Innehåll. Träd. Träd. Traversering av träd. Binära träd. Datastrukturer och algoritmer Datastrukturer. Algoritmer.
|
|
- Christoffer Lundgren
- för 8 år sedan
- Visningar:
Transkript
1 Innhåll Dtstrukturr och lgoritmr Progrmmringsmtodik - för kognitionsvtr, 5DV059 - md inriktning mot kognition, 5DV Dtstrukturr Träd, grfr, mängdr Algoritmr komplxittsnlys Läsnvisning: Dss bildr + DoA-kompndit (+ Jnlrt&Wibrg-bokn) Träd Ett tomt träd hr ing nodr Ett träd är tomt llr hr xkt n rot. Vrj nod (utom rotn) hr xkt n föräldr. Vrj nod hr tt ändligt ntl brn. Nodr md smm föräldr klls syskon. rot Träd Nodr utn brn klls löv. Kopplingn mlln två nodr klls knt. Djupt för n nod är smm som ntlt kntr mlln nodn och rotn. Ett dlträd bstår smtlig ättlingr till n nod. knt syskon Löv Binär träd En nod i tt binärt träd kn h högst två brn Brnn klls vänstr- och högrbrn. Dt ndr brnt kn komm för dt först. Trädn ndn är OLIKA binär träd. Trvrsring v träd Tillämpningr v träd involvrr oft tt mn Sökr ftr tt lmnt md viss gnskpr Trnsformrr strukturn till n nnn struktur Exmplvis sortring och blnsring Filtrrr ut lmnt md viss gnskpr All dss byggr på tt mn trvrsrr strukturn.
2 Trvrsring v träd Brddn-först Mn undrsökr n nivå i tgt. Först rotn, sdn rotns brn, dss brnbrn osv. Kö oft hjälp vid implmnttionn. Vrj nod i trädt bsöks ndst n gång. Sökr mn något som finns hittr mn dt. Trvrsring v träd Brddn-först Algoritm bfordr(tr T) input: A tr T to b trvrsd for ch lvl L of T do for ch nod of L do comput(nod) Ordningn:, b, c, d,, f, g, h, i, j Trvrsring v träd Djupt-först Mn följr vrj grn i trädt utifrån rotn till lövt Stck till hjälp för implmntringn Vrj nod bsöks ndst n gång. Tr vrintr: Prordr Postordr Inordr Trvrsring v träd Djupt-först: Prordr Algoritm prordr(tr T) input: A tr T to b trvrsd comput(root(t)) // Do somthing with nod for ch child w of root(t) do prordr(w) prordr(bintr T) comput(root(t)) prordr(lftchild(t)) prordr(rightchild(t)) Ordningn:, b, c, d, f, g,, h, i, j Prordr Läs tt dokumnt Trvrsring v träd Djupt-först: Postordr Algoritm postordr(tr T) input: A tr T to b trvrsd for ch child w of root(t) do postordr(w) comput(root(t)) // Do somthing with nod postordr(bintr T) postordr(lftchild(t)) postordr(rightchild(t)) comput(root(t)) Ordningn: b, c, f, g, d, h, i, j,,
3 Algoritm vlutexprssion(tr t) If islf(t) rturn gtvlu(t) ls op gtvlu(t) x vlutexprssion(lftchild(t)) y vlutexprssion(rightchild(t)) rturn x op y * / + Postordr Bräkn ritmtisk uttryck Trvrsring v träd Djupt-först: Inordr Algoritm inordr(tr T) input: A tr T to b trvrsd nod root(t) inordr(firstchild(t)) comput(nod) // Do somthing with nod for ch child w of nod (xcpt first) do inordr(w) inordr(bintr T) inordr(lftchild(t)) comput(root(t)) inordr(rightchild(t)) Ordningn: b,, c, f, d, g, h,, i, j Algoritm printexprssion(tr t) print ( if hslftchild(t) thn printexprssion(lftchild(t)) print gtvlu(t) if hsrightchild(t) thn printexprssion(rightchild(t)) print ) * / + Inordr Skriv ritmtisk uttryck Binärt sökträd (BST) Sökträd är konstrurd spcillt för sökning. Krv Dt måst xistr n linjär ordning v nodrn. Dfinition Söknyckln för nod n är störr än ll söknycklr hos n's vänstr dlträd. Söknyckln för nod n är mindr än ll söknycklr hos n's högr dlträd. Binär sökträd Dt kn finns flr rprsnttionr v smm träd. En inordr trvrsring kommr tt bsök nodrn i n sortrd ordning. Algoritmrns hstight för insättning, borttgnd och sökning är högst brond v utsndt på trädt. Blnsr trädt. Användningsområdn Träd är n dtstruktur som nvänds flitigt inom ll möjlig områdn i dtvtnskp: rtificill intlligns, syntxträd som tstr om kod är skrivn på rätt sätt, snbb inmtning v txt vi mobiltlfonr (T9), komprimring v dt, gogrfisk informtionssystm... och mång flr.
