Föreläsning 3: Ekvationer och olikheter

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 3: Ekvationer och olikheter"

Transkript

1 Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta storheten är en lösning till ekvationen om värdet gör att likheten är uppfylld: Exempel: För ekvationen x = 9 är x = 3 och x = 3 lösningar till ekvationen. Vi säger att vi har löst en ekvation om vi har hittat samtliga lösningar till den. Räkneregler för ekvationen För att lösa ekvationen ax + b = 0 där a, b R, a 0 gör vi följande uträkningar: ax + b = 0 ax = b x = b a Vi kan utifrån detta formulera följande allmänna räkneregler för ekvationer: Sats: Räkneregler I x = y x + a = y + a för alla a R. x = y ax = ay för alla a R \ {0}. Notera att dessa räkneregler implicit säger att vi även får dra ifrån tal, eller dividera med tal på båda sidor om en ekvation. Att göra samma operation på båda sidor om en ekvation ger inte alltid en ekvivalent likhet: 1

2 Sats: Räkneregler II x = y = x = y men x = y = x = y. Det gäller däremot att x = y x = ±y vilket är ett kort sätt att skriva att x = y eller x = y. Som ett exempel på detta, betrakta: Exempel: = = =, men = ( ) = = När vi löser ekvationer måste vi ibland vara uppmärksamma på detta: Exempel: Lös ekvationen x + 4 = x. Lösning: Vi använder våra räkneregler: x + 4 = x = ( x + 4) = ( x) x + 4 = 4 4x + x x 5x = 0 x(x 5) = 0 x = 0 eller x = 5. Vi har alltså visat att x + 4 = x = x = 0 eller x = 5. Om vi använder att A = B B = A innebär detta att om x inte är lika med 0 eller 5 så måste det gälla att x + 4 x. Vi vet således att de enda potentiella lösningarna till ekvationen är x = 0 eller x = 5 (eller båda). Vi testar: x = 0: = = 0. Så x = 0 är en lösning. x = 5: = 3 5. Så x = 5 är ej en lösning. Svar: x = 0 löser ekvationen. Kvadratiska ekvationer En vanligt förekommande klass av ekvationer är kvadratiska ekvationer. Definition: Kvadratisk ekvation

3 En kvadratisk ekvation är en ekvation som kan skrivas på formen: ax + bx + c = 0, a, b, c R och a 0 Det finns en allmän formel för lösningar till dessa ekvationer, men för att bevisa den ska vi först befatta oss med kvadratkomplettering. Kvadratkomplettering är en metod som bygger på att vi använder regeln (x+a) = x +ax+a baklänges för att skriva om ett uttryck på formen x +bx som en kvadrat plus en konstant. I allmänhet gäller att: x + bx = x + b x + ( b ) ( ) ( b = x + b ) b 4 Vi kan använda kvadratkomplettering för att lösa andragradsekvationer: Exempel: Lös andragradsekvationen x x 3 = 0 med hjälp av kvadratkomplettering. Lösning: Vi skriver om uttrycket mha kvadratkomplettering: x x 3 = 0 x + ( 1)x + ( 1) ( 1) 3 = 0 (x 1) 1 3 = 0 (x 1) 4 = 0 Vi kan nu använda våra räkneregler för kvadrater i ekvationer för att fortsätta: (x 1) 4 = 0 (x 1) = x 1 = ± x = 1 ± x = 1 eller x = 3 I praktiken löser vi så ofta kvadratiska ekvationer att vi i stället för att varje gång kvadratkomplettera räknar ut en allmän formel: Sats: Lösningsformel för kvadratiska ekvationer Låt a, b, c R och a 0. Då gäller att: ax + bx + c = 0 x = b ± b 4ac a Bevis: Vi använder kvadratkomplettering för den allmänna ekvationen: ax + bx + c = 0 x + b a x + c a = 0 3

