Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd
|
|
- Alexander Nyström
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsning 7 Sply-träd. rioritetsköer oh hepr. Union/Find TDDC70/1: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 7 septemer 01 Tommy Färnqvist, IDA, Linköpings universitet 7.1 Innehåll Innehåll 1 Sply-träd 1 rioritetsköer Hepr 4 Union/Find 7. 1 Sply-träd Binär sökträd är inte unik Kom ihåg det inär sökträdet: Enkelt tt sätt in oh t ort element, men... lnsen estäms v ordningen på insättningr oh orttgningr. Kominer med heuristiken håll nyligen nvänd element först för listor? Oft nvänd element ör finns när roten! insert: 1,,4,, insert:,,1,4, 7. Opertionen sply(k) Utför en norml sökning efter k, kom ihåg nodern vi psserr... Märk den sist noden vi undersöker med Om k finns i T, finns k i noden, nnrs är förälder till ett tomt träd Återvänd till roten oh gör en rottion vid vrje nod för tt flytt uppåt i trädet... ( fll) 7.4 1
2 Opertionen sply(k) zig: prent() är roten: roter kring 7. Opertionen sply(k) zig-zig: oh prent() är ägge vänsterrn (eller ägge högerrn): utför två rottioner för tt flytt upp d R R d R d 7. Opertionen sply(k) zig-zg: En v oh prent() är ett vänsterrn oh den ndr är ett högerrn eller vie vers: utför två rottioner i olik riktningr R d d R Oserver tt dess rottioner kn ök trädets höjd! 7.7
3 find oh insert funtion FIND(k, T ) SLAY(k,T ) if KEY(ROOT(T )) = k then return (k, v) else return null funtion INSERT(k, v, T ) sätt in (k,v) som i ett inärt sökträd SLAY(k,T ) 7. Exempel: insättning v Exempel: insättning v 14
4 7. Exempel: insättning v Exempel: insättning v 14 4
5 7.1 Exempel: insättning v Exempel: insättning v 14
6 7.14 delete funtion DELETE(k, T ) if k finns i ett löv then gör SLAY på föräldern till lövet else if k finns i en intern nod then ersätt noden med dess föregångre i inorder gör SLAY på föräldern till föregångren Det går förstås tt nvänd efterföljren i inorder okså. 7.1 Exempel: orttgning v 7.1
7 Exempel: orttgning v 7.17 Exempel: orttgning v 7.1 restnd Vrje opertion kn ehöv utförs på ett totlt olnsert träd lltså ingen grnti för tid O(logn) i värst fllet Amorterde tiden är logritmisk vrje sekvens v m opertioner, utförd på ett initilt tomt träd, tr totlt O(mlogm) tid 7
8 lltså är den morterde kostnden/tiden för en opertion O(logn) även om enskild opertioner kn ete sig myket värre 7.1 rioritetsköer rioritetsköer En vnligt förekommnde sitution: Väntelist (johntering på flernvändrdtorer, simulering v händelser) Om en resurs lir ledig, välj ett element från väntelistn Vlet är sert på någon prtil/linjär ordning: ADT prioritetskö joet med högst prioritet sk körs först, vrje händelse sk inträff vid en viss tidpunkt; händelsern sk erets i tidsordning Linjärt ordnd mängd K v nyklr Vi lgrr pr (k,v) (som i ADT Ditionry), fler pr med smm nykel är tillåtet en vnlig opertion är tt hämt pr med miniml nykel Opertioner på en prioritetskö : mkeempty() isempty() size() min(): hitt ett pr (k,v) som hr minimlt k i ; returner (k,v) insert(k,v): sätt in (k,v) i removemin(): t ort oh returner ett pr (k,v) i med minimlt k; error om är tom Implementtion v prioritetsköer Vi kn t.ex. nvänd (sorterde) länkde listor, BST eller Skip-listor En nnn idé: nvänd ett fullständigt inärt träd där roten i vrje (del)träd T innehåller det minst elementet i T Det här är ett prtiellt ordnt träd, okså kllt hep! 7. Hepr Att uppdter en hepstruktur Med sist lövet menr vi den sist noden i en trversering i levelorder removemin() // t ort roten Ersätt roten med sist lövet Återställ den prtiell ordningen genom tt yt noder nedåt down-hep uling insert(, k, v) Sätt in ny nod (k,v) efter sist lövet Återställ den prtiell ordningen genom up-hep uling 7.