4 A Grfr Bstår v n uppsättning nodr och kntr. Två nodr som är koppld md n knt klls grnnr. Grfr kn vr osmmnhängnd. Kntr kn vr riktd. 6 E R C F 6 6 D G B 3 d c d b c b Bild från sidn 337 i Jnlrt L-E., Wibrg T., Dttypr och lgoritmr, Studntlittrtur, 2000 Sökning i grfr Två problm Att int miss nodr Att int bsök n nod flr gångr. Strtgi Börj md n godtycklig nod. Tst ll kntr från ll bsökt nodr. Kom ihåg vilk nodr som är bsökt. Sökning i grfr Brddn först Tst ll kntr från dn ktull nodn, innn du tstr n nnn nod. Djupt först Fortsätt så långt du kn från dn ktull nodn innn du tstr dss ndr kntr. Användningsområdn Grf är n dtstruktur som också nvänds flitigt! Grftori Kortst vägn lgoritmr Mximlt flöd Minimlt uppspännnd träd Trvling slsmn problm... Dtorkommuniktion och dtornät Som visulisring v nätvrk v olik slg Algoritmr Krv på n lgoritm (Donld Knuth): Ändlight Algoritmn måst h n ändlig bskrivning Bstämdht Vrj stg måst vr ntydigt Indt Vrj lgoritm måst h noll llr flr indt Utdt Algoritmn måst h tt llr flr utdt Effktivitt Vrj stg i lgoritmn måst vr ffktiv, kunn utförs på n ändlig tidsrymd Olik sätt tt bskriv n lgoritm Nturligt språk Förklr problmlösningn md vnlig txt, v md införd vribl- och funktionsnmn. Blockdigrm Vis n grov struktur v problmlösningn i form v ritd "boxr". Vrj box är tt dlproblm. Flödsschm/flödsdigrm, strukturdigrm Ritr lgoritmn md olik symbolr, som visr när och hur skr skll sk i progrmmt. Psudokod En blndning v progrmmringsspråk och vnlig txt, dvs mn hr vriblr, funktionr, kontrollstrukturr tc
5 Exmplproblm Jg sk bjud på mums mums till kfft. Hur mång förpckningr måst jg köp? Vi ntr följnd: Vrj förpckning innhållr mums mums Vrj prson ätr i snitt 3 mums mums om d är färsk nnrs ätr d br 2 mums mums i snitt. Dtt xmpl är inspirrt v korvxmplt på sidn Algoritm nturligt språk 1. Fråg ftr ntlt prsonr; kll tlt för Prsonr. 2. Fråg om mums mumsn är färsk; kll svrt ärfärsk. 3. Om ärfärsk är snn 1. Multiplicr Prsonr md 3 (ntlmumsmums). Annrs 1. Multiplicr Prsonr md 2 (ntlmumsmums) 5. Dl ntlmumsmums md. 6. Avrund svrt uppåt till närmst hltl; kll dtt tl för Pkt. 7. Svr md tlt Pkt. Algoritm blockdigrm Progrm Antl mums mums-pkt Algoritm flödsdigrm Strt Läs in prsonr Läs in ärfärsk Läs in Prsonr och ärfärsk Bräkn Pkt Vis Pkt mumsmums = prsonr * 3 Är ärfärsk snn? mumsmums = prsonr * 2 Bräkn ntl mums mums Dl ntl mumsmums md och vrund uppåt pkt = mumsmums/ vrund uppåt Vis Pkt Stop Algoritm psduokod 1. Läs in Prsonr (ntlt prsonr) 2. Läs in ärfärsk (om mums mums är färsk) 3. If ärfärsk Thn 1. ntlmumsmums = Prsonr * 3. Els 1. ntlmumsmums = Prsonr * 2 5. svr = ntlmumsmums/ 6. Pkt = Avrund svr uppåt till närmst hltl 7. Vis Pkt. Algoritmnlys För tt vgör om n viss lgoritm är br, kollr mn oftst sämst fllt. Intrssnt tt koll hur lgoritmn växr md storlkn på problmt. Att sök ftr tt visst lmnt i n vktor är dirkt brond på ntlt lmnt, n, i vktorn.
