PRISINDEX TEORI. Kursföreläsningar inom Ekonomisk statistik vid SU. Martin Ribe, SCB. Oktober 2009
|
|
- Johan Lindqvist
- för 8 år sedan
- Visningar:
Transkript
1 PRSNDEX TEOR Kursföreläsgar om Ekoomsk statstk vd SU Mart Rbe, SCB Oktober 2009
2 Prsdex med fast korg Varabler kvattet (volym) rs Objekt och tder rodukt (vara/tjäst frå vsst företag) 0 Baserode Aktuell erod M. Rbe, SCB,
3 Prsdex med fast korg , Exemel M. Rbe, SCB,
4 Prs- och volymdex Prsdex Volymdex Paasche Laseyres Paasche Laseyres M. Rbe, SCB,
5 Sammahage Laseyres Paasche Totalvärde(0) Totalvärde() Paasche Laseyres Värdedex Prsdex Volymdex Totalvärde(0) Totalvärde() M. Rbe, SCB,
6 Laseyres ty (Lowe-dex) 2007,arl 2006,dec 2005; 2005; 2007,arl; 2006,dec; Exemel: Årsläke HKP (Harmoserat dex för kosumetrser) Prsbaserod dec 2006 Vktbaserod hela 2005 M. Rbe, SCB,
7 Laseyres å aa form ufyller, med vkter k k k k k k w w w M. Rbe, SCB,
8 Problem med fasta korgar Laseyres > Paasches rsdex Gäller ästa alltd beror å ädrat kömöster Laseyres-korge blr aktuell y rsbld gör adra val mera rsvärda Produkter med stora rsökgar substtueras bort av köara Ex.: Dyrare bes mskat blade M. Rbe, SCB,
9 KP som ex. å kedjedex 2007,arl dec dec 98dec 982,dec 98dec ,dec 2002,dec ,dec ,arl 2005 Gammal lågtdsläk M. Rbe, SCB, Secalläk Ny år-tllår-läk Ny år-tllmåad-läk
10 Några valga rsdex KP CP Kosumetrsdex Cosumer Prce dex HKP Harmoserat dex för HCP kosumetrser NP Nettorsdex KPX Uderlggade flato M. Rbe, SCB,
11 Några valga rsdex 2 PP Producetrsdex (ed. varor) TP Tjästersdex SPP Producer Prce dex for Servces BP Byggadsrsdex Fastghetsrsdex E84 Etrereaddex (Faktorrsdex byggbrasche) M. Rbe, SCB,
12 Klassfcergsstadarder Tll edbruta dex COCOP Classfcato of dvdual Cosumto by Purose KP m.m. SPN Stadard för svesk roduktdelg efter ärgsgre PP, TP SN / NACE Svesk ärggresdelg / Nomeclature statstue des Actvtés écoomues das la Commuauté Euroéee M. Rbe, SCB,
13 Klassfcergsvåer 00 KP totalt 0 Lvsmedel och alkoholfra drycker 0. Lvsmedel 0..8 Sötsaker och glass 89 Glass Glassmärke X, glassty Y M. Rbe, SCB,
14 KP-korge 2008
15 Prsdex roducet- och mortled (PP) PP Producetrsdex TP dex för hemsk tllgåg EXP Exortrsdex MP mortrsdex HMP Hemmamarkadsrsdex PP TP EXP MP HMP
16 Faktska rser: KP KP mäter: Prset å rslae tll kude Efter ev. rea-edsättg Efter avdrag av geerella rabatter Me före avdrag av dvduella rabatter, troge kud -förmåer m.m. klusve moms och uktskatter Efter avdrag av subvetoer M. Rbe, SCB,
17 Faktska rser: PP, TP PP, TP mäter: Fakturerat rs trasakto (dealt) Efter avdrag av rabatter Exklusve skatter, moms Lstrs helst te, blad som roxy Ex. chargeout rate (tmtaxa) för kosulttjäster TP ej deal me raktskt möjlg lösg M. Rbe, SCB,
18 M. Rbe, SCB, Olka dex syfte mål KP Huvudsyfte är komesato Mål är col HKP Huvudsyfte om egoltk Mål är Laseyres-ty (?) TP Huvudsyfte är deflaterg dealt mål är Paasche Deflaterg med Paaschersdex ger volymdexserer baserodes rser Me tag Laseyres raktke
19 M. Rbe, SCB, Sat levadskostadsdex Cost-Of-Lvg dex (col) avser oförädrad levadsstadard deal lösg: Koüs-dex jämför två olka korgar Båda korgara ska ge samma ytta (utlty), tll lägsta möjlga kostad Substtutoer förädrar korge Praktsk lösg: E fast korg som komromssar Ger dex som aroxmerar col
20 Mål och tllförltlghet för KP Målet för KP är col Beräkge bygger å lämlg fast korg De statstska tllförltlghete: Hur ära beräkge träffar målet M. Rbe, SCB,
21 Teor för col Föreklat atagade: kosumet Kosumete maxmerar vd varje tdukt s ytta om gve kostadsram Teoretsk yttofukto U(,, G ) max! dex ska vsa kostadsutvecklge för att uå oförädrad ytta å gysammaste sätt M. Rbe, SCB,
