2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1



Relevanta dokument
II. Partikelkinetik {RK 5,6,7}

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Grundläggande om krafter och kraftmoment

NEWTONS 3 LAGAR för partiklar

14. Elektriska fält (sähkökenttä)

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

Mekanik FK2002m. Kraft och rörelse I

Introduktion till Biomekanik, Dynamik - kinetik VT 2006

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Introduktion till Biomekanik - Statik VT 2006

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

Mekanik Föreläsning 8

Mer Friktion jämviktsvillkor

Krafter och Newtons lagar

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

6.2 Partikelns kinetik - Tillämpningar Ledningar

Planetrörelser. Lektion 4

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Mekanik FK2002m. Repetition

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Det här ska du veta. Veta vad som menas med kraft och i vilken enhet man mäter det i. Veta vad som menas motkraft, bärkraft, friktionskraft

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

Hanno Essén Lagranges metod för en partikel

Laboration 1 Mekanik baskurs

Inre krafters resultanter

Definitioner: hastighet : v = dr dt = r fart : v = v

Föreläsning 5, clickers

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen

Mål Kursen Mekanikmodeller ger

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

TFYA16: Tenta Svar och anvisningar

Tentamen i Fysik TEN 1:2 Tekniskt basår

Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.

Mekanikens historia. Aristoteles och Galilei

Tentamen i Mekanik I SG1130, baskurs P1 och M1. Problemtentamen OBS: Inga hjälpmede förutom rit- och skrivdon får användas!

Kollisioner, impuls, rörelsemängd kapitel 8

Mekanik FK2002m. Kinetisk energi och arbete

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Föreläsning 17: Jämviktsläge för flexibla system

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen

Krafter och Newtons lagar

9, 10. TFYA15 Fysikaliska modeller VT2019 Partikelkinetik-energi Magnus Johansson,IFM, LiU

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Lösningar Kap 11 Kraft och rörelse

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

Rörelsemängd och energi

Repetitionsuppgifter i Fysik 1

Laboration: Krafter och Newtons lagar

9.1 Kinetik Rotation kring fix axel Ledningar

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

1.5 Våg partikeldualism

FÖRBEREDELSER INFÖR DELTENTAMEN OCH TENTAMEN

" e n och Newtons 2:a lag

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Laboration 2 Mekanik baskurs

Karl Björk. Elementär. Mekanik. Tredje upplagan

Vågrörelselära och optik

Ord att kunna förklara

Biomekanik, 5 poäng Kinetik

Einstein's Allmänna relativitetsteori. Einstein's komplexa Allmänna relativitetsteori förklaras så att ALLA kan förstå den

ANDREAS REJBRAND Elektromagnetism Coulombs lag och Maxwells första ekvation

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

1 Den Speciella Relativitetsteorin

Massa och vikt Mass and weight

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

" = 1 M. ( ) = 1 M dmr. KOMIHÅG 6: Masscentrum: --3 partiklar: r G. = ( x G. ,y G M --Kontinuum: ,z G. r G.

Lärarhandledning. Kraftshow. Annie Gjers & Felix Falk

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Tentamen: Baskurs B i Fysik, del1, 4p kl

Basala kunskapsmål i Mekanik

Mekanikens historia. Aristoteles och Galilei

Introduktion till Biomekanik - Statik VT 2006

Datum: , , , ,

Övningar till datorintroduktion

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

Svar och anvisningar

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Transkript:

