Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet

Storlek: px
Starta visningen från sidan:

Download "Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet"

Transkript

1 Kompletterigsskrivig i EG2050 Systemplaerig, 17 september 2009, 9:00-11:00, stora koferesrummet Istruktioer Edast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgiftera tillgodoräkas resultatet frå tetame). Några motiverigar eller beräkigar behöver ite redovisas. Dea kompletterigsskrivig ka totalt ge 40 poäg. Godkät betyg garateras vid 33 poäg. Tillåta hjälpmedel Vid dea kompletterigsskrivig får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig A4-sida med ega ateckigar (origial, ej kopia). Dea sida skall lämas i tillsammas med svarsbladet.

2 Uppgift 1 (4 p) Besvara följade teorifrågor geom att välja ett alterativ, som du aser är korrekt. a) (2 p) E aktör som är balasasvarig har följade skyldigheter: I) Ma är ekoomiskt asvarig för att systemet uder e viss hadelsperiod (t.ex. e timme) tillförs lika mycket eergi som es kuder förbrukat, II) Ma är fysiskt asvarig för att systemet uder e viss hadelsperiod (t.ex. e timme) tillförs lika mycket eergi som es kuder förbrukat, III) Ma är fysiskt asvarig för att systemet i varje ögoblick tillförs lika mycket effekt som es kuder förbrukar. 1. Iget av påståedea är sat. 2. Edast I är sat. 3. Edast II är sat. 4. Edast III är sat. 5. I och II är saa me ite III. b) (2 p) Följade gäller för ett edreglerigsbud på e reglermarkad: I) Om ett edreglerigsbud aktiveras så iebär det att de som lämat budet köper eergi av systemoperatöre, II) Ett edreglerigsbud ka verkställas geom att miska produktioe i t.ex. ett vattekraftverk, III) Ett edreglerigsbud ka verkställas geom att miska elförbrukige i t.ex. e stor idustri. 1. Edast I är sat. 2. I och II är saa me ite III. 3. I och III är saa me ite II. 4. II och III är saa me ite I. 5. Alla påståedea är saa. 2

3 Uppgift 2 (6 p) a) (2 p) På elmarkade i Lad råder perfekt kokurres, alla aktörer har perfekt iformatio och det ite fis vare sig ågra ät-, magasis-, eller effektbegräsigar. Data för elproducetera i Lad ges i tabell 1. De rörliga produktioskostade för kolkodese atas vara lijära i det agiva itervallet, d.v.s. då produktioe är oll är priset på de lägsta ivå och vid maximal produktio är priset maximalt. Atag att kosumetera på elmarkade i Lad ite är priskäsliga. Vilket elpris får ma om elförbrukige är 145 TWh/år? Tabell 1 Data för elproducetera i Lad. Kraftslag Produktioskapacitet [TWh/år] Rörlig kostad [ /MWh] Vattekraft Kärkraft Kolkodes b) (2 p) Betrakta e elmarkad där det råder perfekt kokurres, däralla aktörer har perfekt iformatio och där det ite fis ågra ät- eller magasibegräsigar.uder ett visst dyg kommer elpriset på dea elmarkad att överstiga 380 /MWh uder 20 timmar. Hur mycket producerar ett kraftverk med driftkostade 380 /MWh uder detta dyg, om de istallerade effekte i kraftverket är 200 MW? c) (2 p) Strålige AB äger ett kärkraftverk med e produktioskapacitet på 8 TWh per år. Kraftverkets rörliga driftkostad är 100 /MWh och företaget har fasta kostader på M /år. Hur högt måste elpriset mist vara för att företaget ite ska gå med förlust? 3

