Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två
Föreläsning 2 5/6/08. Reguljära uttryck 1. Reguljära uttryck. Konkatenering och Kleene star. Några operationer på språk
Reguljära uttryck Ändliga automater och reguljära uttryck Språk som är och inte är reguljära Konkatenering och Kleene star Två strängar u och v (på alfabetet )kan konkateneras till strängen uv Givet två
ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?
Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr
DAB760: Språk och logik
DAB76: Språk och logik /4: Finita automater och -7 reguljära uttryck Leif Grönqvist (leif.gronqvist@msi.vxu.se) Växjö Universitet (MSI) GSLT (Sveriges nationella forskarskola i språkteknologi) Göteborg
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
XIV. Elektriska strömmar
Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets
Exponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Komplexa tal. j 2 = 1
Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1
Skapa uppmärksamhet och få fler besökare till din monter!
Skp uppmärksmhet och få fler esökre till din monter! För tt vinn den tuff tävlingen om uppmärksmheten, på en plts där hel rnschen är smld, gäller det tt slå på stor trummn och tl om tt du finns. Till en
Idag: Reguljära språk Beskrivs av Reguljära uttryck DFA Grammatik
Idag: Reguljära språk Beskrivs av Reguljära uttryck DFA Grammatik Först några definitioner: Alfabet = en ändlig mängd av tecken. Ex. {0, 1}, {a,b}, {a, b,..., ö} Betecknas ofta med symbolen Σ Sträng =
Svar till uppgifter 42 SF1602 Di. Int.
Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)
Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.
1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.
Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
abbcba a) A regular expression over
1 CD5560 FABER Forml Lnguges, Automt nd Models of Computtion Exerise Mälrdlen University 007 NEXT WEEK! Midterm Exm 1 Regulr Lnguges Ple: U-114 Time: Tuesdy 007-04-4, 10:15-1:00 t is OPEN BOOK. This mens
Repetitionsuppgifter i matematik
Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde
GENETIK. en introduktion av Ingela Carlén 1988 och 1999
GENETIK en introduktion v Ingel Crlén 1988 och 1999 Innehållsförteckning Innehåll Sidn Förord 3 Kromosomer 4 DN 4 Muttioner 5 Gregor Mendel 5 Mendels metod 6 Mendelklyvning (monohybrid) 6 Dihybrid klyvning
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Nordbygg.
Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på Nordygg. Älvsjö 20 INORMATION Är du intresserd v eller vill ok reklmpltser så kontkt: Susnne Rip, säljre, tel 0-9 3, susnne.rip@stockholmsmssn.se
Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.