Datastrukturer och algoritmer
|
|
- Åsa Magnusson
- för 7 år sedan
- Visningar:
Transkript
1 Innehåll Föreläsning 5 Algoritmer Experimentell komplexitetsanalys Kapitel , Kapitel Algoritmer Algoritm Definition: Algoritm är en noggrann plan, en metod för att stegvis utföra något Ordet algoritm härstammar från en man, al- Khwarizmi (latinsk form Algorismus) enligt sidan Hans arbete (början av 800-talet) ligger till grund för modern aritmetik och algebra algebra lär komma från titeln på hans viktigaste verk al- Kitab al-mukhtasar fi hisab al-jabr wál muqabala, Kompendium i ekvationslära Han utarbetade en beräkningsmetod för att lösa ekvationer. Beräkningar gjorda enligt bestämda mönster i flera steg: algoritmer. Krav på algoritmer Bilden är tagen från sidan Olika sätt att beskriva en algoritm Ändlighet Algoritmen måste sluta Bestämdhet Varje steg måste vara entydigt Indata Måste ha noll eller flera indata Utdata Måste ha ett eller flera utdata Genomförbarhet Varje steg i algoritmen måste gå att utföra på ändlig tid Donald Knuth, The Art of Computer Programming (första versionen 1968) Kallas ibland algoritmanalysens fader Naturligt språk - man förklarar problemlösningen med vanlig text med införda variabel- och funktionsnamn. Blockdiagram - man visar en grov struktur av problemlösningen i form av ritade "boxar". Varje box kan vara ett delproblem. Flödesschema/flödesdiagram, strukturdiagram - man ritar algoritmen med olika symboler, som visar när och hur saker skall ske i programmet. Finare indelning än blockdiagram, t.ex. kan varje block beskrivas som flödesschema för ett delproblem. Pseudokod - man skriver en blandning av programmeringsspråk och vanlig text, dvs man har variabler, funktioner, kontrollstrukturer etc
2 Exempelproblem Algoritm naturligt språk Jag ska bjuda på mums mums till kaffet. Hur många förpackningar måste jag köpa? Vi antar följande: Varje förpackning innehåller 4 mums mums Varje person äter i snitt 3 mums mums om de är färska annars äter de bara 2 mums mums i snitt. Detta exempel är inspirerat av korvexemplet på sidan 1. Fråga efter antalet personer; kalla talet för Personer. 2. Fråga om mums mumsen är färska; kalla svaret ärfärska. 3. Om ärfärska är sann 1. Multiplicera Personer med 3 (antalmumsmums) 4. Annars 1. Multiplicera Personer med 2 (antalmumsmums) 5. Dela antalmumsmums med Avrunda svaret uppåt till närmaste heltal; kalla detta tal för. 7. Svara med talet. Algoritm blockdiagram Personer och ärfärska Program Antal mums mums-paket Beräkna antal mums mums Beräkna Dela antal mumsmums med 4 och avrunda uppåt Visa Algoritm flödesdiagram mumsmums = personer * 3 Start personer ärfärska Är ärfärska sann? paket = mumsmums/4 avrunda uppåt mumsmums = personer * 2 Visa Stop Algoritm pseduokod Pseudokod write( antalet personer ) read(personer) write( är mumsmumsen färska? ) read(ärfärska) If ärfärska Then antalmumsmums Personer * 3 Else antalmumsmums Personer * 2 round(antalmumsmums/4) write(paket) Kursen använder pseudokod för att beskriva algoritmer Det finns inget universellt språk utan många dialekter Alla döljer mycket av programspråkens designval, dvs. pseudokoden är programspråksoberoende