9 Egenskper size(), isempty(), min(): O(1) insert(), removemin(): O(logn) Kom ihåg rryrepresentionen v BST Ett fullständigt inärt träd... Kompkt rryrepresenttion Bule-up oh ule-down hr sn implementtioner 7.4 Exempel: ule-up efter insert(4,1) 7. Hepvrinter Olik prtilordningr minst nykeln i roten (minhep) störst nykeln i roten (mxhep) Olik rryrepresenttioner numrering frmåt i levelorder (med örjn från 0 eller 1) numrering kåt i levelorder (med örjn från 0 eller 1) 7. 4 Union/Find rtitioneringr med Union/Find-opertioner mkeset(x): Skp en mängd enrt innehållnde elementet x oh returner positionen som lgrr x den ny mängden. union(a,b): Returner mängden A B, förstör de gml A oh B. find(p): Returner mängden som innehåller elementet i position p. 7.7
10 Exempel: Dynmisk konnektivitet Fråg: finns det en stig melln p oh q? ixlr i ett digitl foto Dtorer i ett nätverk Vänner i ett soilt nätverk Trnsistorer på ett dtorhip Element i en mtemtisk mängd Vrielnmn i ett dtorprogrm Metllisk delr v ett kompositsystem 7. Listserd implementtion Vrje mängd lgrs som en sekvens representerd v en länkd list Vrje nod lgrr ett ojekt innehållnde ett element oh en referens till mängdens nmn 7. Anlys v listserd representtion När union utförs, flytt lltid element från den mindre mängden till den större mängden Vrje gång ett element flytts hmnr det i en mängd som är åtminstone duelt så stor som den gml mängden
11 Alltså, ett element kn flytts mx O(logn) gånger Totl tid för tt utför n union- oh find-opertioner är O(nlogn) 7.0 Trädserd implementtion Vrje element lgrs i en nod som innehåller en pekre till ett mängdnmn En nod v vrs pekre pekr på nod v är okså ett mängdnmn Vrje mängd är ett träd, rott i en nod med själreferernde mängdnmnspekre T.ex. mängdern 1, oh : Opertioner För tt utför union, låt r roten v ett träd pek på roten v det ndr
12 För tt utför find, följ mängdnmnspekrn från strtnoden till en självreferernde nod träffs på! En heuristik Union vi storlek: När union utförs, låt roten i det mindre trädet pek på roten i det större Medför O(nlogn) tid för tt utför n union- oh find-opertioner: Vrje gång vi följer en pekre kommer vi till ett delträd som är åtminstone duelt så stort som det förr delträdet Alltså kommer vi tt som mest följ O(logn) pekre för någon find 1 7. En till heuristik Stigkomprimering: Efter tt find utförts komprimer ll pekre på stigen som preis trverserts så tt de ll pekr på roten 1 1 Medför O(nlog n) tid för tt utför n union- oh find-opertioner
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 6 Sply-trä. rioritetsköer oh hepr. TDDC91,TDDE22,725G97: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 19 septemer 2017 Mgnus Nielsen, IDA, Linköpings universitet 6.1 Innehåll
Tommy Färnqvist, IDA, Linköpings universitet. 2 Hashtabeller Kollisionshantering Att välja hashfunktion... 10
Föreläsning 18 Sply-träd, hshning, skip-listor TDDD86: DAL Utskriftsversion v föreläsning i Dtstrukturer, lgoritmer oh progrmmeringsprdigm 11 novemer 2015 Tommy Färnqvist, IDA, Linköpings universitet 18.1
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Föreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018
Föreläsning 5 TDDC91,TDDE22,725G97: DALG Föreläsning i Datastrukturer och algoritmer 18 september 2018 Institutionen för datavetenskap Linköpings universitet 5.1 Introduktion find,insert och remove i ett
Tommy Färnqvist, IDA, Linköpings universitet. 1 Prioritetsköer Heapar Tillämpning... 3
Föreläsning 19 Prioritetskö, Heap, Trie, Union/Find, Geometriska tillämpningar av BST TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 13 november 2015
Föreläsning 6. Sökträd: AVL-träd, Multi-Way -sökträd, B-träd TDDC70/91: DALG. Innehåll. Innehåll. 1 AVL-träd
Föreläsning 6 Sökträd: AVL-träd, Multi-Wa -sökträd, B-träd DDC7/9: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer september omm Färnqvist, IDA, Linköpings universitet 6. Innehåll
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Datastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik
Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.