4 V.S.V. (x + b a ) b 4a + c a = 0 (x + b a ) = b 4a 4ac 4a (x + b a ) = b 4ac 4a x + b a = ± b 4ac 4a x = b a ± b 4ac 4a x = b ± b 4ac a I det särskilda fallet a = 1 reducerar detta till den s.k. pq-formeln: x + px + q = 0 x = p ± (p ) q. Polynom och faktorisering Polynom är ett av de mest vanligt förekommande uttrycken inom matematiken. De kan definieras genom: Definition: Polynom Ett polynom av grad n N {0} är ett uttryck på formen: p(x) = a 0 + a 1 x + a x + a 3 x a n x n, a 1, a,..., a n R och a n 0. Vi säger att x = r är en rot till polynomet om p(r) = 0. Exempel: x 5 + 3x 1 är ett polynom av grad 5. x 3 är ett polynom av grad 3. 7 är ett polynom av grad 0. är en rot till polynomet p(x) = x 4. 4

5 Om vi betraktar polynomet x 4 ser vi att vi kan skriva om det som (x )(x + ), vilket kallas den faktoriserade formen, där x och x + är faktorer i polynomet. Detta leder oss till den allmänna definitionen: Definition: Låt p(x) vara ett polynom. Vi säger att polynomet s(x) är en faktor i p(x) om det existerar ett polynom q(x) sådant att p(x) = s(x)q(x). Exempel: Polynomet 3x + 3x 6 kan skrivas som 3(x 1)(x + ) där 3, x 1 och x + är faktorer. Om vi känner till uttrycket för ett polynom p(x) och en av dess faktorer s(x) är vi ofta intresserade att hitta en andra faktor q(x) sådan att p(x) = s(x)q(x). Vi kan göra detta genom polynomdivision, där man ungefär kan säga att vi hittar q(x) genom att beräkna p(x) s(x). Exempel: Beräkna x3 7x 7x + 30 x 3 genom att använda polynomdivision. Lösning: Vi använder liggande stolen genom att först ställa upp: x 3 7x 7x + 30 }{{} dividend x 3 }{{} divisor Vi delar sedan den ledande termen i dividenden med den ledande termen i divisorn, här x 3 /x = x och skriver resultatet ovanför strecket: x x 3 7x 7x + 30 x 3 Vi drar sedan bort resultatet multiplicerat med divisorn, x (x 3) = x 3 6x, från dividenden: x x 3 7x 7x + 30 x 3 (x 3 6x ) x 7x + 30 }{{} ny dividend 5

6 Vi upprepar samma procedur med den nya dividenden och räknar ut x /x = x: x x x 3 7x 7x + 30 x 3 (x 3 6x ) x 7x + 30 }{{} ny dividend Vi drar bort det nya resultat multiplicerat med divisorn, x(x 3) = x + 3x igen: x x x 3 7x 7x + 30 x 3 (x 3 6x ) x 7x + 30 ( x + 3x) 10x + 30 I nästa steg ger 10x/x = 10, så vi får: x x 10 x 3 7x 7x + 30 x 3 (x 3 6x ) x 7x + 30 ( x + 3x) 10x + 30 och vi har att 10(x 3) = 10x + 30 så vi får: x x 10 x 3 7x 7x + 30 x 3 (x 3 6x ) x 7x + 30 ( x + 3x) 10x + 30 ( 10x + 30) 0 Vi avslutar när graden av den ledande termen i dividenden är lägre än den i divisorn. Här har talet 0 grad 0, och x har grad 1, så vi är färdiga. Resultatet av polynomdivisionen, kallat kvoten, är det som står ovanför strecket. 6