Newtons lagar 2 1 2 NEWTONS LAGAR 2.1 Inledning Ordet kinetik används ofta för att beteckna läranom kroppars rörelse under inflytande av krafter. Med dynamik betcknar vi ett vidare område där även kinematiken ingår. I kinematiken i föregående avsnitt presenterades några metoder att matematiskt beskriva rörelse. Vi definierade begreppen hastighet och acceleration, och beskrev dessa m h a vektorer. De grundläggande begreppen för kinematiken var tiden, rummet och punkten. I detta avsnitt skall vi introducera Newtons lagar och besvara frågor som Varför rör sig kroppen som den gör? ur rör sig kroppen när den påverkas av krafter? Att förstå Newtons lagar är en ganska lätt uppgift. Dessa är enkla att skriva upp och är inte särskilt komplexa. Deras enkelhet är emellertid skenbar. De kombinerar definitioner, observationer från naturen, delvis intuitiva begrepp, och några antaganden om rummets och tidens egenskaper. Newtons lagar är inte självklara. I Aristoteles idevärld, antogs att man behövde en kraft för att få en kropp i likformig rörelse. Denna idé accepterades i tusentals år eftersom den ansågs intuitivt korrekt. Det är viktigt att förstå vilka delar av Newtons lagar som är baserade på experiment och vilka delar som är definitioner. 2.1.1 Newtons första lag Newtons första lag kallas även tröghetslagen och kan formuleras på följande sätt: 1. Tröghetslagen En kropp förblir i sitt tillstånd av vila eller likformig rörelse om den inte av verkande krafter tvingas att ändra detta tillstånd. För att beskriva rörelse måste vi introducera ett koordinatsystem, och tröghetslagen kan även uttryckas m h a begreppet inertialsystem. Med ett inertialsystem förstås ett koordinatsystem i vilket en isolerad kropp (vilken ej påverkas av några krafter) rör sig med konstant hastighet längs en rät linje. Valet av inertialsystem beror på problemet. Ibland kan ett system fixt i jorden tjäna som ett inertialsystem. För astronomiska objekt kan man använda ett system fixt i universums tyngdpunkt. Ett inertialsystem kan röra sig med konstant hastighet i förhållande till ett annat system. Det är alltid möjligt att finna koordinatsystem i vilket en isolerad kropp rör sig längs en rät linje 2.1.2 Newtons andra lag Antag att vi drar en kropp med ett snöre längs ett friktionsfritt bord. Kroppen kommer då att accelerera, med konstant acceleration. Om vi ersätter kroppen med en annan större eller mindre kropp kommer accelerationen att ändras. Accelerationen beror på en egenskap hos kroppen, vilket vi kallar massa. m - S Om vi antar att den första kroppen har massan m 1 såfår vi m 2 = m 1 a 1 /a 2 För andra kroppar med olika massor får vi m k = m 1 a 1 /a k

Newtons lagar 2 2 Det visar sig experimentellt att a 1 /a k blir oberoende av hur vi åstadkommer accelerationen dvs m k /m 1 är också lika. Massa definierad på detta sätt är alltså en inneboende egenskap hos den kropp vi accelererar. Massan hos en kropp är ett mått på motståndet hos kroppen för rörelseändring. När vi drar i snöret påverkar vi kroppen med en kraft och detta leder till en acceleration a. Accelerationen vilken är följden av flera krafter är vektorsumman av accelerationerna producerade av varje enskild kraft separat. Newtons andra lag, eller accelerationslagen, uttrycker proportionalitet mellan kraft och acceleration 2. Accelerationslagen En kropp som påverkas av kraften F får en acceleration a sådan att F = m a där konstanten m är kroppens (tröga) massa. Om kroppen påverkas av flera krafter har vi m a = m a i = F i = F i i Krafter uppstår från växelverkan mellan system eller kroppar. Det är denna växelverkan vilken är fysikaliskt relevant och orsakar krafter. En isolerad kropp växelverkar inte med andra kroppar och påverkas inteavnågra krafter. Ipraktikenavtarväxelverkan med avståndet r mellan kropparna. Gravitationskraften och Coulombkraften dör ut som 1/r 2. De flesta krafter avtar mycket fortare t ex som 1/r 7. 2.1.3 Newtons tredje lag Att en kraft är resultatet av växelverkan mellan två system uttrycks explicit i Newtons tredje lag (reaktionslagen), vilken lyder: 3. Reaktionslagen Två kroppars ömsesidiga verkningar på varandra är alltid lika stora och riktade åt motsatt håll. Detta innebär att krafter mellan kroppar uppträder alltid parvis. Om en kropp b utövar en kraft F ab påen kropp a dåmåste det finnas en kreft F ba vilken verkar på kroppbfrån a. Newtons tredje lag säger att F ba = F ab. a - F ab F ba '$ b &% En kraft utan en motsvarande motkraft existerar inte. Detta uttrycker egentligen konservering av rörelsemängd. Newtons tredje lag kan användas för att utröna om en kropp är isolerad eller inte. Om en kropp accelereras av en yttre kraft, då måste det finnas en lika och motriktad kraft på en annan kropp. Newtons andra lag F = ma gäller endast i ett inertialsystem. Existensen av inertialsystem är ej trivialt. Låt oss betrakta två olika koordinatsystem och låt r(t) och r (t) beteckna lägevektorerna till en kropp. z 6 Y r (t) r(t) z 6 1 x - R(t) y x Dåär r(t) =r (t)+r(t) - y

