Algoritmer och problemlösning
|
|
- Gustav Sandström
- för 8 år sedan
- Visningar:
Transkript
1 Algoritmer och problemlösning Perspektiv på datateknik/datavetenskap - Breddföreläsning 4 Peter Dalenius petda@idaliuse Institutionen för datavetenskap - Linköpings universitet Översikt Introduktion: Vad är en algoritm? (51) Representation: Hur ser en algoritm ut? (52) Problemlösning: Hur kommer man på en algoritm? (53) Exempel (54-55) Analys: Hur vet man att man gjort rätt? (56) Brookshear, JG (2004) Computer Science An Overview, 8th Ed Vad är en algoritm? Formell definition Ställa in klockan på mikrovågsugnen Baka en sockerkaka Bygga en grävskopa i LEGO Beräkna kontrollsiffran i ett personnummer Kontrollera om ett tal är ett primtal eller inte Sortera en uppsättning med namn i bokstavsordning An algorithm is an ordered set of unambiguous, executable steps, that defines a terminating process Beskrivning av hur man gör något Algoritmernas abstrakta natur Flödesdiagram för TV-kväll Algoritm START SLÅ PÅ TV PÅ KANAL 1 BRA? Ja TITTA EN STUND Nej F = 9C/ (defun f (c) (+ 32 (* c 9/5))) ÖKA KANAL BRUS? Ja STÄNG AV TV Multiplicera grader Celsius med 9/5 och addera 32 Nej SLUT 1
2 Pseudokod för TV-kväll Pseudokod för TV-kväll (2) Slå på TV:n på kanal 1 Så länge det inte brusar Så länge programmet är intressant Titta en stund Byt till högre kanal Slå av TV:n switch(on); while isshowing() while isfun() watch(10); channel channel + 1; switch(off); Konsten att lösa problem Problemlösning 1 Förstå problemet! 2 Ta fram en algoritm för att lösa problemet! 3 Implementera algoritmen i ett program! 4 Utvärdera programmet och kontrollera om det är korrekt samt om det kan återanvändas för att lösa andra problem! Top-down och bottom-up Få in en fot, dvs börja på ett lätt ställe Jämför med liknande lösta problem Stegvis förfining Polya, George (1945) How to solve it Några enkla problem Vad är ? 240 Exempel Tre teknologer på olika program tycker om glass Vad heter de, vad pluggar de och vilken favoritglass har de? Använd nedanstående ledtrådar 3x + 5 = 45-2x Definiera en funktion som summerar alla tal i en lista! x = 8 (defun summera (lista) ) 1 Pelle, som tycker bäst om 88:an, pluggar inte på D 2 Henrik Flod bodde i Finspång innan han började plugga 3 Studenten från Y-programmet, som för övrigt tycker bäst om Solero, heter inte Tornving 4 Det är i alla fall inte Carolina som tycker bäst om Magnum 2
3 Algoritm för att sy ett lapptäcke Algoritm 1 Vi ska sy ett lapptäcke med 64 rutor i fyra färger Hur gör vi det så rationellt som möjligt? 1 Sy ihop kvadraterna i en rad med varandra 2 Sy ihop de färdiga raderna med varandra Algoritm 2 klipp Algoritm 3 klipp 8 remsor 1 Konstruera fyra kvadrater av fyra remsor 2 Skär isär dem till remsor på andra ledden 3 Sy ihop remsorna 1 Sy ihop 8 remsor som är 8 kvadrater breda 2 Sy ihop remsorna till ett rör 3 Skär röret 7 gånger 4 Sprätta en söm i varje cirkel, men på olika ställen 5 Sy ihop de 8 olika remsorna Sökning i telefonkatalogen Sekvensiell sökning Andersson, Anders Bertilsson, Bertil Carlsson, Cecilia Eriksson, Erik Fredriksson, Fredrik Hansson, Hans Linghed, Louise Malmström, Martin Svensson, Sara Teknolog, Ture Uv, Urban Valfridsson, Vilhelm Åkerström, Åke p 1 upprepa om p > listans längd eller målvärde < namn på position p sökning misslyckad om målvärde = namn på position p sökning lyckad p p+1 3
