Lektion 9. Teori. Bilinjär transformation. Byggblock Integratorer. Parasitkapacitanser. SC-filter Leapfrogfilter. LDI-transformation ----

Storlek: px
Starta visningen från sidan:

Download "Lektion 9. Teori. Bilinjär transformation. Byggblock Integratorer. Parasitkapacitanser. SC-filter Leapfrogfilter. LDI-transformation ----"

Transkript

1 Uppgfter (Lekton):.7 Uppgfter (ek.): Teoretka moment: S-flter Teor Byggblock Integratorer De vktgate byggblocken om använd S-flter är amma typ av kretar om för de tdkontnuerlga fltren, dv ummerande ntegratorer. Paratkapactaner - z z ( z ) z ( z ) ---- z vlket ger att z ± j n( Ω ) ± --- ( n( Ω ) ) co( Ω ) jn( Ω ) Blnjär tranformaton Tranformatonen betäm av z och z z z ---- z Förhållandet mellan frekvenerna få enlgt tan( Ω ) En vktg faktor om påverkar S-kretarna är nverkan av paratkapactaner. S-flter Leapfrogflter I de många fall utgår man från ett analogt tdkontnuerlgt referenflter när man kapar na S-flter. En vanlg typ av S-flter är jut leapfrogfltret där man använder g av ummerande ntegratorer om vktga byggblock. Oftat tranformera referenfltret tll ett tddkret flter genom tll exempel LDI-tranformaton eller blnjär tranformaton. LDI-tranformaton Lole Dcrete Integrator. z z [ ] z z z z Låt j och z e jω vlket ger att n( Ω ) dv - n( Ω ) betecknar den tdkontnuerlga frekvenen och Ω den tddkreta. På grund av den mappng om LDI använder å e ockå att < Dv att fltrena måte vara malbandga, vlket är en nackdel med LDI-tranformaton. Ur dea amband kan e att 4 Electronc Sytem, Electronc Sytem, 4

2 Uppgfter Uppgft [khz].5.5 T Poon π LDI ekontruerad pecfkaton Samplad pecfkaton eferenflterpecfkaton Kontruera ett LDI-flter. LDI-tranformerngen ger att: z z I referenflterpecfkatonen välj c π 5 rad Av detta kan beräkna tll ---- c n( Ω c ) π krad.5 n -π 4 Därefter beräkna tll n( Ω ).5 49 n -π krad Börja med att kontruera ett trömmatat ellptkt referenflter, leta upp ordnngen för fltret formelamlng (dan 49). Gradtalet htta tll N. Antag vdare att avlutnngretanen är lka med latretanen, dv att κ och välj kω Detta ger att: 4.9nF L 8.mH 4.nF I uppgften var deutom gvet att:.5k - khz vlket ger att Ω T c ---- π.56 k Enlgt amma flterdegn om för de tdkontnuerlga fltren å krv förhållandet mellan pännngar och trömmar upp, alla varabler normera med ett å att: I I ( I I ) I ---- ( ( L ) ( ) ) -- ( I I 4 ) I 4 Ekvatonerna modfera dock genom att nföra en hjälptröm genom pole L vlket ger en annan truktur på nätet och därefter flytta nverterare genom nätet (jämför lekton 7). Med hjälp av detta å kan gnalflödechemat krva upp för fltret. - I L I I L I I 4 I L α α L ---- α α α α -- L älj tabellen ett A mn om är törre än pecfkatonen, A mn 9.74, för att vara på äkra dan. Detta ger de normerade värdena: n n.94, n.78 och L n.757 ärdena avnormera enlgt: L L och n -- n I LDI-tranformera genom att ätta alla z z -I 4 Electronc Sytem, Electronc Sytem, 44