Newtons lagar 2 3 antag att xyz-systemet är ett inertialsystem där Newtons andra lag gäller, dvs ma(t) =F. Men från sambandet mellan koordinaterna får vi a(t) =a (t)+a(t) där A(t) betecknar accelerationen för det primade systemets origo, dvs ma (t) =F ma(t) Om A(t) = 0 ser vi att även x y z är ett inertialsystem, dvs ett system vilket rör sig likformigt m a p ett annat inertialsystem är också ett inertialsystem. Ibland vill vi använda ett icke-inertialsystem. Vi kan då införa fiktivkrafter där F app = F +F fiktiv med F fiktiv = ma(t) Fiktiva krafter är användbara i vissa fall, men måste användas med försiktighet. Att inertialsystem existerar där Newtons lag håller bevisas av att dessa lagar kan förutsäga planeters banor i solsystemet med hög precision. Koordinatsystemet i detta fall är Kopernikus system med solen och stjärnorna som fixa referenspunkter. Framgången med den mekaniska teorin för planetbanorna är ett av det bästa beviset på att Newtons lagar är korrekta. Vi säger därför att systemet med origo i solens centrum är ett inertialsystem. Astronomiska tester av mekanikens lagar är överlägsna laboratorieexperiment. Dels kan planeternas rörelsefastslåsmed hög precision, dels är kraftlagen känd, och dels har planeterna observerats under 4000 år. Nu vet vi att vår galax roterar kring sitt centrum. Det innebär att solen är accelererad m a p galaxcentrat. Denna acceleration är ca 10 7 av jordens acceleration relativt solen. Om vi därför är intresserade av rotationen i vår galax måste vi lägga ett koordinatsystem i galaxens centrum, vilket då blir ett inertialsystem för denna rörelse. Speciellt gäller att för att förstårörelser i planetsystemet kan jordens yta inte användas som referenspunkt. Däremot gäller att för fenomen på jordytanär ett koordinatsystem fixt i jordytan approximativt ett inertialsystem. 2.2 Tillämpningar på Newtons lagar. För att lösa problem med användning av Newtons lagar bör man arbeta enligt följande schema. 1. Frilägg ett system i sina beståndsdelar, dvs behandla varje kropp som ingår i problemet för sig. 2. Rita ut alla krafter vilka verkar på de olika kropparna. 3. Inför ett koordinatsystem, och ställ upp rörelseekvationerna. 4. Identifiera krafter och motkrafter 5. Inför eventuella tvång och randvillkor. Enligt Newtons lagar är det endast krafter vilka verkar på en kropp vilka påverkar dess rörelse. Krafter från en kropp på andra kroppar påverkar de senares rörelse, men inte kroppen själv. Ex 2.3 Tre godsvagnar med massan M dras med en kraft F av ett tåg. Friktionen är försumbar. Finn krafterna på varje vagn. För system vilka består av flera kroppar är accelerationerna ofta relaterade av tvångsvillkor. Tvångsekvationerna kan ofta finnas genom inspektion, men ofta måste man göra ett geometriskt resonemang. Ex 2.4 Två massor är förbundna med ett rep över en trissa vilken accelerar uppåt med accelerationen A. Beräkna accelerationen för de båda massorna.

