Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260
|
|
- Monica Ekström
- för 7 år sedan
- Visningar:
Transkript
1 FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig i sfärisk yt rytig i e tu lis vildig och förstorig rytigsidex Defiitio: c v vk mt c ljusets hstighet i vkuum v ljusets hstighet i ett mteril 3 4 egrepp iom geometrisk optik Stråle Stråle: ger i vilke riktig eergi trsporters Vågfrot: Yt i rymde där e våg hr kostt fs Fugerr r edst då våglägde är försumrt lite i förhållde till storleke på de optisk kompoeter rytigslge i t c t t i x i t x t c t i si si i i t t 5 6 Lrs ippe, tomfysik/lth
2 FF60 eflekts och trsmissio Defiitioer: ref i tr T i i ref eflekts och trsmissio Defiitioer: ref i tr T i i ref Vid vikelrätt ifll: (härledig, se ppedix) Jämför med ljud: tr - reflekts T - trsmitts - rytigsidex för i - ifllde ljusets itesitet ref - reflekterde ljusets itesitet Vid vikelrätt ifll: (härledig, se ppedix) Exempel, till gls: l, g,5 g g l.5 l.5 0,04 tr - reflekts T - trsmitts - rytigsidex för i - ifllde ljusets itesitet ref - reflekterde ljusets itesitet 7 8 Kmer ojektiv Exempel: mmersiosolj 9 0 mmersioslis Förhidrr distorsio v ilde vid mikroskopi Smmfttig reflektio och rytig rytigsidex: rytigslge: eflektioslge: c vk v mt i sii t sit r i Totlreflektio, gräsvikel: eflekts vid vikelrätt ifll: t g rcsi i ref i Lrs ippe, tomfysik/lth
3 FF60 Liser Liser Kovex Kokv Kovex Kokv Smligslis Spridigslis Växer på mitte Håller på tt gå v 3 4 Listyper Smligsliser Spridigsliser rytig i sfärisk yt Kovetio: Ljus går frå väster till höger! xel ikovex Kokvkovex Plkovex ikokv Kovexkokv Plkokv 5 6 rytig i sfärisk yt rytig i sfärisk yt esultt: P xel xel 7 8 Lrs ippe, tomfysik/lth 3
4 FF60 rytig i sfärisk yt Exempel: eell och virtuell ilder eell ild xel Virtuell ild Virtuell ild 9 0 räpukter, räpukter Föremålsrävidde: f xel F Föremålsräpukte: F xel ildrävidde: ildräpukte: f = f f 3 Smmfttig rytig i sfärisk yt vildig: ildräpukte: Föremålsräpukte: f f xel 5 6 Lrs ippe, tomfysik/lth 4
5 FF60 Först yt xel dr yt dr yt - =- d =- d 9 30 esultt: xel Listillverkrformel: f 0 f 0 Guss lisformel: f f f Kovex eller positiv lis Kokv eller egtiv lis f 3 3 Lrs ippe, tomfysik/lth 5
6 FF60 rävidd Kovex lis rävidd Kokv lis vildig Lisformel ger vildig mell pukter på optisk xel. Hur gör m för utsträckt föremål? Stdrdstrålr.E stråle geom lises cetrum ryts ite..e stråle som är prllell med de optisk xel före e positiv lis går geom lises ildräpukt. E stråle som är prllell med de optisk xel före e egtiv lis ser ut tt komm frå lises ildräpukt. F 3.E stråle som går geom föremålsräpukte hos e positiv lis är prllell med de optisk xel efter lise. E stråle på väg mot föremålsräpukte hos e egtiv lis är prllell med de optisk xel efter lise Lterlförstorig Defiitio: y M y M 0 M 0 ättväd Upp och er Exempel: Kovex lis, > f Förmiskd Upp och er eell y F y F Lrs ippe, tomfysik/lth 6
7 FF60 Exempel: Kovex lis Exempel: Kovex lis, = f Smm storlek Upp och er eell F 40 4 Exempel: Kovex lis, f > >f Förstord Upp och er eell Exempel: Kovex lis = f F F 4 44 Exempel: Kovex lis Exempel: Kokv lis Förstord ättväd Virtuell Förmiskd ättväd Virtuell - F F Lrs ippe, tomfysik/lth 7
8 FF60 Exempel: Kokv lis Prllell strålr Uppgift 3. Strålr som kommer frå e pukt lågt ort är (med god pproximtio) prllell är de år frm till e lis. Det etyder tt prllell strålr sk ge upphov till e ildpukt. ) Ett prllellt strålkippe ifller mot e tu kovex lis. Strålkippet ildr 30 grders vikel med de optisk xel. it e figur och vis hur strålr går efter lise. F F Prllell strålr Uppgift 3. Strålr som kommer frå e pukt lågt ort är (med god pproximtio) prllell är de år frm till e lis. Det etyder tt prllell strålr sk ge upphov till e ildpukt. ) Ett prllellt strålkippe ifller mot e tu kokv lis. Strålkippet ildr 5 grders vikel med de optisk xel. it e figur och vis hur strålr går efter lise. - - Prllell strålr Strålkostruktio: prllell hjälpstråle F F F Prllell strålr Strålkostruktio: prllell hjälpstråle - F Smmfttig Guss lisformel: Lterlförstorig: f y M y Listillverkrformel: f 5 5 Lrs ippe, tomfysik/lth 8
Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260
FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig
Läs merGeometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260
FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 elektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: elektio och rytig rytig
Läs merFAFF Johan Mauritsson 1. Geometrisk optik - reflektion och brytning. Våglära och optik. Geometrisk optik - reflektion och brytning
Våglär och optik Geometrisk optik - relektio och rytig FFF30 JOHN MUITSSON Geometrisk optik system Geometrisk optik - relektio och rytig elektioslge rytigslge (Sell s lg) Totlrelektio 3 4 Ljusets utredig
Läs merOptiska system optiska instrument. Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Parallella strålar.
Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk
Läs merGeometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar
Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk
Läs merVad är vågor? FAFF Johan Mauritsson 1. Tentamen. Våglära och optik. Experimentell tentamen. Räknestuga
FAFF30 013-05-5 Våglär och optik FAFF30 JOHAN MAURITSSON Tentmen 3 juni klockn 8.00 13.00 i Victorihllen T med boken T med miniräknre T med penn! T med legitimtion Experimentell tentmen Frivilligt! Ersätter
Läs merÖvning 3 - Kapitel 35
Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir
Läs merÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.
ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst
Läs mersom är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)
Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi
Läs merc k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om
RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså
Läs merLektionssammanfattning Syra-Bas-Jämvikter
Lektiossmmfttig SyrBsJämvikter Det fis ytterligre e typ v jämvikter som vi sk t upp i vi käer oss öjd. Nämlige Syrsjämvikter. De type v jämvikter väds huvudsklige för svg syror oh ser. Ett exempel på e
Läs mer16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs merMatte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor
Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:
Läs merRättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8
Läs merI den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak
Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merEGENVÄRDEN och EGENVEKTORER
rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär
Läs merGeometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning.
Geometrisk optik F7 Relektion oc brytning F8 Avbildning med linser oc speglr F9 Optisk instrument 1 2 Avbildning i särisk ytor, tunn linser oc speglr Avbildning Linsormeln ger vbildning melln punkter på
Läs merwww.kitas.se Kitas Frisörgymnasium Nytänkande och kvalitet
www.kits.se Kits Frisörgymsium Nytäkde och kvlitet Stimulerde miljö på Mgsisgt Kits Frisör är e lite friskol med 90 elever som erbjuder e kretiv och ispirerde miljö. Utbildige är yrkesförberedde, håller
Läs mer93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl
Läs merSätra. Skärholmen. kurva. Sätraskogens naturreservat. vara minst 10 meter höga för att påverkan på närområdet ska bli liten.
Upprättd de 5 mj 2011 Arbetspl, Beskrivig, E4 Förbifrt Stockholm f å Sätr Sätr Sätrskoges turreservt Gåg- och cykelbro blir kvr i smm läge sv ä ge Skärhol msbäcke Sk ä rh ol m VA-sttio och mottgigssttio
Läs mer============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def
Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt
Läs merVINDKRAFTFAKTA. Teknik och säkerhet. Teknik. Säkerhet
VINDKRAFTFAKTA Tekik och säkerhet Tekik Aktuell vidkrftverk bedöms få e vhöjd på som mest 14 meter och e rotordimeter på mell 8-13 meter. Ovsett Totlhöjd verkstyp kommer totlhöjde ite tt överstig 185 meter.