3 - L z α α ---- z α z -I z L z α z I Elmnera z ntegratorerna genom att dra faktorn bakåt. - L ----z α α ---- α z -I L z z ---- α z z z I Man kan därmed e att alla ntegratorer blvt kvtt na z termer, däremot är doåterkopplngarna nu bundna med en z -term. Detta är nte möjlgt att realera. Ett ätt att elmnera detta är att helt enkelt lopa z -termen uttrycket. Detta kan göra på grund av att de ntegratorer om kall använda realerngen nte kan mulera en överförngfunkton om har en halv klockcykel fördröjnng (bland annat på grund av att klocknngchemat er ut om det gör). Att elmnera z L kan dock göra om man antar att retanerna urprungchemat har uteendet: L L z Som dock ynte teordelen för LDI-tranformaton å nnehöll z värdefull frekvennformaton. j z Electronc Sytem, Detta nnebär att termen L z L j L -- j L -- L ( ) jl L lket kan realera med en frekvenberoende retan er med en negatv nduktan. L L () -L L Detta uttryck kan med hjälp av komplextalräknng ockå krva om: L z ( L ( ) jl L )( L ( ) jl L ) L ( ) jl L L L L ( ) j L -- ( ) L L L ( ) L ( j ) L () L lket kan tolka om en frekvenberoende retan parallellt med en kapactan. Detta ta fall kan använda detta flter. Man kan tänka g att L är parallellkopplad med och motvarande för nretanen där är parallellkopplad med. Detta måte korrgera genom att låta komponenterna anta värdena: ' n ( Ω T ) ( ) och ' L L n ( Ω T ) ( L ) Felet om oraka av den frekvenberoende retanen låt vara kvar. Därmed återtår att realera jälva fltret. (Elmnera z :orna amt erätt alla och med ' repektve '. lket ockå ger att α och α ändra tll α ' repektve α '. - L ---- α α ---- α z -I L z z ---- α z z I Electronc Sytem, 46

4 Integratorerna (två nverterande förtärkare utan fördröjnng och en förtärkare med fördröjnng) erätt med dera motvarande S-kretar. Den ummerande ntegratorn överförngfunkton är gven av [ z ] z z [ z ] [ z ] (Snabbkontroll: Ingen drektkopplng mellan n och ut.) Den ummerande och nverterande ntegratorn överförngfunkton är gven av: [ z ] z [ z ] [ z ] (Snabbkontroll: Drektkopplng mellan n och ut.) (Laddnngarna om kfta n på är drekta lnjärkombnatoner av ngnalerna v () t och v () t.) Integratorerna använd realerngen. Det om återtår är att dentfera torlekarna på kondenatorerna, detta gör genom att jämföra gnalvägarna S-fltret med dem gnalflödechemat: (bör krva om akna termer för återkopplngar.) S-flter Sgnalflödechema eultat [ ] 4 E 7 [ ] I ' [ ] [I ' ] z z För återkopplngarna gäller att: Deutom kan anta att 6 7 z 5 7 z 8 z [I ' ] --- [ ] I ' [ ] --- [ ] E [ ] I ' [ ] z [ I ' ] z z I ' - α ' - α ' z z α ' [ ] --- z [ ] I ' z L L L [ ] 4 [ ] --- [ ] - 7 α ' [ ] [ ] L L - α ' z z z z -- α ' z z α ' - α ' -- α ' L L ---- L α ' ---- L α ' - α ' - α ' 47 Electronc Sytem, L I Multplkaton av I med z - ger I z vlket 4 ockå nnebär en faförkjutnng med -8 grader, vlket ger att alla noder fltret byter tecken. dare gäller att ---- c och n( Ω c ) ' lket ger att: Med värden natta å få att: c ( ) ---- n( Ω c ) n( Ω c ) --- c L - n( Ω c ) c och älj tll exempel alla ntegratorkapactaner lka: Ur detta kan alla andra kapactaner löa n(.56 ) π 8.m n 4.n 4.9n n( Ω c ) L c c ( ) ---- n( Ω c ) π 5 ( 4.9n 4.n ) n(.56 ) n(.56 ) π 7 47nF Electronc Sytem, 48,

5 Skalnng: 8 k 9 k 5 X k k X - L 7 k 4 X k 5 6 k 4 k k Skala fltret å att förhållandet mellan utgångarna på operatonförtärkarna och ngnalen är lka med. (Om ngnalen tllåt pendla mellan maxmalt och mnmalt tllåtet värde.) Oraken tll kalnngen är att hålla nere utgnalnvån på operatonförtärkarna å att dea nte övertyr nne fltret. Prncpen för kalnng kan bekrva genom att dela upp näten delnät tll vlka det fnn ett antal ngångar och utgångar. Om en ngång kala med en faktor k å kommer alla utgångar att kala med en faktor k och alla noder nut fltret kommer att kala med en faktor k. Detta kommer att ge att gnalen efter den förta noden är kalad tll k X, den andra k k X och lutlgen den tredje (utgnalen) tll k k k X. 49 Electronc Sytem, Electronc Sytem, 5