7 Svar: Vi har beräknat att x3 7x 7x + 30 x 3 10)(x 3) = x 3 7x 7x = x x 10, eller ekvivalent att (x x Det är inte alltid som divisionen går jämnt upp. Vi inför följande beteckning: Definition: Delar Om s(x) är en faktor i p(x) säger vi att s(x) delar p(x) och betecknar detta med s(x) p(x). Om ett polynom s(x) delar ett polynom p(x) kan vi utföra polynomdivision för att hitta q(x) = p(x)/s(x), men i allmänhet gäller att: Sats: Låt p(x) och s(x) vara polynom där grad n och m respektive, och 1 m n. Vi kan då skriva p(x) = q(x)s(x) + r(x) där q(x) och r(x) är polynom, och r(x) har grad högst m 1. Om s(x) p(x) så är r(x) = 0. Om p(x) och s(x) är kända polynom kan vi hitta kvoten q(x) och resten r(x) genom att utföra polynomdivision: Exempel: Hitta q(x) och r(x) i uttrycket p(x) = q(x)s(x) + r(x) om p(x) = x 3 + 7x 3 och s(x) = x + x. Lösning: Vi använder polynomdivision för att beräkna p(x)/s(x): x x x 3 x + x (x 3 + x ) x + 7x 3 ( x 4x) 11x 3 Vi ser att resten r(x) = 11x 3 och kvoten q(x) = x. Vi vet alltså att: Svar: x 3 + 7x 3 = (x ) (x + x) + 11x 3, }{{}}{{}}{{}}{{} p(x) q(x) s(x) r(x) Det finns en viktig koppling mellan rötterna i ett polynom och dess faktorer. Polynomet x 4 har rötterna r 1 = och r = och kan faktoriserar som (x )(x + ). Detta är en allmän egenskap hos polynom och vi formulerar detta på följande vis: 7

8 Sats: Faktorsatsen Låt p(x) vara ett polynom. Då gäller att p(a) = 0 (x a) p(x), det vill säga x a är en faktor i p(x) omm a är en rot till p(x). Bevis: Vi måste visa implikation åt båda hållen: p(a) = 0 = (x a) p(x) : Enligt tidigare sats kan vi skriva: p(x) = q(x)(x a) + r Eftersom r(x) enligt satsen har lägre grad än x a måste det vara ett reellt tal (av grad 0). Enligt antagande har vi att 0 = p(a) = q(a)(a a) + r 0 = 0 q(a) + r 0 = r. Detta ger att p(x) = (x a)q(x), så x a är en faktor i p(x). (x a) p(x) = p(a) = 0 : Enligt antagande vet vi att p(x) = (x a)q(x) för något q(x). Vi beräknar: p(a) = (a a)q(a) = 0 q(a) = 0, så a är en rot till p(x). Då vi har visat implikation åt båda hållen har vi bevisat satsen. Som en konsekvens av faktorsatsen vet vi att vi kan hitta alla faktorer till ett polynom om vi kan hitta dess rötter: Exempel: Faktorisera polynomet p(x) = x 3 + 4x 3x. Lösning: Genom systematisk gissning kommer vi fram till att x 0 = 1 är en rot till polynomet. Genom polynomdivision mellan p(x) och x 1 beräknar vi sedan: p(x) = (x 1)(x + 5x + ). Vi löser andragradsekvationen i den andra faktorn, vilket ger: x 1 = och x =

9 Vi har nu hittat samtliga rötter till polynomet p(x) och kan såldes faktorisera det som: Svar: p(x) = (x 1) ( x ) ( x 5 17 ) Olikheter Förutom ekvationer, är olikheter en vanligt förekommande typ av relation inom matematiken. Vi har följande olikheter: a < b a är strikt mindre än b a > b a är strikt större än b a b a är mindre än eller lika med b a b a är större än eller lika med b Vilken ordning vi använder spelar inte någon roll så det gäller att: a < b b > a a b b a Precis som vi kan lösa ekvationer, kan vi lösa olikheter. Vi löser en olikhet genom att hitta alla värden för vilka olikheten är uppfylld: Exempel: Hitta alla x som uppfyller olikheten x + 1 >. Lösning: Om x + 1 är större än måste det gälla att x > 1. Svar: Olikheten är uppfylld för alla x > 1. Precis som för ekvationer kan vi ge några allmänna räkneregler: Sats: Räkneregler för olikheter x < y x + a < y + a för alla x, y, a R x < y ax < ay för alla x, y, a R sådana att a > 0 x < y ax > ay för alla x, y, a R sådana att a < 0 När vi multiplicerar båda sidorna av en olikhet med ett negativt tal måste vi alltså vända på olikheten. Ta som exempel 1 < 1 > där vi multiplicerat båda sidor av en olikhet med 1. 9