Newtons lagar 2 4 2.3 Fysikens kraftlagar. Att förutsäga rörelsen från kända kraftlagar är en viktig del av fysiken och dess tillämpningar. Det är också väsentligt att härleda den kraft vilken orsakar en viss rörelse. Ett exempel är Newtons härledning av gravitationslagen från Keplers lagar för planetrörelserna. Så vitt vi vet finns det endast fyra fundamentalt skilda typer av växelverkan i universum: gravitation elektromagnetisk växelverkan svag växelverkan stark växelverkan Gravitationen och den elektromagnetiska växelverkan kan verka över långa avstånd eftersom de avtar som 1/r 2. Gravitationen är emellertid alltid attraktiv medans elektriska krafter kan vara både attraktiva och repulsiva. I stora system tar de elektriska krafterna ut varandra och endast gravitationen återstår. Av detta skäl dominerar gravitationen den kosmiska skalan i universum. I motsats till detta är världen i vår närhet dominerad av elektriska krafter, eftersom de är mycket starkare än gravitationen på en atomistisk skala. Elektriska krafter bestämmer atomernas och molekylernas och mera komplexa systems struktur. Den svaga och starka växelverkan har sådan kort räckvidd att de är betydelsefulla endast på kärnavstånd 10 15 m. De är försumbara på atomavstånd 10 10 m. Den starka växelverkan är starkare än den elektromagnetiska växelverkan på kärnavstånd. Den är det klister vilken binder samman atomkärnan. 2.3.1 Gravitation, tyngd Gravitationen är den mest kända av de fundamentala kraftlagarna, och är nära förbunden till mekanikens utveckling. Denna lag upptäcktes av Newton år 1666. Betrakta två partiklar a och b med massor M a och M b påavståndet r från varandra. Låt F ba vara kraften på b från a och F ab kraften på a från b, dåär F ab = F ba och F ab = F ba = GM am b r 2 där G är gravitationskonstanten G =6.67 10 11 Nm 2 /kg 2 Gravitationskraften är en centralkraft dvs riktad längs sammanbindningslinjen mellan massorna F ba = GM am b ; ˆr ba = r ba /r r ba = r b r a ; r = r ba Betrakta nu partikel b. Dess rörelseekvation blir M b a b = GM am b ; a b = GM a dvs accelerationen för partikel b är oberoende av dess massa. Detta följer av antagandet att m trög = m tung dvs att massan i Newtons andra lag är densamma som i gravitationslagen. Man kan visa att för kraften från jorden på en kropp utanför jordytanpå avståndet r från jordens centrum gäller F = GM em r 2 ˆr ; r>r e där M e är jordens massa och R e dess radie. På jordens yta är r = R e och accelerationen på kroppen blir i detta fall a = F /m = GM e R 2 ˆr = gˆr = g e där g är tyngdaccelerationen g = 9.8m/s 2. Tyngdaccelerationen minskar med höjden över jordytan, och vi har g(r) =GM e /r 2. Vi definierar tyngden (weight) av en kropp nära jordytan som den gravitationskraft vilken utövas av jorden. På jordytan blir tyngden W = mg

Newtons lagar 2 5 2.3.2 Gravitationsfält Gravitationskraften påpartikelbfrån partikel a är F ba = GM am b Kvoten F ba /M b kallas gravitationsfältet från M a.vihar G= F ba M b = GM a I allmänhet om gravitationsfältet i en punkt i rummet är G, så blir gravitationskraften på en massa M i den punkten F = MG. Gravitationsfältet har dimension acceleration, dvs accelerationen på en massa M blir Ma = MG, eller a = G. Påjordenär gravitationsfältet g. 2.3.3 Elektrostatisk kraft. Den elektrostatiska kraften F ba på en laddning q b från en laddning q a ges av Coulombs lag F ba = k q aq b Om q a och q b har samma tecken är kraften repulsiv och om de har olika tecken är kraften attraktiv. Analogt med gravitationsfältet kan vi definiera det elektriska fältet E som den elektriska kraften på en kropp delat med dess laddning. Det elektriska fältet i punkten r p g a en laddning q iorigoär alltså E = k q r 2 ˆr 2.3.4 Kontaktkrafter Med kontaktkrafter menar vi krafter vilka överförs mellan kroppar via kortverkande atomistiska eller molekylära växelverkningar. Exempel är snörkrafter, friktionskrafter vid glidning viskositet mellan en kropp och en vätska. Dessa krafter kan nu förklaras via fundamentala egenskaper hos materien. Ex 2.10 Betrakta ett block med massa M vilket dras av ett snöre med massa m, med en kraft F. Vilken kraft påverkar blocket från snöret? M - F 1 F 1 F m - Vi börjar med att frilägga blocket och snöret och ritar ut alla krafter på dessa. Rörelsen sker i en dimension. Vi har då Newtons ekvationer för blocket och snöret Ma M = F 1 ; ma s = F F 1 Eftersom snöret och massan rör sig som en kropp måste a M = a s = a, ochfrån Newtons tredje lag gäller F 1 = F 1. Vilket ger accelerationen a = F/(M + m). Detta ger F 1 = M/(M + m)f F om m 0. Vi tänker oss snöret som sammansatt av små sektioner vilka växelverkar via kontaktkrafter. Varje del drar de närliggande delarna och dras själv av dessa. Storleken på krafterna mellan de olika delarna kallas spänning. Ett rep kan vara under stark spänning. Om spänningen är likformig så blir kraften på varje del noll och delen är i jämvikt. I allmänhet kan spänningen variera längs repet, om detta t ex är accelererat. 2.3.5 Spänning och atomistiska krafter Kraften på varje element av repet är i jämvikt noll. Om spänningen blir för stor kommer repet att brista. Vi kan kvalitativt förstå detta genom att betrakta repet från en atomistisk utgångspunkt. I en idealiserad modell av repet har vi en endimensionell kedja av molekyler. Antag att