ETE115 Ellära och elektronik, tentamen oktober 2007

ETE115 Ellära och elektronik, tentamen oktober 2007 (0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är

Läs mer

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i

Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå

Läs mer

7 Inställning av PID-regulatorer

7 Inställning av PID-regulatorer 7 Intällnng av IDregulatorer 7. IDregulatorer 7. Sekatoner oh retanakrterer. retana (elmnerng av törnngar, börväreöljnng). Stabltet (tabltetmargnal, robuthet) Stabltet har kuterat, retana kan enera å lera

Läs mer

7 Inställning av PID-regulatorer

7 Inställning av PID-regulatorer 7 Intällnng av PID-regulatorer 7. PID-regulatorer 7. Spekatoner oh pretanakrterer. Pretana (elmnerng av törnngar, börväreöljnng). Stabltet (tabltetmargnal, robuthet) Stabltet har kuterat, pretana kan enera

Läs mer

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel

Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...

Läs mer

Övningsexempel och lösningar för. TDDC47 Realtids- och processprogramering

Övningsexempel och lösningar för. TDDC47 Realtids- och processprogramering Övnngexempel och lönngar för DD7 ealtd- och proceprogramerng Mehd mrjoo Jona Elmqvt Inttutonen för datavetenkap (ID) Lnköpng unvertet opyrght 6 Mehd mrjoo . Proceprogrammerng. etrakta följande proceer

Läs mer

ÖVN 15 - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 15 - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 5 - DIFFTRANS - DEL - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Laplacetranformen Differentialekvationer med dikontinuerlig drivande term g(t) Heaviide och δ-funktionen

Läs mer

Centrala Gränsvärdessatsen:

Centrala Gränsvärdessatsen: Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar

Läs mer

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock

Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock Moment 2 - gtal elektronk Föreläsnng 2 Sekvenskretsar och byggblock Jan Thm 29-3-5 Jan Thm F2: Sekvenskretsar och byggblock Innehåll: Sekvenser Latchar och vppor Regster Introdukton - byggblock Kodare

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK49 Optmerngslära Clas Rydergren ITN Föreläsnng 8 Nätverksoptmerng: Nodprser och dualtet för bllgaste väg Mnkostnadsflödesproblemets egenskaper Nätverkssmple Agenda Varanter på bllgaste väg kap 8.4.4

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

Sjukvårdsförsäkringar på en privat marknad

Sjukvårdsförsäkringar på en privat marknad NFT 1/1995 Sjukvårdöräkrngar på en prvat marknad en teoretk analy av normatonaymmetr av cv.ek. Per-Johan Horgby Per-Johan Horgby I Skandnaven nn det en poäng med att betrakta jukvårdöräkrngar ur en ren

Läs mer

Växelström = kapitel 1.4 Sinusformade växelstorheter

Växelström = kapitel 1.4 Sinusformade växelstorheter Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln

Läs mer

Lösningar till tentamen i Reglerteknik

Lösningar till tentamen i Reglerteknik Löningar till tentamen i Reglerteknik Tentamendatum: 8 Juni 205. (a) Välj t.ex. tyrbar kanonik form 5 4 3 ẋ(t) = 0 0 x(t) + 0 u(t) 0 0 0 y(t) = ( 0 ) x(t) (b) Stabilt ytem och tationär förtärkning G(0)

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:

Läs mer

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1

saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1 Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1

Läs mer

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är 9. Magnetsk energ Faradays lag [RM] ger E dφ dt (9.5) dw k IdΦ + RI dt (9.6) Batterets arbete går alltså tll att bygga upp ett magnetskt flöde Φ och därmed motverka den bromsande nducerade spännngen, och

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen

TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen 0/4/04 :4 Dagens föreläsnng Repetton kretselement och samband Tvåpolssatsen TST0 lektronk ffektanpassnng Operatonsförstärkaren (nför labb ) Nodanalys Föreläsnng Kent Palmkvst S, SY 3 Praktska saker Repetton,