10 Intervall Lösningarna till olikheter är i regel ett eller flera intervall. Intervall är sammanhängande delmängder av R, tex alla tal mellan 1 och. Vi betecknar intervall på följande vis: x [a, b] a x b x (a, b] a < x b x [a, b) a x < b x (a, b) a < x < b [a, b] kallas för ett slutet intervall, och (a, b) kallas för ett öppet intervall. När vi jobbar med olikheter är det underförstått att det är de reella tal vi jobbar med om inget annat anges och vi skriver därför ibland: 0 x x [0, ). Notera att vi alltid har en ) där vi har oändlighetstecknet, eftersom inte är ett reellt tal. Exempel: Finn alla x som uppfyller olikheten 3x + 4 < 3. Ange svaret som ett intervall. Lösning: Vi använder räknereglerna för olikheter: 3x + 4 < 3 3x < 1 x > 1 3 Detta mostsvaras av: Svar: Olikheten är uppfyld om x ( 1 3, ). Det är ibland nödvändigt att utreda flera fall när oliheter löses: Exempel: Hitta alla x som uppfyller olikheten x + x 1 >. Lösning: För att lösa olikheten måste vi ta hänsyn till både fallen när x 1 > 0 och när x 1 < 0. Fall 1: x 1 > 0 x > 1 Eftersom x 1 > 0 kan vi multiplicera med det talet på båda sidor av olikheten: x + x 1 > x + > (x 1) x + > 4x 10

11 4 > 3x x < 4 3 Sammantaget ger detta fall att x ( 1, 4 3 ). Fall : x 1 < 0 x < 1 Eftersom x 1 < 0 måste vi vända på olikheten när vi multiplicerar med det talet på båda sidor av olikheten: x + x 1 > x + < (x 1) x + < 4x 4 < 3x 4 3 < x Men eftersom x inte samtidigt kan vara både större än 4 och mindre än 1, ger inte detta några 3 ytterligare x som uppfyller olikheten. Svar: Olikheten är uppfylld när x ( 1, 4 3 ). Det finns flera sätt att lösa kvadratiska olikheter. Nedan ges en sådan metod. Exempel: Lös olikheten x + 4x x + 9. Lösning: Vi använder kvadratkomplettering: x + 4x x + 9 x + 3x 9 ( x + 3 ) ( x + 3 ) 45 4 Eftersom kvadraten av ett tal alltid är positivt ser vi att det som står inuti parentesen måste vara antingen tillräckligt stort och positivt, eller tillräckligt litet och negativt: ( x + 3 )

12 x x x 45 3 x 45+3 Svar: Olikheten är uppfylld när x (, ] [ , ) 1

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll Ekvationer 1.1 Förstagradsekvationer.......................... 5.1.1 Övningar............................ 6. Andragradsekvationer..........................

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 15 Ringar, kroppar och polynom Det fjortonde kapitlet behandlar ringar. En ring har till skillnad

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4

M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4 M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 26 Integralkalkyl - Föreläsning

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Sidor i boken

Sidor i boken Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker

Läs mer

POLYNOM OCH EKVATIONER. Matematiska institutionen Stockholms universitet Experimentupplaga 2003 Eftertryck förbjudes eftertryckligen

POLYNOM OCH EKVATIONER. Matematiska institutionen Stockholms universitet Experimentupplaga 2003 Eftertryck förbjudes eftertryckligen POLYNOM OCH EKVATIONER Torbjörn Tambour Matematiska institutionen Stockholms universitet Experimentupplaga 2003 Eftertryck förbjudes eftertryckligen Postadress Matematiska institutionen Stockholms universitet

Läs mer

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida

Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.

Läs mer

Lite om räkning med rationella uttryck, 23/10

Lite om räkning med rationella uttryck, 23/10 Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

Manipulationer av algebraiska uttryck

Manipulationer av algebraiska uttryck Manipulationer av algebraiska uttryck Valentina Chapovalova SMaL-kursen i Mullsjö 19 juni 2018 Kluring 1 Bestäm produkten (x a) (x b) (x c)... (x z) Lösning kluring 1 Bestäm produkten (x a) (x b) (x c)..

Läs mer

Algebra och rationella uttryck

Algebra och rationella uttryck Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Här studera speciellt rationella funktioner, dvs kvoter av polynom, ex:.

Här studera speciellt rationella funktioner, dvs kvoter av polynom, ex:. KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 3.1 Introduktion Introduktion Avsnitt 3 handlar om problemet att avgöra hur en given funktions värden växlar tecken. Här studera

Läs mer

Övning log, algebra, potenser med mera

Övning log, algebra, potenser med mera Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla

Läs mer

vilket är intervallet (0, ).

vilket är intervallet (0, ). Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.