Newtons lagar 2 6 kraften F verkar på molekyl 1 i ena ändan av repet. Kraftdiagrammet för molekyl 1 och 2 blir F - F F F F F 1 2 3 Ijämvikt är F = F, F = F dvs F = F, F = F etc. Vi ser att snöret förmedlar kraften F. För att förstå hur detta sker, behöver vi titta på naturen hos de interatomistiska krafterna. Kvalitativt beror kraften på avståndet r mellan två atomerellermolekyler. För små avstånd är kraften repulsiv. Den blir noll för r = r 0 och är attraktiv för r>r 0. För stora värden på r avtar kraften till noll. är är r 0 3 10 10 m. När det inte finns någon yttre kraft F så ligger molekylerna påavståndet r 0 från varandra. I annat fall skulle de intermolekylära krafterna leda till att repet tänjes eller drar ihop sig. När vi drar i repet till r = r 2 blir kraften attraktiv och balanserar precis den yttre kraften så att den totala kraften på varje molekyl blir noll. Om snöret vore stelt som en metallstång kunde vi trycka ihop det till r = r 1 där kraften blir repulsiv, och åter balanserar den yttre kraften. Ändringen i längden beror på lutningen av kurvan i r 0. Den attraktiva intermolekylära kraften har ett maximum vid F max. Om den yttre kraften är större än F max kommer snöret att brista. 2.3.6 Normal- och friktionskrafter Kraften från en yta på en kropp i kontakt med ytan kan delas upp i tvåkomponenter,en vinkelrät mot ytan och en tangentiell till ytan. Den vinkelräta kraften kallas normalkraft och den tangentiella friktionskraft. Normalkraften har samma ursprung som spänningen i ett snöre. När vi lägger en kropp på en yta, t ex ett bord, kommer molekylerna F(r) 0.2 0.15 0.1 0.05 0 0.05 0.1 0.15 r 1 r 0 r 2 0.2 0.8 1 1.2 1.4 1.6 1.8 2 i kroppen att utöva en nedåtriktad kraft på molekylerna i bordet. Molekylerna i bordet rör sig nedåt tills repulsionen från molekylerna i lagren nedanför balanserar den yttre kraften. Normalkraften N är motriktad till resultanten till alla krafter på ytan. Friktion uppkommer när ytan av en kropp rör sig över ytan av en annan kropp. Storleken på friktionenberorpå ytans egenskaper och den relativa hastigheten. Friktionen är alltid motriktad den rörelse vilken skulle äga rum om friktionen inte fanns. För många ytor får man F fn där N är normalkraften och f är friktionskoefficienten eller friktionstalet. När en kropp rör sig över en yta är friktionskraften riktad motsatt den instantana hastigheten och har storleken fn. 2.3.7 ookes lag, fjäderkraft Utsträckningen av en fjäder är proportionell mot kraften F s = kx där k är en konstant kallad fjäderkonstanten och x är fjäderns förlängning från jämviktsläget. Det negativa tecknet innebär att F s alltid försöker återställa fjädern till jämvikt. En kraft vilken uppfyller ookes lag kallas en linjärt elastisk kraft. ookes lag bryter samman vid stora förlängningar av fjädern. r

Newtons lagar 2 7 2.3.8 Viskositet En kropp vilken rör sig genom en vätska eller en gas bromsas av krafter från viskositeten hos vätskan. Till skillnad från friktionskrafter har viskösa krafter ett enkelt hastighetsberoende och är proportionella mot kroppens hastighet. Viskositet uppstår eftersom en kropp vilken rör sig i ett medium påverkar detta med krafter vilka försöker motverka rörelsen. Från Newtons tredje lag utövar vätskan en reaktionskraft på kroppen. Vi kan skriva den viskösa kraften som F v = Cv där C är en konstant vilken beror på vätskan och kroppens form. Rörelseekvationen blir Nu är eller m dv dt = Cv dv dt = dv dˆv ˆv + v dt dt m dv dt = dv dˆv ˆv + mv dt dt = Cvˆv Eftersom ˆv är en enhetsvektor är ˆv vinkelrät mot ˆv, dvs m dv dt = Cv vilket ger lösningen v(t) =v 0 e (C/m)t