6 Ordo Ordo Till hjälp tr mn då n mtmtisk funktionsdfinition som klls ordo, O. f(n) ngr ntlt bräkningr n lgoritm gör om storlkn på dtt är n. g(n) ngr n godtycklig funktion. Om dt finns tt c så tt f(n) <= c g(n) för n > n 0 sägs f(n) vr O(g(n)). Exmpl Att sök tt lmnt i n vktor är O(n). Ävn om vrj stg i sökningn krävr flr oprtionr, kn vi sätt c till tt högr tl och problmt växr nbrt v n. Att lt tt lmnt i tt blnsrt binärt sökträd är O(log 2 (n)). g(n) I g(n) vill mn nbrt h dn dl som växr fortst. Konstntr är INTE viktigt. Ex. n 2, nlog(n), n 3. Att koll på hur fort tt problm växr är för små problm oft int så intrssnt, mn för stor problm kn dt vr hlt vgörnd. Exmpl Litt räknxmpl n log 2 (n) n 2 n 3 2 n 1 oprtion tr 1μs *10 9 lmnt i n list Kvdrtisk sortringslgoritm n milj år Logritmisk sortringslgoritm n*log(n) 30000s 1 rbtsdg milj 1 mrd n 2 och dubblt så snbb => år n 2 och 1000 gångr så snbb => 31år
7 Anlys v lgoritmr Primitiv oprtionr Är i stort stt obrond v progrmspråk och kn dfinirs i trmr v psudokod: Anrop n mtod/funktion Rturnr från n mtod/funktion Utför n ritmtisk oprtion (+, -, ) Jämför två tl, tc. Rfrr till n/tt vribl/objkt Indxr i n rry Antg i nlysn tt dss kostr 1. Exmpl Algorithm rrymx(a,n) input: An rry A storing n intgrs output: Th mximum lmnt in A currntmx A[0] //1+1 for i 1 to n-1 do //+n(1+1+1)+(n-1)*([]+1+1+1) if currntmx < A[i] thn // currntmx A[i] //1+1+1 rturn currntmx //1+1 T mx (n)= 6+3n+(n-1)*10+2 = 13n-2 T min (n)= 6+3n+(n-1)*7+2 = 10n+1 Hur får mn ordo? Om dt finns tt c så tt f(n) <= c g(n) för n > n 0 sägs f(n) vr O(g(n)). På förr sidn hd vi T min (n) och T mx (n) T(n) är vårt f(n) och för tt få konstntn bräkns f (n) lim där g(n) är dn störst trmn n g(n) +1 i vårt fll n. 13n 2 lim + 1 = 1 n n 13n-2 <= 1n för ll n >= n 0 då n 0 = f(n) = 13n-2 g(n) = 1n Algoritmnlys Smmnfttning O(n) nvänds för tt utryck ntlt primitiv oprtionr som utförs som n funktion v storlkn på indt En övr gräns för tillväxt rrymx är n linjär lgoritm dvs O(n) En lgoritm som körs på O(n) är bättr än n O(n 2 ), mn O(log(n)) är bättr än O(n) log(n) <<n<<n 2 <<n 3 <<2 n Algoritmnlys Litn vrning Vr ktsm, stor konstntr ställr till dt T(n)= n är n linjär O(n), mn i mång fll sämr än T(n) = 2n 2 som är O(n 2 ) O-nottionn är n stor förnkling, dvs n övr gräns, dt finns släktingr som bgränsr ndåt. Anlysn tr j hänsyn till olik hårdvror.