4 Uppgift 3 (6 p) Elsystemet i Lad är uppdelat i två område (A respektive B) som är förbuda med e växelströmsledig. Dea ledig har e maximal överförigskapacitet på 1000MW och är försedd med skyddssystem som efter e visidsfördröjig kopplar bort ledige om de maximala kapacitete överskrids. Klocka 8:45 utbryter e brad i e trasformatorstatio i Stad (som ligger i område A). Till följd av brade måste hela regioätet för Stad omedelbart kopplas bort frå Lads atioella elät, vilket iebär att det atioella ätet förlorar 200 MW elproduktio och 500 MW last. Efter att Stads regioät kopplats bort uppgår reglerstyrka i Lad till MW/Hz i område A och MW/Hz i område B. Alldeles ia Stads regioät kopplades bort var frekvese i systemet 50,02 Hz och det överfördes 750 MW frå område A till område B. a) (1 p) Vad häder då Stads regioät kopplas bort? 1. Det uppstår ett överskott av eergi, vilket leder till att späige höjs i elätet. Reglersystemet i de kraftverk som deltar i primärreglerige svarar på späigsökige geom att miska elproduktioe. 2. Det uppstår ett överskott av eergi, som lagras i form av rotatioseergi i alla sykrogeeratorer och därmed ökar frekvese i systemet. Reglersysteme i de kraftverk som deltar i primärreglerige svarar på frekvesökige geom att miska elproduktioe. 3. Det uppstår ett uderskott av eergi, som täcks med rotatioseergi frå alla sykrogeeratorer och därmed ökar frekvese i systemet. Reglersysteme i de kraftverk som deltar i primärreglerige svarar på frekvesökige geom att öka elproduktioe. b) (1 p) Kommer trasmissiosförbidelse mella område A och område B att kopplas bort p.g.a. överbelastig? c) (2 p) Vilke frekves får ma i område A respektive B efter att primärreglerige återställt balase mella produktio och kosumtio? d) (2 p) Kraftverket Språget ligger i område B. Kraftverket har e istallerad effekt på 300 MW och reglerstyrka är iställd på 200 MW/Hz. Basproduktioe (d.v.s. produktioe då frekvese är exakt 50 Hz) är 200 MW. Hur mycket producerar Språget då frekvese är 50,02 Hz? 4

5 Uppgift 4 (12 p) Berg (vattemagasi) Berg (kraftverk) Sele Forse Fallet Språget AB Vattekraft äger fem vattekraftverk lokaliserade som i figure ova. Notera att Berg är ett uderjordiskt kraftverk och att vatte som tappas geom turbie rier vidare till Fallet, meda spill hamar i Forse. I ett korttidsplaerigsproblem för dessa kraftverk har ma ifört följade beteckigar: Idex för kraftverke: Berg - 1, Sele - 2, Forse - 3, Fallet - 4, Språget - 5. γ i = förvätad framtida produktiosekvivalet för kraftverk i, i = 1,, 5, D t = avtalad last timme t, t = 1,, 24, λ 25 = förvätat elpris efter plaerigsperiodes slut, M i, 0 = iehåll i magasi i vid plaerigsperiodes börja, i = 1,, 5, M i, t = iehåll i magasi i vid slutet av timme t, i = 1,, 5, t = 1,, 24, μ i, j = margiell produktiosekvivalet i kraftverk i, segmet j, i = 1,, 5, j = 1, 2. Q i, j, t = tappig i kraftverk i, segmet j, uder timme t, i = 1,, 5, j = 1, 2, t = 1,, 24, S i, t = spill frå magasi i uder timme t, i = 1,, 5, t = 1,, 24, V i, t = lokal tillriig till magasi i uder timme t, i = 1,, 5, t = 1,, 24. a) (3 p) Vilka av beteckigara ova represeterar optimerigsvariabler respektive parametrar? b) (4 p) Syftet med AB Vattekrafts korttidsplaerigsproblem är att det vatte som återstår i vattemagasie efter plaerigsperiodes slut ska vara värt så mycket som möjligt, samtidigt som ma varje timme måste producera tillräckligt mycket för att leverera de avtalade laste. Då ma värderar det sparade vattet utgår ma frå att allt vatte kommer att avädas för att producera el och att iget vatte kommer att spillas. Formulera målfuktioe i bolagets plaerigsproblem. Aväd beteckigara ova. c) (1 p) Språgets vattemagasi iehåller TE klocka 9:00. De lokala tillriige samt tappig och spill frå kraftverke ärmast uppströms uppgår till 120 m 3 /s mella 9:00 och 10:00. Uder samma tid tappar ma 75 TE frå Språget. Hur mycket iehåller Forses vattemagasi klocka 10:00? Observera att svaret ska ges i m 3! 5