22
23
24 M. Rbe, SCB, Suerlatva dex Fastkorgsdex som som stämmer med kostatyttodex uder vssa vllkor Exakt dex stämmer med kostatyttodex för e vss yttofukto U Suerlatvt dex är exakt för e flexbel klass av yttofuktoer (Erw Dewerts teor) Ex. Fsher-, Walsh-, Törvst-dex
25 Fshers deala dex Laseyres Paasche Varat: Walsh-dex Symmetr mella 0 och M. Rbe, SCB,
26 KP:s Walsh-läk över helår P P Q Q Q Q g W g ; g där W g g' U 2004 g U 2004 g' U U 2005 g 2005 g' ; g ; g ' M. Rbe, SCB,
27 Årsläkar alteratva beräkgar ltx Walsh År Laseres Paasche dec arox ,483 04,4 03,9 04, ,77 02,006 02,29 02, ,470 02,94 02,68 02, , ,844 99,555 99, ,524 02,479 02,658 02, , ,68 02,24 Medelvärde
28 Årsläkar alteratva beräkgar 2 Walsh Walsh Edge- Tör- År arox. alt. worth vst ,32 04,32 04,36 04, ,088 02,089 02,093 02, ,329 02,329 02,334 02, ,989 99,988 99,988 99, ,505 02,504 02,502 02, ,24 02,23 02,8 02,27 Medelvärde
29 Aggregergsvåer/-steg KP som exemel Hovägg tll läkar Delvs vägd aggregerg Totalvå NR-ädamål (Coco-klass) KP-roduktgru (varukod) Elemetäraggregat M. Rbe, SCB,
30 Avslutade Laseyres-läk 2007, ja Q 2005 W ' P Q P 2007, ja 2005 g g 2007, ja 2005; g Uder 2007 vägs med 2005 års kosumto. Mskat sabbhetskrav å vktera Tllförltlgare uderlag, smdgare arbetsrocess M. Rbe, SCB,
31 Produktgrusvsa deldex 2005 ; 2004 g 2004,dec 2003,dec; g 2 2 m 2 2 m 2004, m 2003,dec; g 2005, m 2004,dec; g Omvadlar decemberbas tll årsbas 2007, ja 2005; g ,dec 2004,dec; g , m 2004,dec; g m 2006,dec 2005,dec; g 2007, ja 2006,dec; g M. Rbe, SCB,
32 Nya rodukter tas geast Behadlg av gru g som är y år 2007: 2007, ja 2005; g ,dec 2004,dec; g , m 2004,dec; g m 2006,dec 2005,dec; g muterad tdgare år 2007, ja 2006,dec; g Prsmätt 2007 M. Rbe, SCB,
33 New dex costructo used for CP from 2005 Prevous costructo before 2005: Lower level: RA-formula Uer level: Udated basket +Laseyres tye Aual chag: By December New costructo from 2005: Lower level: Geometrc mea Uer level: Walsh + Laseyres Aual chag: By full year M. Rbe, SCB,
34 Ma CP features from 2005 Aually chaed dex Chag over full year ot December Suerlatve dex for revous lks Laseyres tye dex for fal lk Jevos dex at lowest levels Prces followed from December CP seres wth cotued flato rate comuted as CP chage M. Rbe, SCB,
35 Förädrgstal KP jauar 2-må: , ja , ja D:o alt.: 2008, , 2006 ja ja 00 -må: , ja ,dec M. Rbe, SCB, D:o alt.: 2008, ja ,dec
36 Comarso of methods dex Chag method dex formula HCP Aual over December Laseyres tye Swedsh CP Aual over full year Suerlatve: Walsh US Chaed CP Mothly Suerlatve: Törvst M. Rbe, SCB,
37 Elemetäraggregat 0 Vkter fs å hög aggregergsvå Totaldex beräkas raktke geom att alla olka deldex vktas ho Elemetäraggregat är deldex å lägsta vå där sakas regel vkter dexformler uta behövs M. Rbe, SCB,
38 Elemetäraggregat 0, 0, Kvot av medelrser [Dutot] 0, Medelvärde av rskvoter [Carl] Ej bra bas! M. Rbe, SCB,
39 Elemetäraggregat 2 Geometrskt medelvärde [Jevos] - Klarar dsarata rsvåer - Beaktar delvs substtuto, 0 /, 0 / / M. Rbe, SCB,
40 Elemetäraggregat 3 Vktat geometrskt medelvärde - Vktat med värde (omsättg) V V V V, 0 /, 0 l ex V M. Rbe, SCB,
41 Urvalsosäkerhete N N N N 2, 0 ) Medelfel( σ [ (deft)] (deft) M. Rbe, SCB,
42 Prevous soluto y, m y 2 k k y, m k y 2 k /( /( y 2 k y 2 k RA-formula used at lower level before y, m k ) y, m k ) Performs very smlarly to the Jevos dex (roved mathematcally) M. Rbe, SCB,
43 Jevos dex combed wth low-level weghts d d k k y m k y m y d y / Dec; ;,,,Dec; /, ) log ex( ) ( ) ( ) (, Dec; ) (, Dec;, Dec; g D d d g D d m y d y d w g D d m y d y m y g y w w d M. Rbe, SCB,