Läs mer

x2 6x x2 6x + 14 x (x2 2x + 4)

x2 6x x2 6x + 14 x (x2 2x + 4) Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i.

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i. STOCKHOLMS UNIVERSITET iagnostiskt prov Lösningar MTEMTISK INSTITUTIONEN Vektorgeometri och funktionslära vd. Matematik VT 20 Lösning till uppgift (Komplexa tal) Vi börjar med första och andra uträkningen.

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

Kvadratkomplettering

Kvadratkomplettering Kvadratkomplettering Steg-för-steg-demonstration Hillevi Gavel Institutionen för matematik och fysik (IMa) Mälardalens högskola (MDH) 3 april 2006 Instruktioner Det här bildspelet visar hur man genomför

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Repetitionskurs i. elementär algebra, matematik. för DAI1 och EI1 ht 2014

Repetitionskurs i. elementär algebra, matematik. för DAI1 och EI1 ht 2014 Repetitionskurs i elementär algebra, matematik för DAI och EI ht 04 Chalmers Tekniska Högskola Reimond Emanuelsson II August 5, 04 Förord Detta kompendium är tänkt som en repetition av elementär algebra

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 10) skrivs dessa

För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 10) skrivs dessa Avsnitt Olika typer av tal För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 0) skrivs dessa 0,,2,3,...,9,0,,... Samma naturliga tal

Läs mer

Allmänna Tredjegradsekvationen - version 1.4.0

Allmänna Tredjegradsekvationen - version 1.4.0 Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen

Läs mer

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Faktorisering av polynomuttryck har alltid utgjort en väsentlig del av algebran.

Faktorisering av polynomuttryck har alltid utgjort en väsentlig del av algebran. Per-Eskil Persson Visst kan man faktorisera x 4 +1 Att faktorisera polynom är inte alltid helt enkelt men inte dess mindre en väsentlig del av den algebra som elever möter i slutet av högstadiet och senare

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)

Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1) Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Dockvetviattimånga situationer räcker inte de naturliga talen. För att kunna hantera negativa tal har de hela talen definierats:

Dockvetviattimånga situationer räcker inte de naturliga talen. För att kunna hantera negativa tal har de hela talen definierats: Kapitel Introduktion I detta kapitel kommer vi främst att behandla grundbegrepp. Vi undersöker några speciella samlingar av tal (kallas mängder), matematiska symboler och ser på vissa räkneregler. Dessa

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999 Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan

Läs mer

Matematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09.

Matematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

x 2 4 (4 x)(x + 4) 0 uppfylld?

x 2 4 (4 x)(x + 4) 0 uppfylld? MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100 8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.

Läs mer

1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...

1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,... UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

Föreläsningsanteckningar till Matematik D

Föreläsningsanteckningar till Matematik D Olof Bergvall Föreläsningsanteckningar till Matematik D Matematiska Institutionen Stockholms Universitet, Stockholm E-mail: olofberg@math.su.se Innehåll 1 Algebra......................................................

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

Linjära differentialekvationer av andra ordningen

Linjära differentialekvationer av andra ordningen Linjära differentialekvationer av andra ordningen Matematik Breddning 3.2 Definition: En differentialekvation av typen y (x) + a(x)y (x) + b(x)y(x) = h(x) (1) där a(x), b(x) och h(x) är givna kontinuerliga

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Algebra, kvadreringsregler och konjugatregeln

Algebra, kvadreringsregler och konjugatregeln Algebra, kvadreringsregler och Uppgift nr 1 Multiplicera in i parentesen x(9 + 2y) Uppgift nr 2 Multiplicera in i parentesen 3x(7 + 5y) Uppgift nr 3 x² + 3x Uppgift nr 4 xy + yz Uppgift nr 5 5yz + 2xy

Läs mer

DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7

DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7 Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad

Läs mer

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4

Läs mer

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6 Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Föreläsning 5: Summor (forts) och induktionsbevis

Föreläsning 5: Summor (forts) och induktionsbevis ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:

Läs mer