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Tentamen Elektronik för F (ETE022)

Tentamen Elektronik för F (ETE022) Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:

Läs mer

Blixtkurs i komplex integration

Blixtkurs i komplex integration Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna

Läs mer

Stabilitetsberäkning av höga byggnader enligt andra ordningens teori

Stabilitetsberäkning av höga byggnader enligt andra ordningens teori tabltetsberäknng a höga bggnader enlgt andra ordnngens teor Jan tenmark -- En balkelare enlgt fgr analseras. n n Fgr. alkelare med frhetsgrader Elementsthetsmatrs för ett element Φ Φ Z (4 µ ) EI ( µ )

Läs mer

Inledning och Definitioner

Inledning och Definitioner Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement

Läs mer

Tentamen i EJ1200 Eleffektsystem, 6 hp

Tentamen i EJ1200 Eleffektsystem, 6 hp Elektro- och ytemteknik Elektrika makiner och effektelektronik Stefan Ötlund 7745 Tentamen i EJ Eleffektytem, 6 hp Den 7 december, 4.-9. Räknedoa och matematik handbok (Beta) får använda. Tentamen kan

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik

Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik Tllämpnngar av dekomposton: Flervaruflödesproblemet v = mn j: x k c k x k xj k = r k för alla N, k C (1) x k b för alla (, j) A (2) j:(j,) A x k 0 för alla (, j) A, k (3) Struktur: Om man relaxerar kapactetsbvllkoren

Läs mer

Tentamen i ETE115 Ellära och elektronik, 16/8 2017

Tentamen i ETE115 Ellära och elektronik, 16/8 2017 Tentmen ETE Ellär och elektronk, 6/8 07 Tllåtn hjälpmedel: Formelsmlng kretsteor. Observer tt uppgftern nte är sorterde svårghetsordnng. All lösnngr skll ges tydlg motverngr. Två metllobjekt bldr en kondenstor.

Läs mer

Kvalitetssäkring med individen i centrum

Kvalitetssäkring med individen i centrum Kvaltetssäkrng med ndvden centrum TENA har tllsammans med äldreboenden Sverge utvecklat en enkel process genom vlken varje enskld ndvd får en ndvduell kontnensplan baserad på hans eller hennes unka möjlgheter

Läs mer

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)

Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t) Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

En studiecirkel om Stockholms katolska stifts församlingsordning

En studiecirkel om Stockholms katolska stifts församlingsordning En studecrkel om Stockholms katolska stfts församlngsordnng Studeplan STO CK HOLM S K AT O L S K A S T I F T 1234 D I OECE S I S HOL M I ENS IS En studecrkel om Stockholm katolska stfts församlngsordnng

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL

Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen i Dataanalys och statistik för I den 5 jan 2016 Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:

Läs mer

Viktigt säkerhetsmeddelande

Viktigt säkerhetsmeddelande ADVIA Centaur -nstrumenten Dmenson Vsta -nstrumenten IMMULITE -nstrumenten CC 17-06.A.OU Januar 2017 Förhöjda resultat patentprover på grund av korsreaktvtet med DHEA- vd progesteronanalys Enlgt våra noterngar

Läs mer

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet

När vi räknade ut regressionsekvationen sa vi att denna beskriver förhållandet mellan flera variabler. Man försöker hitta det bästa möjliga sättet Korrelaton När v räknade ut regressonsekvatonen sa v att denna beskrver förhållandet mellan flera varabler. Man försöker htta det bästa möjlga sättet att med en formel beskrva hur x och y förhåller sg

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07

Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07 Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Delårsrapport 2 2014. Miljö- & hälsoskyddskontoret

Delårsrapport 2 2014. Miljö- & hälsoskyddskontoret Delårrapport 2 Mljö- & hälokyddkontoret 1 Sammanfattnng en för att nämnden kommer att nå de atta verkamhetmålen är god. Kontoret atar under året på att påbörja flera kvaltethöjande projekt för att få effektvare

Läs mer

Delårsrapport 2 2014. Social- och äldrenämnden. Äldre- och omsorgsavdelningen

Delårsrapport 2 2014. Social- och äldrenämnden. Äldre- och omsorgsavdelningen Delårrapport 2 Socal- och äldrenämnden Äldre- och omorgavdelnngen 1 Sammanfattnng I delårrapport 2 per den 31 augut redova målfyllele, ekonomkt reultat och progno för Socal- och äldrenämnden - Kundvalkontoret.

