0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x

Storlek: px
Starta visningen från sidan:

Download "0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x"

Transkript

1 EXTREMVÄRDEN FÖR FUNKTIONER AV TVÅ VARIABLER. Lokala etremvärden för funktioner av två variabler Låt zz = ff(, y vara en funktion från ett område D i RR till R. Låt (aa, b vara en inre punkt av D. Vi säger att punkten är stationär om och f y. Låt ( a, vara en stationär punkt och AA = ff (aa, b, BB = ff (aa, b ooooh CC = ff yyyy (aa, b Punktens karaktär bestäms då med hjälp av följande tabell: AAAA BB AA Punktens karaktär > 0 > 0 punkt > 0 < 0 mapunkt < 0 sadelpunkt 0 annan metod måste tillämpas **************************************************************** Förklaring: Låt A= vara en stationär punkt dvs och f y. Låt P=(, vara en punkt i närheten av A. Beteckna = a och y = y a. Enligt Taylors formel av andra ordningen kring punkten (a, har vi (eftersom f, f ) f f f = [ + y + y ] + R! y y = [ A + B y y + C y ] + R = [ A + AB y + AC y ] + R A Kvadratkomplettering ger = [( A + B + ( AC B ) y ] + R A Resttermen R kan skrivas som ( ) (, ) är i allmänt försumbar jämfört med den kvadratiska formen K= [( A + B + ( AC B ) y ]. A 3 R = h + k B h k där B ( h, k) är begränsad nära (0,0) Sida av 5

2 i) Om ( AC B ) > 0 och A> 0 blir K>0 ( i parentesen är summan av två kvadrater) för alla (, (0,0) dvs > 0 för alla (,. Därmed är imipunkten i detta fall. ii) Om ( AC B ) > 0 och A<0 blir K<0 för alla (, (0,0) dvs < 0 för alla (,. Därmed är maimipunkten i detta fall. iii) Om ( AC B ) < 0 (i parentesen är differensen av två kvadrater) då antar både positiva och negativa värden i närheten av punkten ( a,. Därmed är inte någon etrempunkt. iv ) Om ( AC B ) då är = [( A + B ] + R. Utrycket A ( A B + kan bli 0 även om (, (0,0) t e om A = B y. Därför tecknet av påverkas av resttermen R. I detta fall måste vi använda Taylorutveckling av högre ordning för att undersöka punkten A. ================================================================ ÖVNINGAR Uppgift. Bestäm alla stationära punkter till funktionen y 3y och avgör deras karaktär ( ma, sadel,..) g) Lösning: = 3 3y f y = 3y 3 För att bestämma eventuella stationära punkter löser vi systemet: f, f. f f y 3 3y 3y 3 y y ( ekv) ( ekv) Från ekv får vi y = som vi substituerar i ekv : Sida av 5

3 4, = ( 3 ) Från y =, y 0 = Alltså har vi två stationära punkter: P (0,0) och P (,) A = f = 6, B f = 3, C = f yy = 6y = y Vi avgör punkternas karaktär med hjälp av följande tabell Punkt A B C AC B typ f(, (0,0) sadelpunkt (eftersom AC B < 0 ) 0 (,) punkt (eftersom AC B > 0 och A>0 ) 9 Svar: Punkten (0,0) är en sadelpunkt. Funktionen har imum i punkten (,) ; f =f(,)=9. Uppgift. Bestäm alla stationära punkter och avgör deras karaktär (ma, sadel,..) för nedanstående funktioner. Bestäm också funktionens värde i varje punkt och mapunkkt. a) = 4 + y + 4 = y + 4y + + y + y+ 5 c) = e 3 d) = + y y e) = + y 6y f) = y y + 0 Svar: a) Minimum f = 4 i punkten ( 0,0) Maimum f ma = 6 i punkten (,) c) Minimum 4 f = e i punkten ( 0, ) d) Sadelpunkt i ( 0,0), f ( 0,0) och imum f = 08 i punkten ( 6,8) e) Sadelpunkt i ( 0,0), f ( 0,0) och imum f = 8 i punkten ) f) ( 0,0) sadelpunkt, (/6, /) mapunkt Sida 3 av 5