3 Pseudokod programkonstruktioner Pseudokod exempel Beslutsstrukturer: if(...)then...[else...] Villkorsloopar: while(...)do... done eller repeat... Until(...) Räkneloopar: for(...)do... done Arrayindexering: A[i] Anrop: function(args)eller object.metod(args) Returnera värden: return value Tilldelning: Jämförelse: = Algorithm arraymax(a,n) input: An array A storing n integers output: The maximum element in A currentmax A[0] for i 1 to n-1 do if currentmax < A[i] then currentmax A[i] done return currentmax Algoritmer mer formellt Beräkningsbarhet i praktiken Algoritmiska problem & beräkningsbarhet En klass av problem Beräkningsbar omm det finns en Turingmaskin som löser problemet Turing maskin Tid och rum är begränsande resurser Ibland finns bara ett fixt utrymme Ibland blir det dyrare ju mer som används Hanterlig Försöker fånga begreppet praktisk beräkningsbarhet Ett problem är hanterligt om o o Man känner till en lösning där resurserna som krävs kan begränsas av polynomfunktioner i uppgiftens storlek (n) log n, n, n,(log n), nlog n, n, n, n Problemet kan lösas på polynomtid Ohanterliga problem Hantera ohanterbarhet Problem som vi (ännu) inte funnit en hanterlig lösning på. n n Komplexiteten kan vara tex 2, n!, n Superpolynomiska: Komplexiteten överstiger varje polynomfunktion P(n) för stora n. Många ohanterliga problem är triviala att förstå och viktiga att lösa! Schemaläggning Handelsresande problemet Heuristik Lösa nästan rätt problem o Förenkling o Tex. schemalägg en lärare i taget Lösa problemet nästan rätt o Approximation o Tex. finna minimum genom att systematiskt söka av ett område med tänkbara lösningar tills skillanden mellan två sökningar är mindre än ett visst värde.
4 NP-kompletta problem En speciell klass av ohanterliga problem som alla är ekvivalenta: Ekvivalenta: Kan transformeras på polynomtid Högst exponentiell kompexitet Saknar bevis för ohanterbarhet Detta innebär att om vi finner lösning på ett enda av de NP-kompletta problemen så kan vi lösa alla andra problem! Schemaläggningsproblemet är ett NP-komplett problem. Hanterbara - polynom 1+n 2 +3*n Beräkningsbar/hanterbar Icke hanterbara - superpolynom (n!, nn, ) Beräkningsbara Alla (matematiska)problem Ej beräkningsbara Hanterligt eller ej... Analys av algoritmer Enligt definitionen är n hanterligt medan n inte är hanterligt. Vad vill man analysera hos en algoritm? Exekveringstid Minnesåtgång Korrekthet Varför analysera algoritmer? Är algoritmen praktiskt körbar? Vi vill ha den snabbaste! o Att implementera o Att köra Litet räkneexempel Exekveringstider - en dator med 1 MIPS, 1*10 6 op/sek Antag att 1 operation tar 1μs och att vi har n = 10 9 element i en lista som ska sorteras Om algoritmen i medel kräver n 2 operationer tar det år att sortera listan! Krävs n*log(n) operationer tar det 30000s 1 arbetsdag. Det spelar inte så stor roll? Datorerna blir ju dubbelt så snabba med jämna mellanrum! n 2 och dubbelt så snabb => år n 2 och 1000 gånger så snabb => 31år N 2 N 5 2 N N N 10 1/ /10 1/ tim. 20 1/ sek. 1 s 3.3 billioner år 50 1/ min år Drygt 10 miljarder μs på en dag 1*10 24 μs sedan Big Bang / tim billioner år / dag
5 Mäta tidsåtgången Exempel Hur ska vi mäta tidsåtgången? Experimentell analys o Implementera algoritmen o Kör programmet med varierande datamängd Storlek Sammansättning o Använd metoder för tidtagning så som System.currentTimeMillis() o Plotta uppmätt data t(ms) n Bästa, värsta & medel Experimentell analys Medel Värsta Bästa Begränsningar med metoden Måste implementera och testa algoritmen Svårt att veta om programmet har stannat eller fast i beräkningarna. T ex. 2 n ; n=100 => billioner år Experimenten kan endast utföras på en begränsad mängd av data, man kan missa viktiga testdata Hårdvaran och mjukvaran måste vara den samma för alla implementationer.