8 Sortring En v d vnligr oprtionrn på vktorr/rryr. Komplx oprtion Vrj lmnt måst jämför sig md ll d övrig I grundn n O(n 2 ) oprtion Kn dn görs på tt bättr sätt? Bubbl sort Enklst och mst intuitiv sortringslgoritmn. Elmntn ''bubblr'' upp gnom fältt. Går ignom vktorn och bytr plts mlln två intilliggnd lmnts som int är i ordning. Upprpr dtt tills hl vktorn är sortrd (mx n ggr). Bubbl-sort Exmpl Mång implmnttionr nligt smm princip. ''Psudo''-kod: do { chngd = fls; for (i=1; i<lngth; i++) { // OBS! i=1 if (v[i-1] > v[i]) { chngd = tru; swp(v[i-1],v[i]); } } } whil(chngd); Mrg sort Jobbr md n xtr rry. Splittr vktorn för tt sdn utnyttj tt dlrryr rdn är sortrd. ''Divid nd conqur'' Byggr upp ny dl-rryr gnom tt prvis jämför frontlmntn. Exmpl mrg sort Divid-fsn
9 Exmpl mrg sort Qonqur-fsn Quick sort 'Divid nd conqur'' Användr tt ''pivot''-lmnt. Läggr ll lmnt mindr än pivotlmntt på n sid och d ndr på dn ndr. Upprpr procdurn för dl-rryrn. När ll dl-rryr bstår v som mst tt lmnt är d sortrd. Svåright tt hitt br pivot-lmnt "snbbt". Jämförls I mdlfllt är Bubblsort O(n 2 ). Mrg-sort och Quick-sort O(n log(n)). Mrg-sort och Quick-sort krävr n intllignt implmntring/mr minn. Kritiskt för stor dtmängdr. Mrg-sort och Quick-sort är rkursiv lgoritmr.
Innehåll. Föreläsning 7. Modeller/tillämpningar för träd. Organisation och terminologi (1) Organisation och terminologi (2)
Innhåll Förläsning 7 Träd Modllr/tillämpningr för träd Orgnistion och trminologi Signturdigrm för ordnt träd Olik typr v träd Trädlgoritmr Implmnttion v träd 148 149 Modllr/tillämpningr för träd Modll:
Datastrukturer och algoritmer. Modell/tillämpningar för träd. Innehåll. Organisation och terminologi (2) Organisation och terminologi (1)
Dtstrukturr och lgoritmr Förläsning 9 Träd Innhåll Modllr/tillämpningr för träd Orgnistion och trminologi Signturdigrm för ordnt träd Olik typr v träd Trädlgoritmr Implmnttion v träd Modll/tillämpningr
Föreläsning 11: Grafer, isomorfi, konnektivitet
Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns
Laboration 1a: En Trie-modul
Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr
Mitt barn skulle aldrig klottra!...eller?
Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt
Algoritmer och datastrukturer, föreläsning 11
Aloritmr oh tstrukturr, förläsnin Dnn förläsnin hnlr rfr. En rf hr n män nor (vrtx) oh n män år (). Ett xmpl är: A E F B D G H C Z Dnn rf hr följn män v nor: {A, B, C, D, E, F, G, H, Z Dn hr följn män
v v v v 5 v v v 4 (V,E ) (V,E)
. Grftori Btylsn v ilr som stö oh inspirtion för mtmtisk rsonmng kn knppst övrsktts. Stuirn v nkl ilr hr gtt oss grftorin. Tyvärr, llr lykligtvis, visr t sig snt tt nkl oh nturlig frågställningr om nkl
Headset för det Mobila kontoret
Hdst för dt Mobil kontort Dt t r o t n o k mobil Plntronics strtd 1962 och hr sdn dss nbrt inriktt sig på tt utvckl br kommuniktionshdst. Idg är Plntronics världsldnd på hdst och hr tt brtt utbud v hdst
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Vill veta kvaliteten hos våra vattenföringsdata?
