Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0, 4) cm. Enligt Coulombs lag ges det elektiska fältet fån laddningen q i av E( i ) = k q i i i dä i = (x i,y i ) ä vekton fån laddningen till fältpunkten. y q E q x q Fig.. I detta fall ha vi: = (x,y ) = (4,4) 0 m, = 4 0 m, = (x,y ) = (4,0) 0 m, = (x,y ) = (4,8) 0 m, = 4 0 m, = 4 5 0 m. Vi skive E-fältet som E = E xˆx+e y ŷ dä ( x E x = E x +E x +E x = kq + x = kq ( 6 + ) 5 0 4 m 5 och ( y E y = E y +E y +E y = kq + y = kq ( 6 4 ) 5 0 4 m 5 x ) y ) Insättning av k = 9 0 9 Vm/C ge E x Q. 0 V/(m C) och E y Q.7 0 0 V/(m C) Sva: E = Q( ˆx.7ŷ) 0 0 V/(m C)
. Två kondensatoplatto med aea 500 cm sitte 5 mm fån vaanda. De laddas upp så att potentialskillnaden mellan dem bli 00 V vaefte batteiet kopplas bot. a) Hu sto ä laddningen på vadea plattan? (p) b) Avståndet mellan plattona ökas till 0 mm. Hu sto bli då potentialskillnaden mellan plattona? (p) c) En oladdad, 6 mm tjock metallplatta fös in mellan de laddade plattona. Hu sto bli då potentialskillnaden mellan kondensatoplattona? (p) Plattkondensatons kapacitans C ges (i luft, ε = ) av C = ε 0A d dä A = 0.05 m ä plattonas aea och d ä avståndet mellan plattona. Kondensatons laddning ges av Q = C V, och fö en plattkondensato få vi Q = ε 0A d V a)medpotentialskilladen V 0 = 00Vochd = d 0 = 5 0 mfåviladdningen Q = ε 0A d 0 V 0 = 8.854 0 0.05 5 0 00C = 8.854 0 9 C b) Då laddningen ä konstant fås potentialskillnaden som V = Q d/(ε 0 A), elle med d = d = 0.0 m V = Qd ε 0 A = 0.0 8.854 0 9 V = 00V 8.854 0 0.05 c) I den inskjutna metallplattan ä E-fältet noll, och det effektiva plattavståndet bli då d = d = 4 0 m. Potentialskillnaden minska till V = Qd ε 0 A = 0.004 8.854 0 9 8.854 0 0.05 V = 80V
. En lång ak ledae bä stömmen I = A i x-iktningen. En annan lång ak ledae i samma plan bä stömmen I = A i y-iktningen. Beäkna magnetfältet 0 cm ovanfö den punkt dä ledana kosa vaanda. Vi välje ett koodingatsystem med I längs x-axeln och I längs y-axeln. Fältet ska då beäknas i (x,y,z) = (0,0,0) cm. Magnetfältet fån en lång ak ledae ä vinkelätt mot vekton fån ledaen (och mot ledaen), och fältstykan på avståndet ges av B = µ 0I π I detta fall ä = z = 0. m fö båda ledana. Totala magnetfältet ä B = B + B, dä B = µ 0 I /(πz) och B = µ 0 I /(πz). Eftesom B ä vinkelät mot I (i ˆx-iktningen) och ẑ bli B = B ŷ, medan B ä vinkelät mot I bli B = B ˆx Det totala magnetfältet ges av B = µ 0 πz (I ŷ I ˆx) Numeiskt: B = 4π 0 7 π 0. (ˆx ŷ)t = (ˆx ŷ) 0 6 T Sva: B = (ˆx ŷ) 0 6 T
4. Ikesen ifig. haallamotståndesistansen =.Ωochdetvåbatteiena ha spänningana ε = V och ε = 4 V. Beäkna hu mycket stöm som das fån vat och ett av de båda batteiena. I I = V = 4 V ε Fig.. Med stömiktningana enligt Fig. kan spänningana i de två ketsana summeas enlgt ε = I +(I +I ) = (I +I ) () ε = I +(I +I ) = (I +I ) () Subtaheas de två ekvationena få vi ε ε = (I I ) elle I = I + ε ε () Insättning av I i ekv. () ge ε = I + (ε ε )+I = 4I + (ε ε ) och Sätts detta in i ekv. () få vi I = ε ε 8 I = ε ε 8 Numeiskt få vi I = ( 4)/(8.)A = 0.0757 A, och I = ( 4 )/(8.)A = 0.78 A Sva: Stömmana bli I = 75.7 ma och I = 78 ma.