1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning ADT Map/Dictionary, hashtabeller TDDC9,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 7 september 208 Magnus Nielsen, IDA, Linköpings universitet. ADT Map/Dictionary.
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-08-28 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är syftet med ett interface? (1p) Svar:Att ange vilka metoder som ska finnas, utan
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 AVL-träd 1 2 5 2 0 4 1 8 3 2 1 11 1 7 Lecture 6 2 Insättning i AVL-träd Sätt först in det nya elementet på samma sätt som i ett vanligt BST! Det nya trädet kan bli
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Självbalanserande AVL-träd Weiss, avsnitt 4.4
Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Finita automater, reguljära uttryck och prefixträd. Upplägg. Finita automater. Finita automater. Olika finita automater.
Finit utomter, reguljär uttryck och prefixträd Algoritmer och Dtstrukturer Mrkus Sers mrkus.sers@lingfil.uu.se Upplägg Finit utomter Implementtion Reguljär uttryck Användningr i Jv Alterntiv till inär
Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Föreläsning 3: Strängmatchning
2D1458, Prolemlösning oh progrmmering under press Föreläsning 3: Strängmthning Dtum: 2006-09-18 Srienter: Miel Elisson, Joim Erisson oh Mts Linnder Föreläsre: Miel Goldmnn Denn föreläsning ehndlr prolemet
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt
Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index
Informationsteknologi Tom Smedsaas 19 augusti 2016
Informationsteknologi Tom Smedsaas 19 augusti 016 VL-träd Definition Ett VL-träd är ett binärt sökträd där det för varje nod gäller att skillnaden i höjd mellan nodens vänster och höger subträd är högst
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Heapar Implementering av prioritetskö med heap Klassen PriorityQueue i java.util Programexempel LPT-algoritmen
Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två
Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?
Algoritmer och datastrukturer 2012, föreläsning 6
lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på
TMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Så här gör du? Innehåll
hp dvd writer Så här gör du? Innehåll hur vet jg vilket progrm jg sk nvänd? 1 svensk hur kopierr jg en skiv? 2 hur överför jg min nd till en skiv? 4 hur skpr jg en dvd-film? 9 hur redigerr jg en video-dvd-skiv?
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Föreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Datastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet alanserade binära sökträd VL-träd Datastrukturer som passar för sökning ntag att vi i ett
Datastrukturer som passar för sökning. Föreläsning 11 Innehåll. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, VL-träd Jämföra objekt interfacet omparable Interfacet omparator
Tentamen TEN1 HI
Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha
SLING MONTERINGS- OCH BRUKSANVISNING
SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,
Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Tommy Färnqvist, IDA, Linköpings universitet. 1 Sortering Heap-sort Merge-sort Sammanfattning... 10
Föreläsning 9 Heap-sort, merge-sort. Undre gränser för sortering. Sortering i linjär tid? TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 4 oktober 2013 Tommy Färnqvist,
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
MEDIA PRO. Introduktion BYGG DIN EGEN PC
BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående
Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Ekvivalensrelationer
Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Föreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2015-08-28 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Appendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
DAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Facit Tentamen TDDC kl (6)
Facit Tentamen TDDC30 2015-03-19 kl 14-18 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Ge ett exempel på ett kodstycke som orsakar ett NullPointerException. (1p) Svar:Animal
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Gör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
XIV. Elektriska strömmar
Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, träd Weiss, avsnitt 4.7, 11.5, 12.2, etc.
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, 2-3-4-träd Weiss, avsnitt 4.7, 11.5, 12.2, etc. Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 2-3-träd [inte i kursboken] Ett 2-3-träd har två sorters
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Kvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34
Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)