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,
Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Asymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Datastrukturer och algoritmer (Python) Algoritmer och listor
Datastrukturer och algoritmer (Python) Algoritmer och listor 1 Innehåll Algoritmer och pseudokod som ett sätt att beskriva dem. Abstrakta datatypen lista och algoritmmönster för lista. Olika sätt att konstruera
CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008)
CS - Computer science Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) Vad datateknik INTE är: Att studera datorer Att studera hur man skriver datorprogram Att studera hur man använder
Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt
Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Programkonstruktion och Datastrukturer
Programkonstruktion och Datastrukturer VT 2012 Tidskomplexitet Elias Castegren elias.castegren.7381@student.uu.se Problem och algoritmer Ett problem är en uppgift som ska lösas. Beräkna n! givet n>0 Räkna
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH
Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder
Datastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör
Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T
Algoritmer och datastrukturer H I 1 0 2 9 HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Föreläsning 1 Inledande om algoritmer Rekursion Stacken vid rekursion Rekursion iteration Möjliga vägar
Algoritmer och datastrukturer TDA Fredrik Johansson
Algoritmer och datastrukturer TDA143 2015-02- 18 Fredrik Johansson Algoritmer Informell beskrivning E" antal steg som beskriver hur en uppgi5 görs. A set of steps that defines how a task is performed.
COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall
COMPUTABILITY BERÄKNINGSBARHET Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall Den centrala frågan: givet ett problem, kan det ha en algoritmisk lösning?
TIDS- OCH RUMSKOMPLEXITET
TIDS- OCH RUMSKOMPLEXITET Praktiska begränsningar långt innan teoretiska Tids- och rumskomplexitet Dramatiska effekter av skillnader i tidskomplexitet Utbytesförhållande tid och rum Hanterliga problem
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
Fortsättningskurs i programmering F 2. Algoritmer i Programutveckling Hugo Quisbert 20130122. Problemexempel 1
Fortsättningskurs i programmering F 2 Algoritmer i Programutveckling Hugo Quisbert 20130122 1 Exempel 1 Problemexempel 1 En souvenirbutik behöver ett datorprogram som omvandlar ett pris i svenska kronor
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 10 november 2015 Anton Grensjö ADK Övning 8 10 november 2015 1 / 34 Översikt Kursplanering F21: Introduktion till komplexitet
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n
Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet
Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
Datastrukturer. föreläsning 2
Datastrukturer föreläsning 2 1 De som vill ha en labkamrat möts här framme i pausen Övningsgrupper: efternamn som börjar på A-J: EC, Arnar Birgisson K-Ö: ED, Staffan Björnesjö 2 Förra gången Vi jämförde
Datastrukturer D. Föreläsning 2
Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of
Föreläsning 1. Introduktion. Vad är en algoritm?
Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och
Problemlösning och algoritmer
Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Algoritm En algoritm är ett begränsat antal instruktioner/steg
Problemlösning. Planering av program. Konstruktion. Programmeringsmetaforer. Problemlösning. Programmering = Problemlösning
Problemlösning Problemlösning Vad är problemlösning Hur ser ett problem ut? Programmering = Problemlösning Omformulering av ett problem kan i slutändan omsättas i ett program. Ett program består av en,
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering
Viktiga begrepp. Algoritm. Array. Binärkod. Blockprogrammering. Bugg / fel och felsökning. Dataspel. Dator
Viktiga begrepp Den här ordlistan är till för dig som går kursen Om Programmering. Eftersom detta är en grundläggande kurs har vi i vissa fall gjort en del förenklingar. En del begrepp är svåra att förenkla,
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys Tidskomplexitet, Rumskomplexitet
Problemlösning och funktioner Grundkurs i programmering med Python
Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till
Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige
Är varje påstående som kan formuleras matematiskt*) alltid antingen sant eller falskt? *) Inom Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Exempel: 12 = 13 nej, falskt n! >
Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?
Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övningsmästarprovsövning 2 Anton Grensjö grensjo@csc.kth.se 20 november 2017 1 Dagordning 1. Genomgång av uppgiftens lösning 2. Genomgång av bedömningskriterier
Föreläsning 5: Dynamisk programmering
Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall
Föreläsning 9: Talteori
DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2009-11-11 Skribent(er): Ting-Hey Chau, Gustav Larsson, Åke Rosén Föreläsare: Fredrik Niemelä Den här föreläsningen handlar
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 januari 2006 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem som
Komplexitetsklasser och repetition
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 12 Komplexitetsklasser och repetition Uppgifter på komplexitetsklasser co-np-fullständighet Ett diskret tekniskt diagnosproblem
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1
Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens
Algoritmer och datastrukturer TDA143
Algoritmer och datastrukturer TDA143 2017 02 15 Uno Holmer Algoritmer och datastrukturer, TDA143, HT17, UH Algoritm Informell beskrivning: Ett antal steg som beskriver hur en uppgift utförs. Formell beskrivning:
Pseudokod Analys av algoritmer Rekursiva algoritmer
Föreläsning 7 Pseudokod Analys av algoritmer Rekursiva algoritmer För att beskriva algoritmer kommer vi använda oss av en pseudokod (låtsas programspråk) definierad i kursboken Appendix C. Vi går igenom
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 18 november 2015 Anton Grensjö ADK Övning 10 18 november 2015 1 / 20 Översikt Kursplanering Ö9: NP-fullständighetsbevis
Programmering I Tobias Wrigstad fredag, 2009 augusti 28
Programmering I Tobias Wrigstad tobias@dsv.su.se Vad är programmering? Lågnivåspråk och högnivåspråk Kompilering och interpretering Variabler Notation för flödesschema (flow chart) Kontrollstrukturer (conditionals,
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Introduktion till formella metoder Programmeringsmetodik 1. Inledning
Introduktion till formella metoder Programmeringsmetodik 1. Inledning Fokus på imperativa program (ex. C, Java) program betyder härefter ett imperativt program Program bestäms i en abstrakt mening av hur
Tentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
a = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Programmera på riktigt
Programmera på riktigt Hur gör man på högstadiet? Jan Skansholm Vad säger läroplanen för grundskolan? Eleven ska ges möjlighet att utveckla sin förmåga att använda digital teknik, kan använda såväl digitala
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Tommy Färnqvist, IDA, Linköpings universitet. 2 Rekursion i C Implementation av rekursion Svansrekursion En till övning...
Föreläsning 15 Rekursion TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 2 november 2015 Tommy Färnqvist, IDA, Linköpings universitet 15.1 Innehåll
Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet
Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig
Laboration: Whitebox- och blackboxtesting
Tilda11 höstterminen 2011 Laboration: Whitebox- och blackboxtesting Mål med laborationen Du ska lära dig begreppen white-box testing och black-box testing Du ska öva dig på att konstruera testfall Du ska
Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2
Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek
Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod
Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer
Föreläsning 12. Söndra och härska
Föreläsning 12 Söndra och härska Föreläsning 12 Söndra och härska Maximal delsekvens Skyline Closest pair Växel Uppgifter Söndra och härska (Divide and conquer) Vi stötte på dessa algoritmer när vi tittade
Övningsmästarprov 2 + några NP-reduktioner. Algoritmer, datastrukturer och komplexitet
Övningsmästarprov 2 + några NP-reduktioner Algoritmer, datastrukturer och komplexitet Idag Första timmen: övningsmästarprov 2 Andra timmen: NP-reduktioner Uppgiftsbeskrivning Låt oss ta bort kravet på
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner
Introduktion till programmering D0009E Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner
Klassdeklaration. Metoddeklaration. Parameteröverföring
Syntax: Class Declaration Modifier Class Body Basic Class Member Klassdeklaration class Class Member Field Declaration Constructor Declaration Method Declaration Identifier Class Associations Motsvarar
Dagens föreläsning (F15)
Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Algoritmer. Två gränssnitt
Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;
Föreläsning 3-4 Innehåll
Föreläsning 3-4 Innehåll Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer Datavetenskap (LTH) Föreläsning 3-4 HT 2017 1 / 36 Diskutera Vad gör programmet programmet? Föreslå
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas, Malin Källén 20 mars 2016 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av
732G Linköpings universitet 732G11. Johan Jernlås. Översikt. Repetition. Strukturdiagram. Styra. Algoritmer. Val
732G11 Linköpings universitet 2011-01-26 1 2 3 4 Program recept 1 spaghetti = 100; 2 salt = 1; 3 olja = 5; 4 köttbullar = 8; 5 ketchup = 0,5; 6 koka(salt, spaghetti); 7 micra(köttbullar); 8 Om(micron ==
Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska
Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från
Algoritmer och problemlösning
Algoritmer och problemlösning Perspektiv på datateknik/datavetenskap - Breddföreläsning 4 Peter Dalenius petda@idaliuse Institutionen för datavetenskap - Linköpings universitet 2005-11-04 Översikt Introduktion:
Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner
Introduktion till programmering Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner med
Övningsuppgifter #11, Programkonstruktion och datastrukturer
Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller
Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock
Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.
Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten 2010. Programmering: att instruera en maskin att utföra en uppgift, kräver olika språk:
Föreläsning 1 OH: Övergripande information Programmering: att instruera en maskin att utföra en uppgift, kräver olika språk: * maskinspråk = ettor och nollor, kan bara en maskin förstå. * programmeringsspråk
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Kommunikation i visuella programmeringsmiljöer
Matematik Grundskola årskurs 4-6 Modul: Algebra, åk 4-6 Del 7: Kommunikation och programmering i algebraklassrummet Kommunikation i visuella programmeringsmiljöer Constanta Olteanu och Lucian Olteanu,
Introduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Läsanvisningar och uppgifter Algoritm En algoritm är ett begränsat
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Typsystem. Typsystem... Typsystem... Typsystem... 2 *
Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och
Objektorienterad programmering Föreläsning 8. Copyright Mahmud Al Hakim Agenda (halvdag)
Objektorienterad programmering Föreläsning 8 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Objektorienterad programutveckling Algoritmer Algoritmkonstruktionerna Relationer
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 1 Anton Grensjö grensjo@csc.kth.se 14 september 2015 Anton Grensjö ADK Övning 1 14 september 2015 1 / 22 Översikt Kursplanering F1: Introduktion, algoritmanalys
MicroPython Ett textbaserad programmeringsspråk för Micro:bit
MicroPython Ett textbaserad programmeringsspråk för Micro:bit Introduktion till informationsteknologi 1DT051 2018-09-24 karl.marklund@it.uu.se Uppsala universitet Programming, problemlösning och algoritmer
n (log n) Division Analysera skolboksalgoritmen för division (trappdivision). Använd bitkostnad.
Algoritmer och Komplexitet ht 08. Övning 1 Algoritmanalys Ordo Jämför följande par av funktioner med avseende på hur dom växer då n växer. Tala i varje fall om ifall f(n) Θ(g(n)), f(n) O(g(n)) eller f(n)
Typsystem. DA2001 (Föreläsning 23) Datalogi 1 Hösten / 19
Typsystem Typsystem finns i alla programmeringsspråk. Avsikten med typsystem är att kontrollera att uttryck är säkra i den bemärkelsen att innebörden i operanderna är klar och inte är motsägelsefull och
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys, Ordo Sortering, Insertionsort
Dynamisk programmering
DD2354, Algoritmer och komplexitet, 27 Uppgifter till övning 4 Dynamisk programmering Talföljder Givet är två följder av positiva heltal a,a 2,,a n och b,b 2,, b n där alla tal är mindre än n 2 samt ett