6 d) (2 p) Ett korttidsplaerigsproblem omfattar G termiska kraftverk och T tidsperioder. I detta problem har ma ifört följade bivillkor för maximal respektive miimal produktio i kraftverke: G g, t u g, t G g, g = 1, 2,, G, t = 1, 2,, T, G g, t u g, t G g, g = 1, 2,, G, t = 1, 2,, T. Vilka av beteckigara ova utgör parameterar respektive variabler i optimerigsproblemet? 1. Alla beteckigara är parametrar. 2. G g, G g, och u g, t är parametrar, G g, t är optimerigsvariabler. 3. G g och G g är parametrar, u g, t och G g, t är optimerigsvariabler. 4. Edast u g, t är parametrar, G g, G g, och G g, t är optimerigsvariabler. 5. Alla beteckigara är optimerigsvariabler. e) (2 p) Atag att ma beslutat att ett termiskt kraftverk ej ska tas ur drift för kortare tidsperioder ä fyra timmar, d.v.s. om kraftverket tas ur drift 12:00 så får det ite startas ige före 16:00. Iför följade beteckigar: s+ t = startvariabel för timme t (1 om kraftverket startar produktioe i börja av timme t, aars 0), = stoppvariabel för timme t (1 om kraftverket stoppar produktioe i börja av timme t, aars 0). Hur formuleras ett lijärt bivillkor som reglerar sambadet mella 1. s+ t + 1 s+ t + 2 s+ t + 3 = s+ t + 1 s+ t + 2 s+ t s+ t + 1 s+ t + 2 s+ t + 3 = s+ t s+ t s+ t = 1. s+ t + 1 s+ t s t, + 1 +, s+ t + 2 och + 3 +? 6

7 Uppgift 5 (12 p) Mji är e stad i Östafrika. Stade är ite aslute till ågot atioellt elät, uta ma har ett eget lokalt system som försörjs av ett vattekraftverk och två dieselgeeratorer. Vattekraftverket sakar magasi, me vatteflödet är alltid tillräckligt stort för att ma ska kua producera istallerad effekt (1 400 kw) och riske för driftstopp i kraftverket är försumbar. Dieselgeeratorera har e kapacitet på 200 kw vardera, tillgäglighete är 80% och driftkostade 1 /kwh. F 1 1 0,8 0,6 0,4 0,2 x kw a) (2 p) Vad har laste för vätevärde? Tips: Studera EENS 0! b) (2 p) Med hjälp av stokastisk produktioskostadssimulerig ka ma räka ut att de förvätade vattekraftproduktioe för detta system är kwh/h och de icke-levererade eergi är 22,8 kwh/h. Hur stor är de förvätade driftkostade? c) (3 p) Aväd stokastisk produktioskostadssimulerig till att beräka riske för effektbrist i systemet. d) (2 p) Atag att ma öskar aväda slumptalskomplemet för att förbättra oggrahete i simulerige av Mji. Vilket värde får slumptalskomplemetet, D*, om de totala laste i systemet slumpas fram till D = MW? e) (3 p) För att ta häsy till förlustera i elätet har ma geomfört e Mote Carlo-simulerig av elsystemet i Mji. Simulerige aväder kotrollvariabelmetode. De föreklade modelle motsvarar de modell som aväds i stokastisk produktioskostadssimulerig, meda de detaljerade modelle tar häsy faktorer som att förlustera beror på vilka kraftverk som körs, hur stor laste är i olika delar av systemet. Resultate visas i tabell 2. Vilke skattig av ETOC får ma för de detaljerade modelle? Tabell 2 Resultat frå Mote Carlo-simulerig av elsystemet i Mji. Resultat frå de Resultat frå de detaljerad modelle, föreklade modelle, Atal scearier, toc i toc i i = 1 i =

8 Svarsblad Nam:... Persoummer:... Uppgift 1 a) Alterativ... är korrekt. b) Alterativ... är korrekt. Uppgift 2 a)... /MWh b)... MWh c) Elpriset måste vara högre ä... /MWh Uppgift 3 a) Alterativ... är korrekt b)... c) Område A:... Hz Område B:... Hz d)... MW Uppgift 4 a) Parametrar:... Optimerigsvariabler:... b)... c)... m 3 d) Alterativ... är korrekt. e) Alterativ... är korrekt. Uppgift 5 a)... kwh/h b)... /h c)... % d)... MW e)... /h