5. Två paallella, kota, cikuläa spola med adie = 0 cm espektive = 0 cm befinne sig på samma axel på avståndet d = 0 cm fån vaanda. Båda spolana ha samma antal vav, och samma stöm gå genom båda spolana. Va på axeln kan det sammanlagda magnetfältet vaa lika med noll? Om stömmana gå åt samma håll ä magnetfälten också åt samma håll och det sammanlagda kan inte bli noll på ändligt avstånd fån spolana. Magnetfältet som en kot spole med N vav och aea A = π skapa ha på axeln stykan B = µ 0NIA π dä ä avståndet fån ledningståden till punkten på axeln. Om vi placea den fösta spolen i x = 0 och den anda i x = d kan det sammanlagda fältet, fö motiktade stömma, skivas B = µ 0NI [ ( +x ) / ] ( +(x d) ) / och villkoet fö att magnetfältet ska vaa noll kan skivas ( +(x d) ) / = ( +x ) / ( / ) elle +(x d) = x dx+d + = ( +x )( / ) 4/ som kan föenklas till x + d ( / ) 4/ x d + ( / ) 4/ ( / ) 4/ Denna andagadsekvation ha lösningana ( ) d x = ( / ) 4/ ± d ( / ) 4/ + d + ( / ) 4/ ) ( / ) 4/ Om vi använde att / = och ( / ) 4/ =, samt /d = / och /d = / få vi ( ) x = d ± + 9+4 / 9( ) Numeiskt ge detta, med d = 0. m insatt, x = 0. m och x =.56 m = 0 Sva: Magnetfältet ä noll mellan spolana 0. m fån del minde spolen och på anda sidan 0.56 m fån den minde spolen.
6. Ett flygplan flyge med hastigheten 70 km/tim vinkelätt mot det jodmagnetiska fältet, vas styka ä 50 µt. Planet ha en m lång antenn, som ä vinkelät mot magnetfältet och mot flygiktningen. Hu sto spänning induceas i antennen? Vid jämvikt ä Loentzkaften på laddninga i antennen, F = q(e+v B) = 0. Eftesom v och B ä vinkeläta mot vaanda och mot antennen innebä det att E-fältets komponent längs antennen bli E = v B. Spänningen bli då ε = le = lvb. Numeiskt: ε = 70 0 600 50 0 6 V = 0 V Sva: Den induceade spänningen bli 0 mv. 7. En tunn konvex lins ha bännvidden 5 cm. På vilka avstånd fån linsen ska ett föemål placeas fö att ge en bild som ä dubbelt så sto som föemålet om bilden ä a) eell (,5 p), och b) vituell (,5 p)? Bildens stolek y föhålle sig till föemålets stolek y 0 som bildavståndet q till föemålsavståndet p, dvs y y 0 = q p I detta fall få vi däfö q = p Vi använde linsfomeln p + q = f a) eell bild, q = p sätts in i linsfomeln p + p = f p = f vilket med f = 5 cm ge p =.5 cm. b) Vituell bild, q = p sätts in i linsfomeln p p = f p = f vilket med f = 5 cm ge p = 7.5 cm. Sva: Föemålet ska placeas.5 cm fån linsen fö att ge en eell bild och 7.5 cm fån linsen fö att ge en vituell bild dubbelt så sto som föemålet.
8. Det elektiska fältet i en plattkondensato, som bestå av två cikuläa skivo med adie = 0 cm på avståndet d = 0. cm fån vaanda, kan betaktas som homogent. Hu stot bli magnetfältet mellan plattona på avståndet = 8 cm fån deas centum nä kondensaton laddas upp med en stöm I =.5 A? Vi tillämpa Ampée-Maxwells lag ( ) Φ B dl = µ 0 I +ε E 0 dt på omådet mellan kondensatoplattona, och integea unt en cikel med adie. Magnetfältet ä på gund av symmetin konstant på cikeln, och B dl = πb() () Mellan kondensatoplattona ä ledningsstömmen I = 0. Nä kondensaton laddas upp få vi däemot en föskjutningsstöm på gund av att det elektiska flödet Φ E = π E genom cikelytan ändas. Den elektiska fältstykan ges av E = V/d = Q/(Cd) dä kondensatons kapacitans ä C = ε 0 π /d och spänningen V. Kondensatons laddning Q öka på gund av laddningsstömmen I, vilket ge Genom att kombinea () och () få vi Φ ε E 0 dt = ε π dq 0 Cd dt = I () B() = µ 0 π I Numeiskt: B() = 4π 0 7 8 0 π 0.5T = 0 6 T Sva: Magnetfältet 8 cm fån plattonas centum bli 0 6 T.