Läs mer

Sammanfattning, Dag 1

Sammanfattning, Dag 1 Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Motion nu satsar vi på landsbygden

Motion nu satsar vi på landsbygden SAM MANTRÄDESPROTOKOLL 19 (48) LEDNINGSUTSKOTTET Sammanträdesdatum 2018-03-20 62 Moton nu satsar v på landsbygden Dnr 2017/8'7 re [NLEDN ING Ulrka Spårebo (S] nkom den 27 februar 2017 med rubrcerad moton.

Läs mer

Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen?

Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen? Föreläning 7 Föreläning 7: Känlighetfunktionen och Stationära fel 4 Februari, 29. 2. Standardkreten 3. Känlighetfunktion Förra veckan Stabilitet är viktigt! yquitkriteriet Im G(iω) Amplitud- och famarginal

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn

VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats

Läs mer

F15 ENKEL LINJÄR REGRESSION (NCT )

F15 ENKEL LINJÄR REGRESSION (NCT ) Stat. teor gk, ht 006, JW F5 ENKEL LINJÄR REGRESSION (NCT.-.4) Ordlta tll NCT Scatter plot Depedet/depedet Leat quare Sum of quare Redual Ft Predct Radom error Aal of varace Sprdgdagram Beroede/oberoede

Läs mer

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Tryserums friskola 20 feb 2014

rm o rs W e d n r: A e n tio stra Illu Grön Flagg-rapport Tryserums friskola 20 feb 2014 Illustratoner: Anders Worm Grön Flagg-rapport Tryserums frskola 20 feb 2014 Kommentar från Håll Sverge Rent 2014-02-20 10:39: Bra jobbat, Tryserums frskola! Det är nsprerande att läsa er rapport och se

Läs mer

TDDC47 Realtids- och processprogrammering. Jourhavande-lärare: Mehdi Amirijoo (Telefonnummer: , ).

TDDC47 Realtids- och processprogrammering. Jourhavande-lärare: Mehdi Amirijoo (Telefonnummer: , ). TENTAMEN TDD7 Realtds- och processprogrammerng Datum: December 006 Td: 8- Lokal: TER Jourhavande-lärare: Mehd Amrjoo (Telefonnummer: 0-89, 07-66996). Hjälpmedel: Poängantal: Engelsk lexkon Mnräknare 0p

Läs mer

Lösningar modul 3 - Lokala nätverk

Lösningar modul 3 - Lokala nätverk 3. Lokala nätverk 3.1 TOPOLOGIER a) Stjärna, rng och buss. b) Nät kopplas ofta fysskt som en stjärna, där tll exempel kablar dras tll varje kontorsrum från en gemensam central. I centralen kan man sedan

Läs mer

Optimering Linjär programmering

Optimering Linjär programmering Optimering Linjär programmering Ett optimeringprolem etår av: En målfunktion, f(), var maimum, eller minimum ka öka. En eller flera -varialer (elutvarialer om man tr över). Eventuellt ockå ett antal ivillkor

Läs mer

Tentamen (TEN1) TMEL53 Digitalteknik

Tentamen (TEN1) TMEL53 Digitalteknik ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à

Läs mer

Handlingsplan. Grön Flagg. Västra Ekoskolan

Handlingsplan. Grön Flagg. Västra Ekoskolan Handlngsplan Grön Flagg Västra Ekoskolan Kommentar från Håll Sverge Rent 2015-03-17 14:07: Vad rolgt att n har jobbat aktvt med Grön Flagg snart 14 år! Handlngsplanen är tydlg och n tar upp flera exempel

Läs mer

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan?