Läs merKompletterande material till kursen Matematisk analys 3
Kompletterde mteril till kurse Mtemtisk lys 3 Augusti 2011 Adrzej Szulki 1 Supremum, ifimum och kotiuerlig fuktioer I ppedix A3 i [PB2] defiiers begreppe supremum och ifimum. mooto tlföljder är ekvivlet
Läs merElektromagnetisk strålning. Spektrofotometri. Absorbans / Emission. Elektromagnetiskt spektrum
1 2 Ref: www.e.se Elektromagetisk strålig Spektrofotometri Margareta Sadahl Luds Uiversitet Kemiska stitutioe Cetrum för Aalys och Sytes! Elektriskt fält När e ljusstråle passerar e elektro trycker stråles
Läs merINTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM )
Armi Hlilovic: EXTA ÖVIGA Cuchys itegrlriterium ITEGALKITEIET ( äve lls CAUCHYS ITEGALKITEIUM ) POSITIVA SEIE Defiitio E serie är ositiv om 0 för ll Eftersom delsummor v e ositiv serie bildr e väde ositiv
Läs mer1 Armin Halilovic: EXTRA ÖVNINGAR
Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger
Läs merKVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio
Läs merFORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes
Läs mer5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merLösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
Läs merLeica Lino. Noggranna, självavvägande punkt- och linjelasers
Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter
Läs merGeometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260
Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion
Läs merFAFF30 2013-03-21. Johan Mauritsson 1. Optiska system - optiska instrument Vetenskapsteori. Våglära och optik. Optiska system - optiska instrument
Våglär oc optik Optisk system - optisk instrument Vetenskpsteori FAFF3 JOHAN MAURITSSON 2 Optisk system - optisk instrument Men örst Quiz Ögt Kmern Luppen Vinkelörstoring Mikroskopet Kikren Bländre oc
Läs mervara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr
Läs merStela kroppens rotation kring fix axel
FMEA10 01 Sammafattig av Föreläsig om Stela kroppes rotatio krig fix axel (FMEA10) Föreläsig 1: Kiematik (14.-14.5) Cirkelrörelse: E partikel P rör sig i e cirkelbaa med radie R. Vi iför cyliderkoordiater
Läs merResultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
Läs merInledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Läs merLösningar till repetitionstentamen i EF för π3 och F3
Lösningr till repetitionstentmen i EF för π3 oh F3 Lösning problem Från Poyntingvektorn (r, t = E(r, t H(r, t = A ẑ η 0 konstterr vi tt vågens utbredningsriktning ê är vilket leder till tt dess vågvektor
Läs merTentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl
TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte
Läs merFÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis
FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio
Läs mervara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )
rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------
Läs merGeometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Läs merFORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:
TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.
Läs merDIAGONALISERING AV EN MATRIS
Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr
Läs merTentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Läs merFöreläsning F3 Patrik Eriksson 2000
Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive
Läs merTaylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.
Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk
Läs merDel A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.
Läs merTENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare
Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3
Läs merTentamen med lösningar i IE1304 Reglerteknik Måndag 16/
Tetme me löigr i IE4 Reglertei Måg 6/ 9.-. Allmä iformtio Emitor: Willim Sqvit. Avrig lärre: Willim Sqvit, tel 8-79 4487 Cmpu Kit, Tetmeuppgifter behöver ite återläm är u lämr i i rivig. Hjälpmeel: Räre/rfräre.
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs mervara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är
Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,
Läs merANVISNING FÖR BROMSDYNAMOMETER- MÄTNING
Ktrll v tug frds tryckluftsrmsr vd esktg ILAGA A ANVISNING FÖR ROMSDYNAMOMETER- MÄTNING Fstställde v rmsrs restd med rmsdymmeter Vd regelud sekter fstställs rmssystemets restd tug frd ch slävgr med rmsdymmetermätgr.
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merTentamen i Kunskapsbaserade system, 5p, Data 3
Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska
Läs mer4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Läs merIntegraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi
Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.