9 Lösigsförslag till kompletterigsskrivig i EG2050 Systemplaerig, 17 september Uppgift 1 a) 2, b) 2. Uppgift 2 a) Vattekraft och kärkraft ka totalt ge 125 TWh, vilket betyder att ma också kommer att behöva utyttja 20 TWh kolkodes, vilket motsvarar 80% av de potetiale. Därmed behöver ma utyttja 80% av prisitervallet för kolkodes, vilket betyder att elpriset måste vara 460 /MWh. b) Kraftverket kommer att producera istallerad effekt uder de timmar då elpriset är högre ä de rörliga driftkostade. 200 MW uder 20 timmar ger e total produktio på 4000 MWh. c) För varje /MWh som elpriset överstiger de rörliga driftkostade tjäar företaget 1 /MWh 8 TWh/år = 8 M /år. Detta överskott måste täcka de fasta kostadera, vilket iebär att elpriset måste vara /8 = 425 /MWh. Uppgift 3 a) 2. b) Efter att Stad kopplats bort måste de reglerstyrkestyrda kraftverke miska elproduktioe med 300 MW. Område B har halva reglerstyrka i systemet och står således för hälfte av produktiosmiskige. Eftersom laste och de övriga elproduktioe i område B är oförädrad måste produktiosmiskige i de reglerstyrkestyrda kraftverke kompeseras med ökad import frå område A. Överförige på trasmissiosförbidelse ökar därför till 900 MW, vilket är lägre ä lediges kapacitet. Ledige kommer således ite att kopplas bort. c) Eftersom de två område fortfarade är förbuda med e växelströmsledig kommer frekvese att vara desamma i bägge områdea. För att elproduktioe ska miska med 300 MW krävs att frekvese ökar med Δf = ΔG/R = 300/ Hz, d.v.s. de ya frekvese blir 50,02 + 0,03 = 50,05 Hz. d) Då frekvese är 50,02 Hz producerar Språget G = G 0 R(f f 0 ) = (50,02 50) = 196 MW. Uppgift 4 a) Parametrar: γ i, D t, λ 25, M i, 0, μ i, j och V i, t. Optimerigsvariabler: M i, t, S i, t och Q i, j, t. b) maximera λ 25 (γ 1 + γ 4 + γ 5 )M 1, 24 + λ 25 (γ 2 + γ 4 + γ 5 )M 2, 24 + λ 25 (γ 3 + γ 5 )M 3, 24 + λ 25 (γ 4 + γ 5 )M 4, 24 + λ 25 γ 5 M 5, 24. c) Eftersom magasiet fylls på med 120 TE och ma tappar 75 TE så måste det iehålla 1045TE = m 3 vatte i slutet av timme. d) 3. e) 4. Uppgift 5 a) EENS 0 = F 0 ( x ) d x = (1 + 0,8)/ (0,8 + 0,3)/ ,3/2 = MWh/h. 0 b) De förvätade laste är 1380kWh/h, vilket betyder att EG 1 + EG 2 + EG 3 + EENS 3 = Givet att EG 1 =1290 kwh/h och EENS 3 = 22,8 kwh/h får ma att de förvätade elproduktioe i dieselgeeratorera är 67,2 kwh/h. De förvätade driftkostade blir således ETOC = 1 (EG 2 + EG 3 ) = 67,2 /h. c) Riske för effektbrist ges av F 3 ( ) = 0,8F 2 ( ) + 0,2F 2 ( ) = = 0,8 ( 0,8F 1 ( ) + 0,2F 1 ( )) + 0,2 ( 0,8F 1 ( ) + 0,2F 1 ( )). Eftersom vattekraftverket är 100% tillgägligt är F 1 ( x ) = F 0 ( x ), vilket ger LOLP = 0,8 (0,8 0,1 + 0,2 0,2) + 0,2 (0,8 0,2 + 0,2 0,3) = 14%. d) Med de iversa trasformmetode erhålls D = F 1 D ( U ), där U är ett U(0, 1)-fördelat slumptal. Eftersom vi i uppgifte fått varaktighetskurva i stället, ka vi lika gära aväda trasforme F 1 D = D U Det ursprugliga slumptalet måste ha varit U = ( ) = 0,9. Således är U* = ( ). F D U = 0,1, vilket ger D* = F D 1 ( U* ) = MW. 1 e) m TOC = m ( TOC TOC ) + μ TOC = -- toc toc + 67,2 = i i = ( ) + 67,2 = 68,8 /h i = 1 i = 1

Tentamen 9 juni 2016, 8:00 12:00, Q21

Tentamen 9 juni 2016, 8:00 12:00, Q21 Avdelige för elkrafttekik EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 206 Tetame 9 jui 206, 8:00 2:00, Q2 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också läma