Vll vt kvlttn hos vår vttnförngsdt? Bnt Görnsson, G Bo Toms Lndlus, FoU //9 Bkgrund - gnomförd v n stud för tt tst någr xmpl på noggrnnhtskrv på Bo:s Q-dt En v Bo:s huvuduppgftr är tt t frm kvlttskontrollrd
Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik
Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Trädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016
Iformtiostkoloi Tom Smss uusti 6 Trästrukturr Dfiitior och trmioloi I list hr vrj o xkt ftrföljr (utom sist) och förår (utom först). Om vi tillåtr tt o hr flr ftrföljr rhållr vi trästruktur: c f h i j
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig
V Ä G E N T I L L V A T T E N w w w. a v a n t i s y s t e m. s e
VÄGEN TILL VATTEN v n i y m Vn vi in kn J ordn vnillgångr är norm, mn Grundvn är n dl v vn räknr mn bor nö, i och lvn blir vig krlopp d br 3% kvr för vår vnförörjning När yvn rängr nd i mrkn rn d och blir
Asymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Ett förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
Sammanfattning av ALA-B 2007
Crl-Mgnus Trä t7 Smmnttning v L- 7. Ordinär dirntilkvtionr (ODE). Först ordningns homogn ODE.... ndr ordningns homogn ODE.... Inhomogn kvtionr.... Sprl vrilr 5. Intgrrnd ktor 6. En ltrntiv örskjutningsrgl.
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd
Föreläsning 7 Sply-träd. rioritetsköer oh hepr. Union/Find TDDC70/1: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 7 septemer 01 Tommy Färnqvist, IDA, Linköpings universitet 7.1 Innehåll
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Datastrukturer och algoritmer
Innehåll Föreläsning 5 Algoritmer Experimentell komplexitetsanalys Kapitel 2.1-2.2, Kapitel 12.1-12.4 Algoritmer Algoritm Definition: Algoritm är en noggrann plan, en metod för att stegvis utföra något
Nordic Light Roulett. Aluminiumpersienn. Nordic Light Roulett Installation - Manövrering - Rengöring. Aluminiumpersienn
INSTALLATION - MONTERING - RENGÖRING Originlokumntt får int i txt llr utförn änrs utn mgivn v Turnils AB. www.nori-light.om Nori Light SE-441 15 Alingsås, Swn Tl: +46-322 775 00 E-mil: orrurop@turnils.om
Innehåll. Träd Terminologi
Innåll F9: Trä Nils Börlin 5DV149 Dtstrukturr o loritmr Mollr ör/tillämpninr v trä. Ornistion o trminoloi. Sinturirm ör ornt trä. Olik typr v trä. Träloritmr. Implmnttion v trä. Mollr o tillämpninr Trä
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
F8: Logiska komponenter. Introduktion. Koder. Avkodare. Logiska komponenter
Innhåll: - Avkor - Diitl kor - 2-4 vkor - 7-smnts isply - Kor - Multiplxr - Dmultiplxr F8: Loisk komponntr Loisk komponntr Introuktion Dt är növänit tt skp mr komplx ylok än runlän rinrn (n, or, not) som
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
FACIT TILL OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
Krlsts univrsitt Fit till DSA omtntmn 08 Dtvtnskp FACIT TILL OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B0 08 kl. 08: : Ansvrig Lärr: Donl F. Ross Hjälpml: Ing. Algoritmrn inns i rspktiv uppgitrn llr
Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg
g E o E E o g Vi öskr r tt trvligt Spwymöt i Norrköpig hlg Su Björk, Support Your Tm o g E o E E o g Vi kämpr ihop! o Välk till prsttio s pssr i på ll Spwyförigr i hl Svrig m mottot VI KÄMPAR IHOP m st
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 6 Sply-trä. rioritetsköer oh hepr. TDDC91,TDDE22,725G97: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 19 septemer 2017 Mgnus Nielsen, IDA, Linköpings universitet 6.1 Innehåll
GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
4.1 Förskjutning Töjning
Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Grundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
parkour Biotop Existerande Äldrebostäder volleyboll Biotop Vatten Våtområde Fotosyntes Sinnesupplevelser Odlingsbäddar Biotop parkour
Cmpus Prk Skr Liv och lärnd Viktorisjön mot väst är dt xtrovrt rummt. En smlingspunkt för ktivitt, bdning, picknick och lkplts. Dltt v gångvägr förgrns omkring sjön och dt skps bättr tillgänglight och
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Elementær diskret matematikk, MA0301, våren 2011
Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand
Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna
Kaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr
Exmpl Som knt gällr tt sts Exmpl Följnd skylt finns på tt cfé Pythgors sts Arn Södrqvist, KH-Syd 3 + 4 = 5 Likhtn kn tolks som n mnifsttion v Pythgors Kff 5 kr Bull 5 kr Kff och ull 8 kr Likhtn 5+ 5= 8
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
Making room for tomorrow
Byggnsgui Byggnsgui 2013 Byggnsgui 2013 Innrvägg Allmänt 4-5 Sknor oh rglr 6-7 Montg 8-9 WllClik 10-11 Typr oh gruppr 12-15 Väggnyklr 16-21 Typövrsikt 22-25 Väggruppr C 26-65 Väggruppr C+ 66-93 Väggruppr
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Tillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.