4 Uppgift 3. Bestäm alla stationära punkter och avgör deras karaktär (ma, sadel,..) för funktionen = + y y. Lösning: Vi bestämmer partiella derivator och faktoriserar de för att enklare lösa tillhörande ekvationssystem = y = ( y ) = ( ( + f y = y y = y( ) = y( )( + ) För att bestämma eventuella stationära punkter löser vi systemet: f, f. ( ( + ekv y ( )( + ) ekv Ekv är uppfylld om, y = eller y = Ekv är uppfylld om y, = eller = (För att bestämma lösningar väljer vi från en ekvation och y från andra) Båda ekvationer är uppfyllda för följande par (, : ), y ) =, y = 3) =, y = 4) =, y = och 5) =, y = Alltså har vi fem stationära punkter (0,0), (,), (. ), (,) och (, ) Vi bestämmer andra derivator: A = f = y, B f y = 4y =, C = f yy = Vi avgör punkternas karaktär med hjälp av följande tabell Sida 4 av 5

5 Punkt A B C AC B typ (0,0) 0 4 punkt (eftersom AC B > 0 och A>0 ) (,) sadelpunkt (eftersom AC B < 0 ) (, ) sadelpunkt (eftersom AC B < 0 ) (,) sadelpunkt (eftersom AC B < 0 ) (, ) sadelpunkt (eftersom AC B < 0 ) Svar: (0,0) är en punkt. Sadelpunkter: (,), (. ), (,) och (, ). Sida 5 av 5

n : R vara en reell funktion av n variabler och P 0 en punkt i funktionens definitionsområde D.

n : R vara en reell funktion av n variabler och P 0 en punkt i funktionens definitionsområde D. EXTREMVÄRDEN OCH EXTREMPUNKTER. LOKALA OCH GLOBALA EXTREMPUNKTER Definition 1. Låt f : R n : R vara en reell funktion av n variabler och P en punkt i funktionens ionsområde D. Vi säger att f har ett lokalt

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)

Läs mer

Om för en reellvärd funktion f som är definierad på mängden D gäller följande

Om för en reellvärd funktion f som är definierad på mängden D gäller följande OPTIMERING PÅ KOMPAKTA OMRÅDEN. Om för en reellvärd funktion f som är definierad på mängden D gäller följande 1. D är en KOMPAKT mängd. funktionen f är KONTINUERLIG på D då antar f sitt största och sitt

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic ============================================================

H1009, Introduktionskurs i matematik Armin Halilovic ============================================================ H9, Introduktionskurs i matematik EXTREMPUNKTER ============================================================. EXTREMPUNKTER OCH EXTREMVÄRDEN Definition. (Globalt maimum) Låt vara en punkt definitionsmängden

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande:

Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande: GRÄNSVÄRDEN OCH KONTINUITET Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande: aa Vänstergränsvärdet av funktionen f( i punkten aa aa Högergränsvärdet av funktionen f( i punkten

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,

Läs mer

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x) Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För

Läs mer

EXTREMVÄRDESPROBLEM MED BIVILLKOR. LAGRANGES MULTIPLIKATORMETOD. Problem. Bestäm lokala (eller globala) extremvärden till

EXTREMVÄRDESPROBLEM MED BIVILLKOR. LAGRANGES MULTIPLIKATORMETOD. Problem. Bestäm lokala (eller globala) extremvärden till Etremvärdesproblem med bivillkor. Laranes metod EXTREMVÄRDESPROBLEM MED BIVILLKOR. LAGRANGES MULTIPLIKATORMETOD Problem. Bestäm lokala eller lobala etremvärden till f... n under bivillkoret... n METOD.

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

ANDRAGRADSKURVOR Vi betraktar ekvationen

ANDRAGRADSKURVOR Vi betraktar ekvationen ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en

Läs mer

lösningar! ger 0 poäng.) i partiella bråk. och deras typ.

lösningar! ger 0 poäng.) i partiella bråk. och deras typ. TENTAMEN Introduktionskurs i Matematik H1009 Datum: augg 018 Tid: 8:15-10 (1.5 hp) Tentamen ger maimalt 1p. För godkändd tentamen krävs 6p. Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel

Läs mer

Examinator: Armin Halilovic Undervisande lärare: Bengt Andersson, Elias Said, Jonas Stenholm

Examinator: Armin Halilovic Undervisande lärare: Bengt Andersson, Elias Said, Jonas Stenholm Tentamen i Matematik, HF93, 9 oktober, kl 8.5.5 Hjälpmedel: Endast ormelblad miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, 3

Läs mer

Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta bäring 0.

Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta bäring 0. Karlstads universitet matematik Peter Mogensen Flervariabelanalys 1. Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta

Läs mer

Lokala undersökningar

Lokala undersökningar Kapitel 6 Lokala undersökningar 6.. Lokala extrempunkter: nödvändiga villkor Definition 6.. Låt f = f(x) vara en funktion med definitionsmängd D R n. f sägs att ha ett lokalt maximum i en punkt a D om

Läs mer

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen. TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

5 Lokala och globala extremvärden

5 Lokala och globala extremvärden Nr 5, mars -5, Amelia 5 Lokala och globala extremvärden Ienvariabelinträffar lokala extremvärden i punkter där f (x) =, om f är deriverbar och det inte är en randpunkt. Vilken typ av extremvärde det är

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2 Flervariabelanals I Vintern Översikt öreläsningar läsvecka Denna vecka ägnas nästan uteslutande åt problemet att hitta största och minsta värden till en unktion av lera variabler. Vi kommer att studera

Läs mer

Sida 1 av Låt VV = RR nn där RR nn är mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs

Sida 1 av Låt VV = RR nn där RR nn är mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs Sida av 7 ALLMÄNNA VEKTORRUM VEKTORRUM Definition Mängden V sägs vara ett reellt vektorrum om det finns i) en additionsoperation som till varje uu VV och vv VV ordnar uu vv VV ii) en operation kallad multiplikation

Läs mer

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

Högpresterande. Särskilt begåvade

Högpresterande. Särskilt begåvade Talangfulla elever Högpresterande Särskilt begåvade (från NP Ma C 2011) Nedan ges derivatans värde hos en funktion ff i en given punkt PP. lim h 0 2 + h 5 + 3 (2 5 + 3) h = 80. a) Ange funktionen ff. b)

Läs mer

MATEMATIK Datum: Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel.

MATEMATIK Datum: Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälpmedel: inga A.Heintz Telefonvakt: Jacob Leander, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats. Formulera

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15 TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic

H1009, Introduktionskurs i matematik Armin Halilovic LOGARITMER Definition av begreppet logaritm Betrakta ekvationen aa xx = bb. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent

Läs mer

KVADRATISKA FORMER. Definition 1. ( av en kvadratisk form) En kvadratisk form är ett uttryck av typ. Några exempel på kvadratiska former:

KVADRATISKA FORMER. Definition 1. ( av en kvadratisk form) En kvadratisk form är ett uttryck av typ. Några exempel på kvadratiska former: KVADRAISKA FORMER Definition. ( av en vadratis form) En vadratis form är ett uttryc av typ nn nn aa iiii xx ii xx jj ii= jj= Några exempel på vadratisa former: QQ = 4xx + 5xx xx + 8xx xx 3 + 9xx + xx xx

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg

Läs mer

Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift.

Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift. Kurs: HF9 Matematik, Moment TEN (Anals) atum: augusti 8 Skrivtid 8: : Eaminator: Armin Halilovic För godkänt betg krävss av ma poäng. Betgsgränser: För betg A, B, C,, E krävs, 9, 6, respektive poäng. Komplettering:

Läs mer

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

9 Skissa grafer. 9.1 Dagens Teori

9 Skissa grafer. 9.1 Dagens Teori 9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om

Läs mer

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,

Läs mer

Flervariabelanalys E2, Vecka 3 Ht08

Flervariabelanalys E2, Vecka 3 Ht08 Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor

Läs mer

KONTROLLSKRIVNING. Matematik C. Datum: Tid:

KONTROLLSKRIVNING. Matematik C. Datum: Tid: KONTROLLSKRIVNING Kursnummer: Moment: Program: Rättande lärare: Eaminator: Datum: Tid: Hjälpmedel: Omfattning oc betygsgränser: HF00 Matematik C KS4 Tekniskt basår Bengt Andersson oc Staffan Linnæus Niclas

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Lösningsförslag till Tentamen: Matematiska metoder för ekonomer

Lösningsförslag till Tentamen: Matematiska metoder för ekonomer Matematiska Institutionen Tentamensskrivning STOCKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 4-5-7 Lösningsförslag till Tentamen: Matematiska metoder för ekonomer 7 maj 4, kl. 9:-4:. (a) Integralen

Läs mer

Här finns en definition av gränsvärde (enligt Adams Calculus) av en funktion då x går mot ett tal a ( s.k. epsilon delta definition).