4 Sökning i telefonkatalogen (2) Binärsökning Andersson, Anders Bertilsson, Bertil Carlsson, Cecilia Eriksson, Erik Fredriksson, Fredrik Hansson, Hans Linghed, Louise Malmström, Martin Svensson, Sara Teknolog, Ture Uv, Urban Valfridsson, Vilhelm Åkerström, Åke Svensson, Sara Teknolog, Ture Uv, Urban Valfridsson, Vilhelm Åkerström, Åke om listan är tom så sökning misslyckad mittvärde <- mittersta värdet i listan om målvärde = mittvärde sökning lyckad om målvärde < mittvärde sök i första delen av listan sök i andra delen av listan Binärsökning (2) Komplexitet funktion Sök(Lista[1n], Målvärde) om Tom(Lista) så returnera Finns ej Mittvärde <- Lista[n/2] om Målvärde = Mittvärde returnera aktuellt telefonnummer om Målvärde < Mittvärde Sök(Lista[1n/2-1], Målvärde) Sök(Lista[n/2+1n], Målvärde) Tidskomplexitet Hur mycket längre tid tar algoritmen om vi ger den dubbelt så stora indata? Rumskomplexitet Hur mycket mer extra minne kräver algoritmen om vi ger den dubbelt så stora indata? Komplexitet mäts ungefärligt O(1) O(lg n) O(n) O(n 2 ) Tidskomplexitet för lapptäcken Tidskomplexitet för sökalgoritmer antal sömmar algoritm 1: n algoritm 3: 3n antal lappar per sida antal jämförelser sekvensiell: n/ binär: lg n listans längd 4
5 Framtida kurser TDDB56 Algoritmer och optimering (D) TDDB57 Datastrukturer och algoritmer (C) TDDA32 Konstruktion och analys av algoritmer TDDB41 Komplexitetsanalys 5
Problemlösning. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 10. Peter Dalenius Institutionen för datavetenskap 2014-10-14
Problemlösning TDDD73 Funktionell och imperativ programmering i Python Föreläsning 10 Peter Dalenius Institutionen för datavetenskap 2014-10-14 Översikt Problemlösningsprocessen Algoritmer Två strategier:
Algoritmer och datastrukturer TDA Fredrik Johansson
Algoritmer och datastrukturer TDA143 2015-02- 18 Fredrik Johansson Algoritmer Informell beskrivning E" antal steg som beskriver hur en uppgi5 görs. A set of steps that defines how a task is performed.
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Innehåll. Mina målsättningar. Vad krävs för att nå dit? Obligatoriska uppgifter. Websajten. Datastrukturer och algoritmer
Innehåll Datastrukturer och algoritmer Föreläsning 1! Introduktion och begrepp Kurspresentation! - Målsättning! - Kursutvärdering! - Upplägg! - Översikt! Viktiga begrepp "1 "2 Mina målsättningar Alla ska
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Programmering = modellering
Programmering = modellering Ett datorprogram är en modell av en verklig eller tänkt värld. Ofta är det komplexa system som skall modelleras I objektorienterad programmering består denna värld av ett antal
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2012-01-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 10 januari
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering
2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:
Inledande programmering med C# (1DV402) Introduktion till programmering
Introduktion till programmering Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt
Nätverksteknik A - Introduktion till Routing
Föreläsning 10 - Dynamisk Routing Nätverksteknik A - Introduktion till Routing Lennart Franked Information och Kommunikationssystem (IKS) Mittuniversitetet 2014-12-19 Lennart Franked (MIUN IKS) Nätverksteknik
Introduktion till programmering
Introduktion till programmering Vad är programmering? Vad gör en dator? Vad är ett datorprogram? 1 (9) Vad är programmering? För att bestämma en cirkels area måste du: 1. Dividera diametern 5 med 2. 2.
Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00
1 ( 7) Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier (ej anteckningar,
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13
Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
Föreläsning 1. Introduktion. Vad är en algoritm?
Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och
Datastrukturer och algoritmer
Innehåll Föreläsning 5 Algoritmer Experimentell komplexitetsanalys Kapitel 2.1-2.2, Kapitel 12.1-12.4 Algoritmer Algoritm Definition: Algoritm är en noggrann plan, en metod för att stegvis utföra något
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter
Introduktion till datateknik och datavetenskap
Introduktion till datateknik och datavetenskap Daniel Bosk 1 och Jimmy Åhlander Avdelningen för informations- och kommunikationssytem, Mittuniversitetet, SE-851 70 Sundsvall. intro.tex 1974 2014-09-09
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys Tidskomplexitet, Rumskomplexitet
Problemlösning och algoritmer
Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition
3. Toppkvinnor på hög Låt lådan och de två kvinnornas famnar utgöra stackarna L, K1 respektive K2. Från början finns alla kort i L.
KTH, Nada, Erik Forslin 2D1343, LÖSNING TILL TENTAMEN I DATALOGI FÖR ELEKTRO Lördagen den 8 mars 2003 kl 14 19 Maxpoäng tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma.
samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV
O, P, N och NP samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV DSV En enkel algoritm Ponera att du spelar poker och har fått korten till höger. Eftersom det bara rör sig om fem
Datastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad
1 Datatyper Tobias Wrigstad Det finns flera olika typer av (slags) data Olika datatyper har olika egenskaper. T.ex. är ett personnummer inte ett tal. (Den sista siffran skall stämma enligt den s.k. Luhnalgoritmen
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00
1 ( 7) Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Datastrukturer och algoritmer. Föreläsning 4 Test, Stack och Kö
Datastrukturer och algoritmer Föreläsning 4 Test, Stack och Kö 1 Innehåll Test Datatyperna Stack och kö Specifikation och Gränssnitt Konstruktion Tillämpning 2 Testa VIKTIGT! Test går att göra under många
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Hur kan programmering komma in i andra ämnen, som matematik och teknik?
Hur kan programmering komma in i andra ämnen, som matematik och teknik? Fredrik Heintz Institutionen för Datavetenskap Linköpings universitet fredrik.heintz@liu.se @FredrikHeintz < < Weak human + machine
Problemlösning. Planering av program. Konstruktion. Programmeringsmetaforer. Problemlösning. Programmering = Problemlösning
Problemlösning Problemlösning Vad är problemlösning Hur ser ett problem ut? Programmering = Problemlösning Omformulering av ett problem kan i slutändan omsättas i ett program. Ett program består av en,
Föreläsning 9: Talteori
DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2009-11-11 Skribent(er): Ting-Hey Chau, Gustav Larsson, Åke Rosén Föreläsare: Fredrik Niemelä Den här föreläsningen handlar
Komplexitetsklasser och repetition
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 12 Komplexitetsklasser och repetition Uppgifter på komplexitetsklasser co-np-fullständighet Ett diskret tekniskt diagnosproblem
TDDC74 Lab 02 Listor, sammansatta strukturer
TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att
I en matchning ligger varje hörn i högst en kant. I en stig ligger varje hörn i högst två kanter.
26.2-9 Antag att rätt lösning är att dela upp V i V 1 och V 2 (V 1 V 2 =, V 1 V 2 = V ). Antal kanter vi måste skära är då det minsta snittet mellan v 1 och v 2, där v 1 är ett godtyckligt hörn i V 1 och
EDAA01 Programmeringsteknik - fördjupningskurs
EDAA01 Programmeringsteknik - fördjupningskurs Läsperiod lp 1+2 (Ges även lp 3) 7.5 hp anna.axelsson@cs.lth.se sandra.nilsson@cs.lth.se http://cs.lth.se/edaa01ht Förkunskapskrav: Godkänd på obligatoriska
Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1
Inlämningsuppgift : Finn 2D1418 Språkteknologi Christoffer Sabel E-post: csabel@kth.se 1 1. Inledning...3 2. Teori...3 2.1 Termdokumentmatrisen...3 2.2 Finn...4 3. Implementation...4 3.1 Databasen...4
Problemlösning. Veckodagsproblemet Gissa talet Siffersumman
Problemlösning Veckodagsproblemet Gissa talet Siffersumman Veckodagsproblemet Vi vill skriva ett program som kan berätta för oss vad det är för veckodag om x dagar. Arbetsgång Förstå problemet Strukturera
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni
Tentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Grundläggande Datalogi
s delar Grundläggande Datalogi s delar s delar s delar Dataabstraktion Rekursion Algoritmanalys s delar Sortering Trädstrukturer Grafalgoritmer Optimering Stavning Strängmatchning Datakompression Versionshantering
Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1
Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Tentamen 9 dec 2014 Tillåtna hjälpmedel: Revised 6 Report on the Algorithmic Language Scheme och Tre olika s.k. Cheat Sheets för Scheme Sex olika s.k. Cheat Sheets för Python Tänk
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print
Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor på boken Lunell: Datalogi-begreppen och tekniken Obs! Andra frågor än dessa kan komma på tentan! 1. Konvertera talet 186 till
Datastrukturer och algoritmer
Föreläsning 1 Kurspresentation Inblandade personer Målsättning Förkunskaper Kursutvärdering Upplägg Översikt Föreläsning 1 Viktiga begrepp Innehåll Anders Broberg, Ulrika Hägglund, Lena Kallin Westin,
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Grundläggande datavetenskap 4p
Grundläggande datavetenskap 4p Stefan.Pettersson@mh.se http://www.itm.mh.se/~stepet Kursinformation Planering Läsanvisningar Föreläsningsbilder Övningsuppgifter Laborationer 2004-11-04 IT och Medier 1
public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } }
Rekursion 25 7 Rekursion Tema: Rekursiva algoritmer. Litteratur: Avsnitt 5.1 5.5 (7.1 7.5 i gamla upplagan) samt i bilderna från föreläsning 6. U 59. Man kan definiera potensfunktionen x n (n heltal 0)
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning ADT Map/Dictionary, hashtabeller TDDC9,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 7 september 208 Magnus Nielsen, IDA, Linköpings universitet. ADT Map/Dictionary.
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Föreläsning 8 Innehåll
Föreläsning 8 Innehåll Orientering om samarbete om Eclipse-projekt med git Orientering om konstruktion av användargränssnitt i Android Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering
Tentamen i. TDDC67 Funktionell programmering och Lisp
1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering
Övningsmästarprov 2 + några NP-reduktioner. Algoritmer, datastrukturer och komplexitet
Övningsmästarprov 2 + några NP-reduktioner Algoritmer, datastrukturer och komplexitet Idag Första timmen: övningsmästarprov 2 Andra timmen: NP-reduktioner Uppgiftsbeskrivning Låt oss ta bort kravet på
Problemlösning och funktioner Grundkurs i programmering med Python
Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till
Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg II Del 1: Om programmering Aktiviteter Del 1 Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM Ni
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Kursplan. System och programkonstruktion. Systems and Software Development
Matematiska och systemtekniska institutionen () Kursplan Kurskod IVB743 Dnr 00/01:7 Beslutsdatum 2000-08-25 Kursens benämning Engelsk benämning Ämne System och programkonstruktion Systems and Software
Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv.
Strömmar (streams) De sista dagarna objekt med tillstånd modellerades som beräkningsobjekt med tillstånd. Isådana modeller är tiden modelerad (implicit) som en sekvens av tillstånd. För att kunna modellera
Programmering II (ID1019) :00-11:00
ID1019 Johan Montelius Programmering II (ID1019) 2015-06-11 08:00-11:00 Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten. Svaren
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 1 Anton Grensjö grensjo@csc.kth.se 14 september 2015 Anton Grensjö ADK Övning 1 14 september 2015 1 / 22 Översikt Kursplanering F1: Introduktion, algoritmanalys
Värmedistribution i plåt
Sid 1 (6) Värmedistribution i plåt Introduktion Om vi med konstant temperatur värmer kanterna på en jämntjock plåt så kommer värmen att sprida sig och temperaturen i plåten så småningom stabilisera sig.
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,
Problemlösning. Veckodagsproblemet Gissa talet Siffersumman
Problemlösning Veckodagsproblemet Gissa talet Siffersumman Veckodagsproblemet Vi vill skriva ett program som kan berätta för oss vad det är för veckodag om x dagar. Arbetsgång Förstå problemet Strukturera
TDP Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
Algoritmer. Två gränssnitt
Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;
Asymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 4 Anton Grensjö grensjo@csc.kth.se 25 september 215 Anton Grensjö ADK Övning 4 25 september 215 1 / 28 Översikt Kursplanering F9: Dynamisk programmering
Teoretisk del. Facit Tentamen TDDC (6)
Facit Tentamen TDDC30 2013-06-05 1 (6) Teoretisk del 1. (3p) "Snabba frågor" Alla svar motiveras väl. a) Vad skiljer en statisk metod från en icke-statisk? (0.5p) Svar:En statisk metod är associerad till
Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock
Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.
Problemlösning, att ställa rätt frågor, hur man kan beskriva algoritmer och hur man skriver pseudokod.
Problemlösning, att ställa rätt frågor, hur man kan beskriva algoritmer och hur man skriver pseudokod. 1 Kommer det här på tentan? Först skall vi repetera och kanske förtydliga problemlösningsprocessen.
Facit Tentamen TDDC (7)
Facit Tentamen TDDC30 2014-03-18 1 (7) Teoretisk del 1. (3p) "Snabba frågor" a) Varför kan man tänkas vilja dölja metoder och variabler med private? (0.5p) Svar:För att skydda interna variabler från ändringar
TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer
Tentamen i.. TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2012-12-21 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 10 november 2015 Anton Grensjö ADK Övning 8 10 november 2015 1 / 34 Översikt Kursplanering F21: Introduktion till komplexitet
SF2715 Tillämpad kombinatorik, 6hp
SF75 Tillämpad kombinatorik, 6hp Fortsättningskurs i matematik 7 mars 7 maj 009 Kursledare: Jakob Jonsson Upplägg 6 hp = p enligt gamla systemet 8 dubbeltimmar med teori och problemlösning Kursbok och
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Datastrukturer och algoritmer. Innehåll. Tabell. Tabell - exempel. Gränsyta till Tabell. Tabell. Modell. Hashtabell Relation, lexikon.
Datastrukturer och algoritmer Föreläsning 7 Tabell, hashtabell Relation & lexikon Innehåll Tabell Tabell Hashtabell Relation, lexikon Modell Uppslagsbok Organisation Ändlig avbildning av argument på värden
Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.
Tentamen Programmeringsteknik II 2014-0-27 Skrivtid: 0800 100 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg
Algoritmer och datastrukturer TDA143
Algoritmer och datastrukturer TDA143 2017 02 15 Uno Holmer Algoritmer och datastrukturer, TDA143, HT17, UH Algoritm Informell beskrivning: Ett antal steg som beskriver hur en uppgift utförs. Formell beskrivning:
Programmering II (ID1019) :00-17:00
ID1019 Johan Montelius Programmering II (ID1019) 2014-03-10 14:00-17:00 Förnamn: Efternamn: Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.