1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
Guide - Hur du gör din ansökan
Guide - Hur du gör din nsökn För tt komm till nsökningswebben går du in på www.gymnsievlsjuhärd.se och klickr på Ansökningswebb. Men innn du går dit läs igenom informtion under Ansökn och Antgning. Ansökningswebben
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Var femte folkvald sverigedemokrat är sjukpensionär
Mdlinkomstr AVSLÖJAR kr/år. 66 Torsdg??? Torsdg17 17mj mj Får bidrg sd* Vr fmt folkvld svrigdmokrt är sjukpnsionär På svrigdmokrtrns mndt sittr i dg 246 prsonr. 204 v dss, 82,9 procnt, är i rbtsför åldr.
Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )
Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------
Regionmagasinet. Är det alltid bäst med piller? Här finns fler än ett skelett i garderoben. Valet till regionfullmäktige görs om 15 maj
Rgionmgsint n tidning från Västr Götlndsrgionn www. vgrgion. s nr 1. 2011 Är dt lltid bäst md pillr? tmnummr för dig som vill vt mr om läkmdl Här finns flr än tt skltt i grdrobn Sid 23 Vlt till rgionfullmäktig
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
Integraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Tillståndsmaskiner. Moore-automat. Mealy-automat. William Sandqvist
Tllstånsmsknr Moor-utomt Mly-utomt Wllm Snvst wllm@kth.s ÖH. Bstäm tllstånsrm oh tllstånstll ör skvnskrtsn. Vlkn v mollrn Mly llr Moor pssr n på krtsn? Wllm Snvst wllm@kth.s . Ur krtsshmt kn öljn smn ställs
F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)
F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION
OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Sektion LÅGFRIKTIONSPLAST Kedjeglidlister Glidlister Styrlister Band, Plattor, Rundstång Specialdetaljer
Sktion Sktion LÅGFRKTONSPLAST Kdjglidlistr Glidlistr Styrlistr nd, Plttor, Rundstång Spcildtljr www.rmstromtrnsmission.s ordr@rmit.s 08-404 01 00 040-38 37 90 0611-55 45 00 Sktion - Sid 473 Kvlittr och
ProMinent. Driftinstruktion Ultromat AT/96 och ATF/96 Serie V 4.0 Trekammaranläggning för beredning av polyelektrolyt
Dritinstruktion Ultromt A/96 och AF/96 Sri V 4.0 rkmmrnläggning ör rdning v polylktrolyt ProMinnt V. G. läs ignom hl dritinstruktionn innn utrustningn dritsätts! S till så tt dn int kommr ort! För skdor
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n
g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil
The Next Generation platform Snabbguide
Sngui Vi hr skpt nn sngui för tt u på tt nklt sätt kn knt ig m mång v vår vrktyg oh funktionr i vår plttform. Lär ig vr u hittr prouktr tt hnl, nyhtr, grfr, plr olik Orrtypr, övrvk in positionr, liv-hjälp