44 Features of the Jevos dex Not dsturbed by sread rce level Accouts for cosumer substtuto to some extet sutable for Cost-Of- Lvg dex (col) dex sestve to EA level choce Breaks dow for zero rces Secal fx reured M. Rbe, SCB,
45 dex by EA sze Coco 0 December ,2 06,0 05,8 05,6 05,4 05,2 M. Rbe, SCB, ,
46 Theoretcal effects (by Dalé) Math. exectato of GM elemetary dex falls below true mea μ by the amout: σ 2 2 μ σ 2 2 μ Effect of samle sze M. Rbe, SCB, Effect of uverse varace σ 2 Assumed substtuto ga of cosumers
47 M. Rbe, SCB, Fdgs o EA level Emrcal ad theoretcal effects of EA level o dex agree farly well The ma effect s due to larger varace wder subsets of the uverse Larger assumed substtuto gas of cosumers Oly a much smaller effect s due to samle sze as such So EA level matters cocetually
48 Axomatsk asats för dex dex fk P av rser & volymer, td 0 & Exemel å axom (test): P > kotuerlg fukto dettetstest (oförädrade rser) Proortoaltet aktuella rser varas uder ro. volymförädrgar
49 Axomatsk asats för dex 2 varas måtteheter för volymer Tdsreversergstest Volymsymmetrtest Mootoctetstest
50 Två urvalsdmesoer Produkter/tjäster/kategorer Företag Produkterbjudade E vss rodukt e vss butk (motsv.) M. Rbe, SCB,
TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Något om beskrivande statistik
Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att
Prisuppdateringar på elementär indexnivå - jämförelser mot ett superlativt index
PM tll Nämde för KPI Sammaträde r 3 ES/PR 2017-10-25 Olva Ståhl och Ulf Jostad Prsuppdatergar på elemetär dexvå - jämförelser mot ett superlatvt dex För formato Idex på elemetär vå KPI eräkas de flesta
Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04
Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830
Korrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Orderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
F15 ENKEL LINJÄR REGRESSION (NCT )
Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Sensorer, effektorer och fysik. Analys av mätdata
Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är
Föreläsningsanteckningar till Linjär Regression
Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter
Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta
Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal
D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
Orderkvantiteter i kanbansystem
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre
Fyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
Sensorer och elektronik. Analys av mätdata
Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet
STOCKHOLMS UNIVERSITET
STOCKHOLMS UNIVERSITET Natoalekoomska sttutoe Secalarbete, NE 400, 0 oäg 003-0-5 Ka EUs ya gruudatag för motorfordosbrasce förvätas leda tll ett samällsekoomskt otmalt atal återförsälare av e tllverkares
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Specialfall inom produktionsplanering: Avslutning Planerings- Le 8-9: Specialfall (produktval, kopplade lager, cyklisk planering, mm) system
Föreläsg Specalfall om produktosplaerg: Produktvalsplaerg, cyklsk plaerg, alteratva partformgsmetoder Avslutg Plaergssystem Fast posto Fö 6a: Projektplaerg (CPM, PERT, mm) Le 3: Projektplaerg (CPM/ PERT,
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin
Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser
Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Variansberäkningar KPI
STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter
Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x
Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de
Linjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex.
Ljära ekvatossystem Ljär Algebra obekata & ekvatoer a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b Ljära ekvatossystem där A -matrs och b -vektor Vktga
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)
Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera
Lösning till TENTAMEN
Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros
Kan asymmetriska prisindex approximera superlativa? - en studie av prisindex i producent- och importled.
INSTITUTIONEN FÖR INFORMATIONSVETENSKAP Ehee för Sask Uppsala Uverse Uppsas C Vårerme 25 Förfaare: Da Hjörered Haa Holm Hadledare: Joha Lyhage (UU) Mas Haglud (SCB) Ka asymmerska prsdex approxmera superlava?
Förbättrad KPI-konstruktion från januari 2005: Teknisk beskrivning
STATSTSKA CENTRALBYRÅN -05-05 (9) Ekonomsk statstk, rser M Rbe Förbättrad K-konstrukton från januar : Teknsk beskrvnng Från januar kommer konsumentprsndex (K) att beräknas med förbättrad metodk Samtdgt
Bilaga 1 Formelsamling
1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Beteckningar för områdesreserveringar: T/kem Landskapsplanering
kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12
F9 Hypotesprövning. Statistikens grunder 2 dagtid. p-värden. Övning 1 från F8
01-10-5 F9 Hypotesprövg Statstkes gruder dagtd HT 01 Behöver komma håg alla formler? Ne, kolla formelbladet Me vlka som behövs eller te beror på stuatoe Det som ska läras är är behöver Z eller T och hur
Mening med ditt liv G/H. o n G/H
=132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s
F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i
L L L L V Hm l är blek VSpel man n är HårgaLåt L L L mar nat t, n g matt, L Text: Carl Peter Wckström Sats: Robert Sund (.2) L L # Ljus L nans vat t sg be satt L # Hm l är blek Spel man L n L är V mar
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?
Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som
Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier
. Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa
Repetition DMI, m.m. Några begrepp. egenskap d. egenskap1
Repetto DMI, m.m. I. ermolog och Grudproblem II. Ljär algebra III. Optmerg IV. Saolkhetslära V. Parameterestmerg Några begrepp Möstervektor (egeskapsvektor/data) lsta med umerska värde som beskrver möstret.
EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.
Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)
STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Arborelius, Olof Per Ulrik. Olof Arborelius. : Minnesutställning anordnad af Svenska konstnärernas förening Stockholm 1916.
Arborelus, Olof Per Ulrk Olof Arborelus. : Mnnesutställnng anordnad af Svenska konstnärernas förenng 1916. Stockholm 1916. EOD Mljoner böcker bara en knapptrycknng bort. I mer än 10 europeska länder! Tack
Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt
Eff E ö fö by y y fö f! I ä ö ö ff. y ö pp fö ff by. D f p p f ä ä y b. H by b ä f f. G ö p b p ö fö. O ä by ff b p, ö f b y ä. I by f fö bpp ( * x). O ä ä p by äp ä by f f by ff,. L, C 154. I: L Pb Ey
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.
1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.
Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.
Blåsen nu alla (epistel nr 25)
lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas
Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt
Eff E ö fö by y y fö f! L, C 154. I: L Gfö ö ö f ö. D f f ff 150. 21 ö bä fö f äföb. F b f bä f p: p://b./ff 2 3 T ä b f bö! F 1. Jäfö ä p ä! 5. ä ä 4. 3. Uy 2. M b 1. M äb, Ry 161. F: 4 5 . F 2. T y 50
Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl
Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl. 8.5-3.5 Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader
Välkommen in i konfirmandens egen bibel!
L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
Dagordning. Pågående planering Information om kommunalt VA Hur påverkar VA utbyggnaden fastighetsägaren? Information om avgifter mm Frågor
Daordi Pååede plaeri Iformatio om kommualt VA Hur påverkar VA utbyade fastihetsäare? Iformatio om avifter mm Fråor Pååede plaeri yv ä V ä yv sb ä l v ä me sb y lv Ka a d ö T3 by rs kv ä E ä rsb å e l v
0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov
-ee Le hora om -ee ee ude -e "ude," peudom om aväd av Wllam Goe (bld) Jobbade på Gue brggere Dubl börja av 9-ale allmä beecka alla e om aväder - fördelge om -e uwe.mezel@mah.uu.e Defo för f r -fördelge
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
Motion till LO-kongressen 2012 Allmän arbetsförsäkring
Motion till LO-kongressen 2012 Allmän arbetsförsäkring I social d e m o k r a t i s k a partie ts Råds la g o m jobb i börja n av 2008 för d e jag tillsa m m a n s me d tre ka m r a t e r fra m idé n o
Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006
M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä
Bertrands postulat. Kjell Elfström
F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.
Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
Bröderna fara väl vilse ibland (epistel nr 35)
Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me
IAB Sverige Juni 2017
+ IAB Sverige Jui 2017 Realtidsstudie med sveska Mediebyråer E realtidsstudie av Native Advertisig i Sverige IAB Sverige har tillfrågat sveska mediebyråer om Native Advertisig. + Vad har vi gjort? IAB
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
MULTIVAC kundportal din dörr till MULTIVAC-världen
MULTIVAC kundportal dn dörr tll MULTIVAC-världen 2 Innehåll MULTIVAC kundportal Inlednng Åtkomst dygnet runt Dna uppgfter Enkel och ntutv Informatv och aktuell Dna Fördelar Dn Regstrerng 5 6 9 10 11 12
Riktlinjer för avgifter och ersättningar till kommunen vid insatser enligt LSS
Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Beslutad av kommunfullmäktge 2013-03-27, 74 Rktlnjer för avgfter och ersättnngar tll kommunen vd nsatser enlgt LSS Fnspångs kommun
Formler och tabeller i statistik
KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde
Formler, grundläggande statistik
Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample
Beräkna standardavvikelser för efterfrågevariationer
Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.
Begreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända
we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska
Flexibel konkursriskestimering med logistisk spline-regression
Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)
AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
Stresstest för försäkrings- och driftskostnadsrisker inom skadeförsäkring
PROMEMORIA Datum 01-06-5 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq och Erk Elvers Box 6750 SE-113 85 Stockholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspektonen@f.se www.f.se
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Ur KB:s samlingar Digitaliserad år 2013
Ur KB:s samlgar Dgtalserad år 2013 v Te/egrafadrfeás ré%dr/(sos LÖöfe?I org,i,u I 1-1 A1 1 r m I 1 j»»l m rl 5% m» se GÖTEB0RG, å, Om lmstgjorda,?gödslgsäme m 111 L Sveske _ L Ladthshållares, Å 0C Säüer
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
FK2002,FK2004. Föreläsning 5
FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd
Utbildningsavkastning i Sverige
NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka
Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL
Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)
SOS HT Punktskattningar. Skattning från stickprovet. 2. Intuitiva skattningar. 3. Skattning som slumpvariabel. slump.
Puktskattgar SOS HT10 Puktskattg uwe@math.uu.se http://www.math.uu.se/~uwe/sos_ht10 1. Vad är e puktskattg och varför behövs de? 1. Jämförelse: saolkhetstoer statstkteor 2. Itutva ( aturlga ) skattgar