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Tentamen i EG2050 Systemplanering, 26 augusti 2013, 8:00 13:00, Q22

Tentamen i EG2050 Systemplanering, 26 augusti 2013, 8:00 13:00, Q22 Tetame i EG2050 Systemplaerig, 26 augusti 2013, 8:00 13:00, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig A4-sida

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22 Tetame i EG2050/2C1118 Systemplaerig, 14 mars 2009, 8:00 13:00, Q21, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21

Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21 Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21 Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgifterna tillgodoräknas

Läs mer

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet

Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgifterna

Läs mer

Tentamen 11 juni 2015, 8:00 12:00, Q21

Tentamen 11 juni 2015, 8:00 12:00, Q21 Avdelningen för elektriska energisystem EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 205 Tentamen juni 205, 8:00 2:00, Q2 Instruktioner Skriv alla svar på det bifogade svarsbladet. Det är valfritt

Läs mer

Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36

Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36 Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36 Instruktioner Skriv alla svar på det bifogade svarsbladet. Några motiveringar eller beräkningar behöver inte redovisas.

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet

Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga

Läs mer

Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51

Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51 Avdelningen för elektriska energisystem EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 2015 Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51 Instruktioner Skriv alla svar på det bifogade svarsbladet.

Läs mer

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Instruktioner Studenter måste anlända till kontrollskrivningen inom 45 minuter efter skrivningens start. Ingen

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!! Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35

Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35 Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00. Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35

Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35 Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen.

Läs mer

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p) Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På

Läs mer

TAMS15: SS1 Markovprocesser

TAMS15: SS1 Markovprocesser TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

a) Beräkna E (W ). (2 p)

a) Beräkna E (W ). (2 p) Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53

Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53 Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34

Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34 Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

Tentamen i 2C1118 Systemplanering, 8 juni 2007, 8:00 13:00, V34

Tentamen i 2C1118 Systemplanering, 8 juni 2007, 8:00 13:00, V34 Tentamen i 2C1118 Systemplanering, 8 juni 2007, 8:00 13:00, V34 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En handskriven,

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:

Läs mer

Trigonometriska polynom

Trigonometriska polynom Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

Befolkning per födelseland Reviderad metod vid framskrivningar. Version: 2

Befolkning per födelseland Reviderad metod vid framskrivningar. Version: 2 Befolkig per födelselad Reviderad metod vid framskrivigar Versio: 2 Tillväxtverket stärker Sverige geom att stärka företages kokurreskraft Vi skapar bättre förutsättigar för företagade och bidrar till

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions) - 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt

Läs mer

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning ÖVRGÅNG De eklaste halvledarkomoete är diode. Diode består av e doad och e doad del. Vid kotaktyta mella och doat område ustår ett ire elektriskt fält.g.a. att elektroer i ledigsbadet å sida diffuderar

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus

Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Förfrågan till Klockarens redaktörer

Förfrågan till Klockarens redaktörer Förfråga till Klockares redaktörer 1. Hur öjd är du med Klockare? Ge Klockare ett geerellt vitsord. Atal svarade: 29 1 2 3 4 5 6 7 8 9 10 Totalt Medelvär Usel 1 0 2 1 2 5 5 9 3 1 Utmärkt 29 6,72 3,45%

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

TENTAMEN Datum: 16 okt 09

TENTAMEN Datum: 16 okt 09 TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1 duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig

Läs mer

Monte Carlo-simulering. EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin

Monte Carlo-simulering. EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin Monte Carlo-simulering EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin 1 Kursmål Tillämpa Monte Carlo-simulering för att beräkna förväntad driftkostnad och risk för effektbrist på en elmarknad,

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Tentamen i EG2050 Systemplanering, 16 mars 2011, 14:00 19:00, E34, E36

Tentamen i EG2050 Systemplanering, 16 mars 2011, 14:00 19:00, E34, E36 Tentamen i EG2050 Systemplanering, 6 mars 20, 4:00 9:00, E34, E36 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En handskriven,

Läs mer

Uppgifter 3: Talföljder och induktionsbevis

Uppgifter 3: Talföljder och induktionsbevis Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Slutrapport Bättre vård i livets slutskede

Slutrapport Bättre vård i livets slutskede Team : Stadsvikes VC Syfte med deltagadet i Geombrott Att öka tillite och trygghete till de vård som bedrivs i det ega hemmet för de palliativa patiete. Teammedlemmar Eva Lidström eva.lidstrom@ll.se Viktoria

Läs mer