Här finns en definition av gränsvärde (enligt Adams Calculus) av en funktion då x går mot ett tal a ( s.k. epsilon delta definition). GRÄNSVÄRDEN OCH KONTINUITET Här finns en definition av gränsvärde (enligt Adams Calculus av en funktion då går mot ett tal a ( s.k. epsilon delta definition. Definition. ( Cauchy Vi säger att funktionen

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS DIAGONALISERING AV EN MATRIS Definition ( Diagonaliserbar matris ) Låt A vara en kvadratisk matris dvs en matris av typ n n. Matrisen A är diagonaliserbar om det finns en inverterbar matris P och en diagonalmatris

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy, LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Linjär algebra F1 Ekvationssystem och matriser

Linjär algebra F1 Ekvationssystem och matriser Information Ekvationer Ekvationssystem Matriser Linjär algebra F1 Ekvationssystem och matriser Pelle 2016-01-18 Information Ekvationer Ekvationssystem Matriser kursfakta hemsida frågelåda Fakta om Linjär

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004. Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

STABILITET FÖR ICKE-LINJÄRA SYSTEM

STABILITET FÖR ICKE-LINJÄRA SYSTEM Armin Halilovic: ETRA ÖVNINGAR SF1676 Stabilitet för icke linära sstem Sida 1 av 8 STABILITET FÖR ICE-LINJÄRA SYSTEM Linarisering och lokal stabilitet Låt d d ss 1 vara ett autonomt icke-linärt sstem där

Läs mer

Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3

Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3 Lektion 7, Flervariabelanalys den februari 000 9 Bestäm Taylorserien till funktionen log( + x + y + xy) i punkten (0, 0) Vi kan faktorisera argumentet till logaritmen och förenkla funktionen log( + x +

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a)

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a) Dag 7. Taylors formel 4.8.7 Bestäm Taylorpolynomet av grad n till kring punkten =. + Rekommenderade uppgifter 4.8. Bestäm Taylorpolynomet till cos av grad 3 kring punkten = π/4. Taylors formel säger att

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN) 23-8-22 kl 4 9 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

Ekvationssystem - Övningar

Ekvationssystem - Övningar Ekvationssystem - Övningar Uppgift nr 1 y = 5x x + y = 54 Uppgift nr 2 y = 2x x + y = 12 Uppgift nr 3 y = 3x + 7 4x + y = 35 Uppgift nr 4 y = 4x - 18 3x + y = 38 Uppgift nr 5 2x - 2y = -4 x - 3y = 4 Uppgift

Läs mer

Existensen av största och minsta värde är inte garanterad i det här fallet.

Existensen av största och minsta värde är inte garanterad i det här fallet. OPTIMERING PÅ ICKE-KOMPAKTA OMRÅDEN. Låt f,..., ) vara en reell funktion med en icke-kompakt definitionsmängd D. ( n Eistensen av största och minsta värde är inte garanterad i det här fallet. För att bestämma

Läs mer

Håkan L. (Skriv som en produkt. Gör uppdelningen i faktorer så långt det går.) 1. Faktorisera 25x Faktorisera 1. 3.

Håkan L. (Skriv som en produkt. Gör uppdelningen i faktorer så långt det går.) 1. Faktorisera 25x Faktorisera 1. 3. Övningsuppgifter för att stödja repetition av gymnasiets matematik Har sammanställt ett antal övningsuppgifter som hjälp att repetera några väsentliga delar av gymnasiets matematik På slutet finns uppgifter

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER)

BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) Låt FF = (PP(xx, yy, z, QQ(xx, yy, z, RR(xx, yy, z) vara ett kontinuerligt vektorfält ( d v s en vektorfunktion) definierat i en öppen mängd Ω. Låt γ vara

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

RÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

INVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen

Läs mer

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y,

i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y, Tentamensskrivning i flervariabelanals F (MVE05) och reell matematisk anals F, delb (TMA975), 006-0-0, kl 80-0 i V Telefon: Johan Jansson, tel 076-7860 Låt f (, = 6 a) Ange en ekvation för tangentplanet

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p)

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p) Tentamen i Matematik HF9 (6H9 jan Tid:.5 7.5 Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer