SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

Storlek: px
Starta visningen från sidan:

Download "SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad."

Transkript

1 Karltad unvertet Manten -8-3/HJo SVÄNGNINGAR Odäpad vängnng för ett dret te ed en frhetgrad. Fr vängnng Fjäder [N/] Statt jävtläge F. [g ] [ ] & & : & & & So har lönngen; Bn t C co t Lönngen nnebär; Vnelhatgheten rad/ och vängnngfrevenen f π Hz Lönngen an ocå rva på foren; An t ϕ A C π t Där A B C och C tan ϕ B ϕ t B Med t.ex. begnnelevlloren: t, &, få: co co π t f t co t t eller rvet på den andra foren nπ f t π π radaner π eunder

2 Påtvngad vängnng Karltad unvertet Manten -8-3/HJo Anta nu att fjäderfätet rör g enlgt uttrcet ξ ξ co. t Excterande rörele ξ ξ co t Statt jävtläge närξ ξ Statt jävtläge närξ O v borter från hur rörelen blr under den förta tden efter att rörelen tartat å nnebär det att v öer den tatonära lönngen tll röreleevatonen. V öer då partulärlönngen. & : ξ : & cot ξ : & ξ cot O teet egenvnelfreven betecna ed å an röreleevatonen rva ed partulärlönngen : & cot Acot få : ξ A cot Acot ξ cot : A A ξ A ξ eller otuvat A ξ Fatorn A ξ bruar alla förtorngfatorn och betecna ofta ed λ

3 Karltad unvertet Manten -8-3/HJo Excterande rörele co ξ ξ t Statt jävtläge närξ λ ξ λ ξ λ ξ co t t Statonära lönngar ed vnelfreven Saa freven o excterngen O aan tället påvera av en excterande raft F F co t an en lnande härlednng genoföra ed reultat enlg nedantående fgur. Läplg övnng Statt jävtläge närf Excterande raft F F co t - F λ F λ F λ co t t Obervera att Förtorngfator λ O excterngfrevenen teet egenfreven RESONANS och λ 3

4 Karltad unvertet Manten -8-3/HJo SVÄNGNINGAR Saband ellan träca, hatghet och acceleraton Maan förjutnng från tt tata jävtläge varerar ed tden t. Sabandet ellan förjutnngen och tden an rva ŝ n t där ŝ betecnar vängnngen axala utlag och alla vägapltuden SI-enhet eter och betecnar vängnngen hatghet vnel per tdenhet SI-enhet radaner/eund Svängnnghatgheten an ocå uttrca ed freven SI-enhet Hertz och abandet ellan och frevenen f blr f π Svängnngen perodtd Tπ/ /f, ed SI-enhet eunder. [g] ŝ ŝ π ŝ n t n πf t π π t td Apltud, ŝ, pea Topp-Topp, ŝ, pea to pea Hatghet v är träca per tdenhet, träca derverad ed aveende på tden v vˆ v π f ˆco πf t T t td Acceleraton a är hatghetändrng per tdenhet, hatghet derverad ed aveende på tden a â f a π f ˆnπf t t td T Vbratonen an ålede berva ed väg, hatghet och acceleraton at freven. f 4

5 SVÄNGNINGAR Påtvngade vängnngar fort. Karltad unvertet Manten -8-3/HJo Låt o tudera ett exepel ed tdlg prat anntnng. En an, o va cheatt fguren nedan, har den totala aan M och därav en roterande aa. Rotoraan roterar ed vnelhatgheten, och de acentru lgger på raden e. Den.. obalanen är ålede. e. Manen är fjädrande upptälld ed fjäderontanten och deuto vöt däpad. Vö däpnng nnebär att däpraften är proportonell ot hatgheten ed proportonaltetontanten c [ N/]. Steet odäpade egenvnelfreven är betecnat ed och enlgt tdgare är M O proportonaltetontanten för den vöa däpnngen är la ed M äg teet vara rtt däpat och denna däpontant betecna ed c. Graden av däpnng an då uttrca o den relatva däpnngen ζ c / c. Vlet leder tll att c ζm Manen avtånd x från det tata jävtläget blr det tatonära tlltåndet ˆ n t φ Stora X uttrcet betecnar förjutnngen apltud och φ betecnar favrdnngen ellan rotorrörelen och anen vängnngrörele. Sabanden för vängnngrörelen an uttrca ed hjälp av den M ˆ denonlöa paraetern och åådlggöra graft o e va dagraen nedan. Härlednngen fnn på dan 6-7. M ˆ e 6, 5, 4, 3,,,, ς,,5,5,5 φ / grader

6 MEKANIK Påtvngade vängnngar fort. Karltad unvertet Manten -8-3/HJo Den tden varerande belatnngen på underlaget utgör av fjäderraften plu däparraften. O apltuden för reultanten tll dea rafter betecna ed R å an abandet ellan R, avtänngen / och graden av däpnng ζ berva ed hjälp av dagraet nedan. c & R c& R e 7, 6, 5, 4, 3,,, ς,,5,5,5,

7 Karltad unvertet Manten -8-3/HJo MEKANIK Påtvngade vängnngar fort. De reultat o fnn aanfattade graferna på dan 5 och 6 an härleda utfrån Newton :a lag, ua rafter -led är la ed aan gånger acceleratonen -led. d d Väg betecna ed x, hatghet bruar betecna ed & och acceleratonen ed &&. dt dt Geno att frlägga aneret o fguren var och använda Newton :a lag, an röreleevatonen tecna d : c& M && en t dt Ej roterande aa Roterande aan acceleraton Ovantående evaton an då rva : c& M && && e n t eller : M & c & e n t Med en tatonär lönng på foren, ˆ n t φ, an evatonen rva M ˆ n t φ cˆ co t φ ˆ n t φ e n t c & Ovantående evaton an åådlggöra graft o en raftpolgon enlgt fguren nedan, och ett uttrc för vägapltuden ŝ repetve favrdnngen φ blr: Förjutnngen apltud e ˆ M c ed cζm, /M an detta rva o M ˆ φ c ˆ t Mˆ e ς Denonlöt! e ˆ Referenlnje Favrdnngen c φ nv tan M ζ tan nv Xco t-φ Xn t-φ 9 - Xn t-φ Xn t-φ 8 e dagra d. 5 7

8 Karltad unvertet Manten -8-3/HJo 8 MEKANIK Påtvngade vängnngar fort. Den reulterande belatnngen R på underlaget är reultanten tll fjäderraften och däparraften c& och an däred åådlggöra ed raftblden nedan Ur ovantående raftbld få ˆ ˆ c R ed ˆ c M e, M c ς och M ovantående an uttrcet rva på denonlö for ς ς e R ς ς e R e dagra dan 6 Referenlnje ˆ M ˆ φ t e R c ˆ R c &

9 Karltad unvertet Manten -8-3/HJo MEKANIK Haron lat på tvåfrhetgradte V betratar ett te ed två aor, och två fjädrar ed fjäderontanterna repetve at en haron lat F t o verar på aan.. & & F F nt F F nt. & & : & F n t : & V öer nu lönngen tll dea opplade dfferentalevatoner. Det är läplgt att fört betäa det fra teet egenfrevener. Den tatonära lönngen för ett frtt, F, odäpat te ed två aor är av tpen A n t rep. A n t, 3 Det fnn ålede två egenvnelfrevener repetve. Med en anat enlgt 3 ev. och få [ ] A A 4 [ ] A 5 A 5 ger A [ ] A 6 9

10 Karltad unvertet Manten -8-3/HJo Evaton 6 och 4 ger [ ] [ ] A A 7 Vlet ger evatonen 4 8 och däred teet egenvnelfrevener 4 ± 9 4 9a 4 9b O v nu påtvngar teet en vängnng ed en raft på aa o varerar tden enlgt uttrcet t n F F t å oer ocå aorna att vänga ed vnelfrevenen. n ϕ t Y n ϕ t Y Ev., och leder tll att / / F Y / F Y

11 Karltad unvertet Manten -8-3/HJo ev. rep. ger Y tat rep. Y tat F Y tat Ytat F och an an rva Y Y tat λ rep. Y Y tat λ / där λ och λ De tatonära vängnngarna an då berva ed nedantående graf λ, λ λ λ / Notera att vd / blr λ edan λ har ett ändlgt värde. Maan o påvera av raften F tår alltå tlla edan aan får en tor apltud. Detta alla för antreonan eller.. dna vängnngdäpnng.

12 Karltad unvertet Manten 8--8/HJo Svängnngar Energbetratele- Raleghvot Odäpad vängnng nnebär att ngen energ avge tll ogvnngen. Steet pendlar ellan två energforer. Elat- repetve röreleenerg. När den vängande aan befnner g ett vändläge har den elata energn tt axu och röreleenergn är noll. När den vängande aan paerar läget för tat jävt har röreleenergn tt axu och den del av den elata energn o beror av vängnngen har tt nu. Fjäder [N/] Statt jävtläge F. [g ] [ ] & & Den tatonära lönngen är enlgt tdgare: Förjutnngen från det tata jävtläget Aco t ϕ Maan hatghet & An t ϕ Den p.g.a. vängnngen törta elata energn blr då för den lnjära fjädern V och den törta röreleenergn eax A d A T ax & ax A Geno att nu utnttja att de två energerna är la tora för en odäpad vängnng få det välända abandet ellan tvhet aa och egenvnelfreven A A eller

13 Svängnngar Elat energ lnjärt elatt ateral Karltad unvertet Manten 8--8/HJo Enaxlg belatnng da Arbete raft väg Kraft, F u förjutn. F σda uε väg, u Stav ed noralpännng σeε dv e Den elta energn dv e den llla delen ed tvärarean da och längden är la ed rafterna arbete på delen dv e F u σ daε eller ; dv e σ ε dv, där volen dvda Elat energ vd Böjnng Spännng på avtånd z från neutrallagret z M z M M z σ x I där I A z da 3 Ballaell, och 3 ger den elata energn ett t på avtånd z från neutrallagret en ballaell ed längden och tvärarean da o utätt för böjoentet M ; M z M z M da z da I I E I E dv e M M M z da z da I E I E I E A A och energn hela ballaellen blr då Den elata energn ellan oordnat x och x få edan geno ntegraton över längden x x M V e dve 5 I E Elata lnjen evaton lder: där x x d w w och w är förjutnngen z-led. x E I w 5 och 6 ger lutlgen att V e x 4 M E I w 6 3

14 Karltad unvertet Manten 8--8/HJo Elat energ vd Böjnng fort Den elata energn hela balen få geno att ntegrerat läng hela balen längd L Och blr däred V e L EIw 7 Röreleenerg vd Böjnng V betecnar utböjnnghatgheten ed w& och täller upp uttrcet för röreleenergn T en ballaell ed längden d Aρ x w x,t Del av bal ed aa d och längd dt d w& Aρ w& Integrerng läng hela ballängden ger röreleenergn hela balen T L Aρ w& 8 Ett exepel följer på näta da. 4

15 SVÄNGNINGAR Egenfrevener för frtt upplagd hoogen bal Karltad unvertet Manten 8--8/HJo x A, I, E, ρ L Tvärarea A Elatctetodul E Yttröghetoent I Dentet ρ Längd ellan upplag L Antalet egenvängnngforer ed tllhörande egenfrevener f /π, är oändlgt ånga o..v 3 För att beräna tecnar v den. Raleghvoten: där T V e ax * Tax 9 V eax betecnar törta elata energn balen under en vängnngperod och ax * ax T törta röreleenergn balen under en vängnngperod wx,t Utböjnngen är en funton av x och tden t. För det tatonära tlltåndet gör v anaten: w x,t S x n t x π där S x S n x, vlet uppfller L randvlloren att w x w x L w x w x L V har då π w S n x n t L 5

16 Egenfrevener för frtt upplagd hoogen bal fort Karltad unvertet Manten 8--8/HJo Derverng av anaten ed aveende på längdoordnaten x ger w o behöv 7 w dw π π S co x n L L t d w w S L π π n x n L t Derverng av anaten ed aveende på tden t ger w&, o behöv 8 dw π w& S n x co t dt L 7 ger V e 4 L π EIS n π x n L L t Störta elata energn få vängnngen vändläge där t ± n och däred V eax 4 L π EIS n π x L L 3 8 ger balen axala röreleenerg T ax L π A S n x AρS n π x ρ 4 L L L Med T ax * ax T få T * ax L Aρ S n π x 5 L Med 3 dvderad ed 5 få den.. Raleghvoten där och an förorta bort, S och ntegralerna är la 6

17 V e ax * Tax EI 4 π 4 AρL Karltad unvertet Manten 8--8/HJo 9, 87 39, 5, EI AρL 4 EI 4 A L ρ EI 4 AρL O.S.V. Påtvngad vängnng på frtt upplagd hoogen bal Balen vängnng betår prncp av en oändlg ua o utgör av egenvängnngoderna egenvängnngforerna. Ft F cot wx,t x o..v S S S w x,t π π 3π n x n L L L t n x n t 3 n x n t... 3 eller w x,t S π n x n L t V går nte närare n på uttrcet för S en detta oer gvetv att bero på balen tvhet och aa föruto Ft apltud och angrepppunt. Bdraget tll utböjnngen från en v egenvängnngod beror alltå på hur nära denna od egenfreven ι lgger den påtvngade frevenen. Obervera alltå nänarna. Med en påtvngad freven o är nära någon av balen egenfrevener å oer apltuden för jut den vängnngoden att bl tor och jut den vängnngforen att brta fra. 7

18 SVÄNGNINGAR Karltad unvertet Manten 4--8/HJo Egenvnelfrevener: Balar: n n c r / L Plattor: c h / a där c E ρ, c E ν ρ, r I A, Eelatctetodul, ν poon tal, ρ dentet, L ballängd, I är baltvärnttet ttröghetoent ed aveende på atuell böjnngaxel och A är balen tvärnttarea. För plattor är h plattjocle, arade ho crulär platta eller ortate dan ho retangulär platta. Kontanten n för några eleentarfall ed tllhörande vängnngforer vängoder va nedan. Ra bal, frtt upplagd 9,88 39,5 3 88,9 Ra bal, fat npänd,4 6,7 3, Ra onolbal 3,5, 3 6,7 Crulär platta, frtt upplagd,49 Crulär platta, fat npänd,96 Retangulär platta, frtt upplagd,85a /b Retangulär platta, fat npänd,4 för b/a 7, för b/a 6,7 för b/a 3 6,47 för b/a Svängnngoder för frtt upplagd platta Mod Mod b - a Mod 3 Mod

19 SVÄNGNINGAR DUNKERLEYS METOD Karltad unvertet Manten 4--3/HJo Grundtonen egenvnelfreven cr för ett te ed flera aor an approxatvt beräna ed Dunerle etod. Metoden tlläpa å att egenfrevenen beräna för en aa taget, utan hänn tll övrga aor. Betecna egenfrevenen o enbart aan fann ed. där Hela teet egenfreven cr uppatta edan ed uttrcet:... 3 cr A x Axel: E, I, A, ρ Metoden ger ofta en god noggrannhet på grundtonen egenfreven o denna lgger lågt förhållande tll :a övertonen. x F δ E, I Fjäderontanten vd läget för repetve aa beräna ed teorn för böjnng F δ δ F,E,I,L,x Det beränade värdet på fjäderontanten använd edan A. Axeln egenfreven, utan några rotoraor, an ocå beräna på aa ätt o an delar axeln å delar ed aan dx vd oordnaten x, betecnar fjäderontanten vd oordnat x ed x och tecnar d x o edan ntegrera läng axeln x T.ex. för en hoogen axel ed ontant daeter blr d axel L d x axel A an då rva d x cr 9

20 SVÄNGNINGAR Svävnng Karltad unvertet Manten 4--3/HJo Suerng av två freven och apltud näralggande vängnngoponenter an reultera.. vävnng engela beat Ex. Två vängnngoponenter v och v addera och uan betecna v t t t v t vˆ n[ ] ˆ π f t ϕ v[nπf t ϕ ] Låt nu frevenerna f repetve f lgga nära aa värde och låt apltuderna vara av aa torleordnng. Den llla favrdnngen ellan de båda gnalerna edför då att vd va tder oer de att avera och uagnalen apltud blr o tört la ed uan av de båda oponenterna aptuder. Vd andra tder oer de båda oponenterna att otvera varandra och reultatet blr då att uagnalen apltud nar. Mnta apltuden blr la ed llnaden ellan de båda oponenterna apltuder. Reultatet över en v tdperod an graft va o nedan Hatghet /] td t [] v t vˆ n[π f t ] v ˆ t v n[π f t ϕ ] v t v t v t ϕ Hatghet /] td t [] vˆ ˆ v n[π f f t ϕ] Svävnng an ocå upptå på ett lartat ätt o en påtvngad vängnngfreven lgger nära en egenfreven. Eventuellt ljud o altra av vängnngen oer att varera tra och öjlgen aocera tll vävnng o f f är en låg freven.

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.

SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad. SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen

Läs mer

Karlstads Universitet Maskinteknik /HJo

Karlstads Universitet Maskinteknik /HJo Karlstads Unverstet asnten 9-4-7/Ho orsonssvängnngar I roterande masner nns rs ör torsonnvängnngar, dvs vrdsvängnngar som överlagras på rotatonen. Perodsa störnngar som excterar dessa svängnngar an t.ex.

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand

Läs mer

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att

Läs mer

2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00

2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00 (5) B6 Ingenjörsetod för IT och ME, HT 006 Otentaen Måndagen den 5:e jan, 007, l. 5:00-0:00 Nan: Personnuer: Srv tdlgt! Srv nan och ersonnuer å alla nlänade aer! Ma ett tal er aer. Ansvarg lärare: Gunnar

Läs mer

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

Flygburen passiv lägesbestämning baserad på noggrann frekvensmätning

Flygburen passiv lägesbestämning baserad på noggrann frekvensmätning FOI-R--9--SE December ISSN 65-94 Metodrapport Böre Anderon, Danel Henron, Börn Lndgren Flygburen pav lägebetämnng baerad på noggrann revenmätnng Lednngytemten 58 Lnöpng TOTALFÖRSVARETS FORSKNINGSINSTITUT

Läs mer

Biomekanik, 5 poäng Masscentrum

Biomekanik, 5 poäng Masscentrum Boekank, 5 poäng Masscentru Masscentru Tyngdpunkt Spelar en central roll no såväl statk so dynak. Masscentru tllhör de storheter an använder för att sna beräknngar beskrva en kropp sn helhet. Istället

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

Laborationsinstruktion för Elektromagnetiska sensorer

Laborationsinstruktion för Elektromagnetiska sensorer Laborationintruktion för Elektroagnetika enorer Tadeuz Stepinki januari 2003 Nan Handledaren koentarer Årkur/nkrivningår Godkänd den 1 1 ntroduktion 1.1 Fältplatta Reitanen ho en platta av indiuantionid

Läs mer

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn Karltad univeritet Tel 0 Elraftteni och rafteletroni Bilaga Avd. för eletroteni Aynronmotorn 1(1) Aynronmotorn Namn: Godänd laboration: Syfte Du all underöa egenaperna ho en trefa aynronmotor. Underöningen

Läs mer

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1 Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

F10: Strömreglering (PE-Kap 3)

F10: Strömreglering (PE-Kap 3) F10: Strömreglerg PE-Kap 3 Allmät om trömreglerg V har tgare tttat om hatgat på trömreglerg och lte mer etalj på varvtalreglerg. Varvtalreglerg av eletra maer bygger tor omfattg på valg reglerteor och

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Partikeldynamik. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Dynamik är läran om rörelsers orsak. Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08

PPU207 HT15. Skruvförband. Lars Bark MdH/IDT 2015-12-08 Sruvörband ar Bar MdH/IDT 1 Innebär att: - olla att ruvarna håller - olla att örbandet håller hop vd pålagd lat ar Bar MdH/IDT 2 Sruven - σ = a / A - a : p.g.a. lat och örpännng - A E : pännngarea nn bland

Läs mer

Matematisk statistik

Matematisk statistik HF, repetitionsblad Mateatis statisti Uppgift Fördelningsfuntionen för en ontinuerlig stoastis variabel X är F ( x) cx x < x x > Bestä värdet på onstanten c, edianen och täthetsfuntionen för X a) Enligt

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 7 LÖSNING Dimensionerande materialegenskaper Betong C30/37 f cc f cc 30 0 MMM γ c 1,5 E cc E cc 33 γ cc 1, 7,5GGG Armering f yy f k 500 435 MMM γ s 1,15 ε yy f yy 435. 106,17. 10 3 E s 00.

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna

Läs mer

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1 Matematik Calmer Tentamen i TMA68/TMA68 Tillämpad matematik K/Bt, 7 8 7, kl 4:-8: Telefon: Olof Gielon, -77 55 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner, : -7p, 4:

Läs mer

Laborationsanvisning laboration 2

Laborationsanvisning laboration 2 Lab / Ljud i byggnad och ahälle / VTAF01 Laborationanvining laboration Mätning av ljudiolering, aborption, traniion och kalibrering av app Introduktion Probleet ed ljudtraniion har uppkoit delvi på grund

Läs mer

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad 1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.

Läs mer

Växelström = kapitel 1.4 Sinusformade växelstorheter

Växelström = kapitel 1.4 Sinusformade växelstorheter Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln

Läs mer

FACIT OCH KOMMENTARER

FACIT OCH KOMMENTARER STUDIEAVSNITT FACIT OCH KOMMENTARER 0 a) Multiplikationen går fört: 0 + = Parenteen fört:. = c) Diviionen fört: + = d) /( + ) = /0 = 0, 0 a) 0. = 0 - = c) - = d) Totalt tre terer,. oc /. Beräkna fört varje

Läs mer

Periodisk summa av sinusar

Periodisk summa av sinusar 1 Periodis sua av sinusar Låt x( t) = Asin( ω a t + α ) + Bsin( ω b t + β ). O ω a! x( t) är T-periodis, dvs. x( t) = x( t +T ) ω b ed T = π ω 1, där ω 1 = SGD( ω a,ω ) Största Geensaa Delare (SGD) b =

Läs mer

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Massa, densitet och hastighet

Massa, densitet och hastighet Detta är en något omarbetad verion av Studiehandledningen om använde i tryckta kuren på SSVN. Sidhänviningar hänför ig till Quanta A 000, ISBN 91-7-60500-0 Där det har varit möjligt har motvarande aker

Läs mer

Övningsexempel och lösningar för. TDDC47 Realtids- och processprogramering

Övningsexempel och lösningar för. TDDC47 Realtids- och processprogramering Övnngexempel och lönngar för DD7 ealtd- och proceprogramerng Mehd mrjoo Jona Elmqvt Inttutonen för datavetenkap (ID) Lnköpng unvertet opyrght 6 Mehd mrjoo . Proceprogrammerng. etrakta följande proceer

Läs mer

Inledning och Definitioner

Inledning och Definitioner Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement

Läs mer

F3 PP kap 3, ekvationslösning och iteration, forts.

F3 PP kap 3, ekvationslösning och iteration, forts. F3 BE300 & 3 Page 1 of 6 F3 PP kap 3, ekvationslösning och iteration, forts. Övning från förra gången: Visa, att o f (x) > 0 i (a,b) så ligger sekanten geno (a,f(a)) och (b,f(b)) över kurvan. Tips: Låt

Läs mer

Tentamen i ETE115 Ellära och elektronik, 16/8 2017

Tentamen i ETE115 Ellära och elektronik, 16/8 2017 Tentmen ETE Ellär och elektronk, 6/8 07 Tllåtn hjälpmedel: Formelsmlng kretsteor. Observer tt uppgftern nte är sorterde svårghetsordnng. All lösnngr skll ges tydlg motverngr. Två metllobjekt bldr en kondenstor.

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet:

LEDNINGAR TILL PROBLEM I KAPITEL 13. Systemets masscentrum G ligger hela tiden vid axeln. Kraftekvationen för hela systemet: LEDNINAR TILL PROBLEM I KAPITEL 3 LP 3. Systeets asscentru ligger hela tiden id aeln. Krafteationen för hela systeet: F = a P = M+ LP 3. Anänd definitionen a inetis energi. Varje ula har en cirelrörelse.

Läs mer

1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b).

1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b). Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, ; KL 8:3-:3 Telefon: Martin Berglund: 73-883. Hjälpmedel: Endat utdelad vänd textlappen tabell. Kalkylator ej tillåten. Uppgift 7 ger max 8p,

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna

Läs mer

ÖVN 15 - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 15 - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 5 - DIFFTRANS - DEL - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Laplacetranformen Differentialekvationer med dikontinuerlig drivande term g(t) Heaviide och δ-funktionen

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

b) När den brutna strålen fortsätter och nästa gång når en gränsyta mot luft kommer den att ha infallsvinkeln

b) När den brutna strålen fortsätter och nästa gång når en gränsyta mot luft kommer den att ha infallsvinkeln Lösnngar t tentaen 089 ysk de för asåret. a) örst ehöer an äta upp och eräkna nfasnke och rytnngsnke. O an är osäker på trgonoetrn får an uppskatta nkarna och anända det. Geno att räkna rutor fguren får

Läs mer

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

7. Låt f(x) vara en 2π-periodisk, integrerbar funktion. Visa noggrant att om

7. Låt f(x) vara en 2π-periodisk, integrerbar funktion. Visa noggrant att om Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, 4 8 ; KL 4:-8: Telefon: Mohammad Aadzadeh: 73-8834. Hjälpmedel: Endat utdelad (vänd textlappen) tabell. Kalkylator ej tillåten. Uppgifterna

Läs mer

Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem

Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem Lög tll tll tetame EIEF0 Elmaer och drvytem 04 05 30. Ltrömmae, tatoär drft E eletrt mageterad ltrömmotor har följade data agva på märylte: P = 000 W, = 5000 rpm, U a = 0 V, I a = 0 A och I f = 0.5 A.

Läs mer

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB MATEMATISK MODELLERING Att ställa upp en differentialevation som besriver ett förlopp Följande uttryc används ofta i olia problem som leder till differentialevationer: Text A är proportionell mot B (A

Läs mer

Laborationsanvisning laboration 2

Laborationsanvisning laboration 2 Lab / Ljud i byggnad och ahälle / VTAF01 Laborationanvining laboration Mätning av ljudiolering, aborption, traniion och kalibrering av app Introduktion Probleet ed ljudtraniion har uppkoit delvi på grund

Läs mer

Fluidparametrar för luft (1 atm) vid filmtemperaturen (75+15)/2 C är (Tab. A-15) ANALYS. Reynolds tal

Fluidparametrar för luft (1 atm) vid filmtemperaturen (75+15)/2 C är (Tab. A-15) ANALYS. Reynolds tal RÖ probe tentaen 0-01-15 En cyindrik vattentank är utatt för ett kontant uftföde ed teperaturen 15º och hatigheten / vinkerät ot de anteyta. Tanken diaeter är 0,5 och de ängd är 1. O vattenteperaturen

Läs mer

Laborationsanvisning laboration 2

Laborationsanvisning laboration 2 Lab / Ljud i byggnad och ahälle / VTAF01 Laborationanvining laboration Mätning av ljudiolering, aborption och traniion Introduktion Probleet ed ljudtraniion har uppkoit delvi på grund av att tora folkängder

Läs mer

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Kombinatoriska nät. Kombinatoriska nät. Kodomvandlare - 1/2 binäravkodare. Kodomvandlare - 2/4 binäravkodare

Kombinatoriska nät. Kombinatoriska nät. Kodomvandlare - 1/2 binäravkodare. Kodomvandlare - 2/4 binäravkodare Grndläande datorteknk Komnatorka nät Daen örelänn: Lärooken kaptel 4 Aretoken kaptel 4-7 Ur nnehållet: Kodomvandlare Don t are vd mnmern Väljare (Mltpleer Fördelare (Demltpleer Sktoperatoner Adderare n

Läs mer

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1

yz dx + x 2 ydy+ x 2 dz, (0, 0, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 1) z = xy y = x 2 x(t) =y(t) =z(t) =t, 0 t 1 γ z d d dz, γ,,,,,,,,,,,,,,,, z t t zt t, t P z t Q t R t P tq trz t dt t t t t dt t t r t,,, t P t Qt, Rt t P tq trz t dt,,,, r,t,, t P t, Qt t, Rt dt P tq trz t dt,,,, tdt r,,t, t P t t, Qt Rt P tq trz

Läs mer

Tentamen i Mekanik - partikeldynamik

Tentamen i Mekanik - partikeldynamik Tentaen i Mekanik - partikeldynaik TMME08 011-01-14, kl 8.00-1.00 Tentaenskod: TEN1 Tentasal: Exainator: Peter Schidt Tentajour: Peter Schidt, Tel. 8 7 43, (Besöker salarna ca 9.00 och 11.00) Kursadinistratör:

Läs mer

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

F15 ENKEL LINJÄR REGRESSION (NCT )

F15 ENKEL LINJÄR REGRESSION (NCT ) Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISKA HÖGSKOLAN I LINKÖPING Intitutionen för Fyik, Kei och Biologi Galia Pozina Tentaen i ekanik TFYA6 Tillåtna Hjälpedel: Phyic Handbook eller Tefya utan egna anteckningar, aprograerad räknedoa enligt

Läs mer

EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 031 VÄRMEÖVERFÖRING, version 2017

EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 031 VÄRMEÖVERFÖRING, version 2017 EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 03 VÄRMEÖVERFÖRING, verson 07 KAP 9,, Värelednng och forcerad konvekton a) Vad enas ed ett sotropt ateral? b) Vad enas ed ett hoogent ateral? Defnera terska dffusvteten

Läs mer

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-07-0 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring

Trafikljus utvidgat med stresstest för försäkrings- och driftskostnadsrisker inom livförsäkring PROMEMORIA Datum 007-03-01 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax +46 8 4 13 35 fnansnspetonen@f.se

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

Lösningsförslag, v0.4

Lösningsförslag, v0.4 , v.4 Preliinär version, 6 februari 28, reservation för fel! Högsolan i Sövde Tentaen i ateati Kurs: MA52G Mateatis analys MA23G Mateatis analys för ingenjörer Tentaensdag: 27-5-2 l 8:3-3:3 Hjälpedel :

Läs mer

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag Tentaensskrining i Mekanik Del Dynaik för M 7 ösningsförslag. a) tötnoralen n i. Rörelseängdens earande i stötnoralled ( ): + + + () 0 där etecknar kulornas hastighetskoponenter efter stöt. tudstalet:

Läs mer

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006

Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006 INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Löningförlag Fredag 8 juni 8 8:-3: SF74 Flervariabelanaly Inga hjälpmedel är tillåtna Ma: 4 poäng (4 poäng Rita följande mängder i R : (a A {(, y R ma(, y } (b B {(, y R + y 4 4 4y y } (c C {(,

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) =

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) = Matematik Chalmer Tentamen i TMA683/TMA682 Tillämpad matematik K2/Bt2, 28 4 4, kl 4:-8: Telefon: Henrik Imberg, 3-772 5325; Kontaktperon: Mohammad Aadzadeh, 3-772 357 Hjälpmedel: Endat tabell på bakidan

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Denna vattenmängd passerar också de 18 hålen med hastigheten v

Denna vattenmängd passerar också de 18 hålen med hastigheten v FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 1 juni 2011 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 1 juni 2011 kl KTH HÅFASTHETSÄRA Tentamen i FEM för ingenjörstillämpningar (SE5) den juni l. 8-3. Resultat ommer att finnas tillgängligt senast den juni. Klagomål på rättningen sall vara framförda senast en månad därefter.

Läs mer

Lektion 9. Teori. Bilinjär transformation. Byggblock Integratorer. Parasitkapacitanser. SC-filter Leapfrogfilter. LDI-transformation ----

Lektion 9. Teori. Bilinjär transformation. Byggblock Integratorer. Parasitkapacitanser. SC-filter Leapfrogfilter. LDI-transformation ---- Uppgfter (Lekton):.7 Uppgfter (ek.): Teoretka moment: S-flter Teor Byggblock Integratorer De vktgate byggblocken om använd S-flter är amma typ av kretar om för de tdkontnuerlga fltren, dv ummerande ntegratorer.

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006 M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä

Läs mer

Permanentmagnetiserad synkronmotor. Olof Samuelsson Industriell Elektroteknik och Automation

Permanentmagnetiserad synkronmotor. Olof Samuelsson Industriell Elektroteknik och Automation Peranentagnetierad ynkronotor Olof Sauelon Indutriell Elektroteknik och Autoation Överikt Peranentagnetierad ynkronakin Vridoent Spänningekvation Vektorrepreentation Spänningvektorn tyr Växelriktaren pänningvektorer

Läs mer

Tentamen i Mekanik - partikeldynamik

Tentamen i Mekanik - partikeldynamik Tentamen i Meani - partieldynami TMME08 011-08-17, l 8.00-1.00 Tentamensod: TEN1 Tentasal: TER4 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 8 7 43, (Besöer salarna ca 9.00 och 11.00) Kursadministratör:

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKISKA ÖGSKOA I IKÖPIG Institutionen för ysi, Kei och Biologi Galia Pozina Tentaen i eani TYA6 -- l. 4-9 Tillåtna jälpedel: Physics andboo eller Tefya utan egna antecningar, avprograerad ränedosa enligt

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

LÖSNINGSFÖRSLAG Tentamen VoM I

LÖSNINGSFÖRSLAG Tentamen VoM I ÖSNINGSFÖRSAG Tentaen Vo I 011-01-14 RÖ Proble 4: uft vid teperaturen ºC tröar ed atigeten / ovan en oriontell yta o ar längden oc ytteperaturen 0ºC. Beräna väreövergångoefficienten vid 0,5 oc 9,5 at oentera

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2007

ETE115 Ellära och elektronik, tentamen oktober 2007 (0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Rolf på fotboll Lärarmaterial sidan 1

Rolf på fotboll Lärarmaterial sidan 1 Nan: Lärarateria idan 1 Författare: Rune Feicher Vad handar boen o? Rof är ute och joggar och får pötigt yn på några iar o pear fotbo. Rof äar fotbo och tannar och tittar. Två iar juter boen i ribban.

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

BILAGOR. till KOMMISSIONENS DELEGERADE FÖRORDNING

BILAGOR. till KOMMISSIONENS DELEGERADE FÖRORDNING EUROPEISKA KOMMISSIONEN Bryssel den 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 BILAGOR tll KOMMISSIONENS DELEGERADE FÖRORDNING o ändrng och rättelse av delegerad förordnng (EU) 2017/655 o kopletterng av

Läs mer

Diverse underlag för utformning och dimensionering för maskinprogrammet

Diverse underlag för utformning och dimensionering för maskinprogrammet 009 nov/hjo Dverse underlag för utformnng och dmensonerng för masknprogrammet Hans Johansson 009 009 aug./hjo INNHÅ Inlednng... 3 Hållfasthetslära, fasta kroppars beteende vd belastnng... 5 Spännngskomponenter

Läs mer

Uppgifter på värme och elektricitet Fysik 1-15, höst -09

Uppgifter på värme och elektricitet Fysik 1-15, höst -09 Uppgifter på äre o eektriitet Fyik 1-15, öt -09 1. n auiniukopp ar aan 10 g o teperaturen. I koppen ä 150 art atten ed teperaturen 85. Vad koer attnet teperatur att i id jäikt ed koppen? Borte från oginingen

Läs mer

Thomas Macks beräkning av standardfelet för reservavsättningar

Thomas Macks beräkning av standardfelet för reservavsättningar Thomas Macs beränng av standardfelet för reservavsättnngar Eva-Lena Tolstoy Rauto 008-05-09 1 Innehållsförtecnng 1. Inlednng...5. Teor...5.1 Resdualplottar...6. Thomas Macs modell...6.3 Svansfator...8.4

Läs mer

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik

45 o. Mekanik mk, SG1102, Lösningar till problemtentamen, KTH Mekanik KTH Meani 2013 05 23 Meani, SG1102, Lösningar till probletentaen, 2013 05 23 Uppgift 1: Längre slag i golf påeras raftigt a luften. För ortare chippar är däreot luftotståndet försubart. En golfspelare

Läs mer

Automationsteknik Implementering av diskret PID-regulator 1(9)

Automationsteknik Implementering av diskret PID-regulator 1(9) Automationteni Implementering av iret PID-regulator 1(9) Laboration Implementering av iret PID-regulator En PID-regulator an ontruera me enbart analog eletroni. Doc vill man ofta integrera fler funtioner

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står

Läs mer

Inversa matriser och determinanter.

Inversa matriser och determinanter. rmn Halloc: EXTR ÖVNINGR a TILLÄMPNINGR V DETERMINNTER Tllämpnngar a determnanter Inersa matrser och determnanter. En adrats matrs är nerterbar om och endast om det Eftersom matrsen är nerterbar om och

Läs mer

Tentamen i Mekanik för D, TFYA93/TFYY68

Tentamen i Mekanik för D, TFYA93/TFYY68 TEKNISKA HÖGSKOAN I INKÖPING Intitutionen ör Fyi, Kemi och Bioloi Manu Johanon Tentamen i Meani ör D, TFYA93/TFYY68 Freda 019-0-6 l. 1.00-19.00 Tillåtna Hjälpmedel: Phyic Handoo utan ena antecninar, avprorammerad

Läs mer