Läs mer1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merTENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105
Istitutioe för dt- och eletrotei 4-8- TETAME KURSAM PROGRAM: m Eletroigejörslije å / läsperiod årsurs /läsperiod 4 KURSBETECKIG LET39 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3 7.3 HJÄLPMEDEL
Läs merUppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Läs merSlutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär
Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering
Läs merf(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs mer1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.
Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera
Läs merVåglära och optik FAFF30 JOHAN MAURITSSON
Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion
Läs merArbetsmiljöuppföljning IFO-FH enhet: Boendeenheten
Arbetsmiljöuppföljig 2013 IFO-FH ehet: Boedeehete Iehållsförteckig 1 Uppföljig vår... 3 1.1 Arbetsskad, otillåte påverka och tillbud... 3 1.2 Sjukfråvaro... 3 1.3 Lågtidsfriska... 3 1.4 Arbetsmiljörod
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 34 - Optik 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merTNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Läs mer11.7 Kortversion av Kapitel INTEGRALBEGREPPET
498 11. INTEGRALBEGREPPET Defiitio 11.16 R är e obestämd itegrl. De beteckr e primitiv fuktio till f(x). Vi smmfttr skillder mell bestämd och obestämd itegrler: Obestämd itegrl: itegrle skr gräser. De
Läs merOm komplexa tal och funktioner
Om komplexa tal och fuktioer Aalys60 (Grudkurs) Istuderigsuppgifter Dessa övigar är det täkt du ska göra i aslutig till att du läser huvudtexte. De flesta av övigara har, om ite lösigar, så i varje fall
Läs merEkvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF) och F3 (EITF85) Ti och plts: 3 oktober, 8, kl. 4. 9., lokl: MA A H. Kursnsvrig lärre: Aners Krlsson, tel. 4 89 och 733 35958. Tillåtn hjälpmeel:
Läs merVågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
Läs merBruksanvisning. Läs detta innan maskinen används. Läs detta när ytterligare information behövs. FÖRBEREDELSER GRUNDLÄG- GANDE SÖMNAD NYTTOSÖMMAR
FÖRBEREDELSER Läs ett innn mskinen nväns. GRUNDLÄG- GANDE SÖMNAD NYTTOSÖMMAR Läs ett när ytterligre informtion ehövs. BILAGA CPS5XV[Y Dtorstyr symskin Bruksnvisning Meföljne tillehör Kontroller tt följne
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs merRÄKNESTUGA 2. Rumsakustik
RÄKNESTUGA Rumsakustik 1. Beräka efterklagstidera vid 15, 500 och 000 Hz i ett rektagulärt rum med tegelväggar och med betog i tak och golv. Rummets dimesioer är l x 3,0 l y 4,7 l z,5 [m].. E tom sal med
Läs mer= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Läs merTentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
Läs merGenom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.
öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs merLaboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Läs merTentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Läs merOm du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:
Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska
Läs merTenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2
Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5
Läs merKylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
Läs merFöreläsning 11 (kap i Optics)
45 Föreläsning 11 (kap 5.7-5.8 i Optics) Hittills har vi behandlat avbildningen i sig, dvs. var bilden av ett objekt hamnar och vilken förstoring det blir. Det finns också andra krav man kan ställa på
Läs merTentamen i Våglära och optik för F
Tentamen i Våglära och optik för F FAFF30, 2013 06 03 Skrivtid 8.00 13.00 Hjälpmedel: Läroboken och miniräknare Uppgifterna är inte sorterade i svårighetsgrad Börja varje ny uppgift på ett nytt blad och
Läs merNågot om funktionsföljder/funktionsserier
mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer
Läs merStången: Cylindern: G :
mekaik I, 09084- A V H f mg G N B 3 d Frilägg cylider och de lätta ståge! Ståge påverkas av kraftparsmometet M samt kotaktkrafter i A och O. Cylider påverkas av kotaktkrafter i A och B samt tygdkrafte
Läs mer1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Läs merFigur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Läs merHÄLSOSTADEN. markus magnusson och caroline lindgård white arkitekter
HÄLSOSTADEN SOm läkande miljö i stden mrkus mgnusson och croline lindgård white rkitekter HÄLSOSTADEN ÄNGELHOLM HÄLSOSTADEN rönne å HÄLSOSTADEN KGRUND OCH SYFTE stden hr genom NAHC tgit frm ett övergrinde
Läs mer