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan? I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur eleverna fått nflytande. Här fnns utrymme för reflektoner från elever

Läs mer

Kompenserande löneskillnader för pendlingstid

Kompenserande löneskillnader för pendlingstid VTI särtryck 361 2004 Kompenserande löneskllnader för pendlngstd En emprsk undersöknng med Svenska data Konferensbdrag från Transportforum 8 9 januar 2003 Lnköpng Gunnar Isacsson VTI särtryck 361 2004

Läs mer

Utbildningsavkastning i Sverige

Utbildningsavkastning i Sverige NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Föreläsning i Elektromagnetisk fältteori: Vektoranalys

Föreläsning i Elektromagnetisk fältteori: Vektoranalys Föreläsnng Elektromagnetsk fältteor: Vektoranalys 1 Inlednng 2 Multplkaton vektorer Koordnatsystem 4 Rumsdervator 5 Teorem, dtteter 6 Övnngsuppgfter Eva Palmberg, Chalmers teknska högskola 1 1 Inlednng

Läs mer

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) =

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) = Matematik Chalmer Tentamen i TMA683/TMA682 Tillämpad matematik K2/Bt2, 28 4 4, kl 4:-8: Telefon: Henrik Imberg, 3-772 5325; Kontaktperon: Mohammad Aadzadeh, 3-772 357 Hjälpmedel: Endat tabell på bakidan

Läs mer

Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253

Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253 Skolnspektonen Utbldnngsdepartementet 2013-11-06 103 33 Stockholm 1 (6) Yttrande över betänkandet Kommunal vuxenutbldnng på grundläggande nvå - en översyn för ökad ndvdanpassnng och effektvtet (SOU 2013:20)

Läs mer

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn

Karlstads universitet Tel 202 Elkraftteknik och kraftelektronik Bilaga 3 Avd. för elektroteknik Asynkronmotorn 1(12) Asynkronmotorn Karltad univeritet Tel 0 Elraftteni och rafteletroni Bilaga Avd. för eletroteni Aynronmotorn 1(1) Aynronmotorn Namn: Godänd laboration: Syfte Du all underöa egenaperna ho en trefa aynronmotor. Underöningen

Läs mer

Tips! KanSerien SE - ASL - ENG HJÄLP v TIPS v INFORMATION. Specialpedagogiska. appar

Tips! KanSerien SE - ASL - ENG HJÄLP v TIPS v INFORMATION. Specialpedagogiska. appar KanSeren SE - ASL - ENG HJÄLP v IPS v INFORMAION Secaledagogka aar SAR Är du rvateron måte du fört tarta en renumeraton nnan du kan tarta rogrammet. Därefter kan du använda rogrammet grat under 14 dagar.

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

Steg 1 Arbeta med frågor till filmen Jespers glasögon

Steg 1 Arbeta med frågor till filmen Jespers glasögon k r b u R pers s e J n o g ö s gla ss man m o l b j a M 4 l 201 a r e t a m tude teg tre s g n n v En ö Steg 1 Arbeta med frågor tll flmen Jespers glasögon Börja med att se flmen Jespers glasögon på majblomman.se.

Läs mer

KOMMISSIONENS DELEGERADE FÖRORDNING (EU) / av den

KOMMISSIONENS DELEGERADE FÖRORDNING (EU) / av den EUROPEISKA KOMMISSIONEN Bryssel den 1.6.2018 C(2018) 3302 fnal KOMMISSIONENS DELEGERADE FÖRORDNING (EU) / av den 1.6.2018 om ändrng av delegerad förordnng (EU) 2015/35 vad gäller beräknngen av lagstadgade

Läs mer

STUDIE- HANDLEDNING KOMVUX Inför ansökan till Komvux KOMVUX

STUDIE- HANDLEDNING KOMVUX Inför ansökan till Komvux KOMVUX STUDIE- HANDLEDNING Inför ansökan tll Komvux KOMVUX 2017-2018 KOMVUX Kontaktuppgfter tll Lärare KOMVUX Studehandlednng 2017-2018 Välkommen att studera på Komvux! På Komvux erbjuder v många olka typer av

Läs mer

Närvarande: Kerstin Johansson, Lilian Andersson, Annika Dahlgren, Susanne Berndtsson. Plats: hemma hos Lilian

Närvarande: Kerstin Johansson, Lilian Andersson, Annika Dahlgren, Susanne Berndtsson. Plats: hemma hos Lilian 1. ':J 6 a'. * # a v* f almakören GOTEBORG Protokoll nr 14/2017-2017-12-07 Blaga 1: Budget mot utfall 2017-11-30 med progno Blaga 2: Att göra ltan per 171207 Blaga 3: Redovnng efterkontroll Ulf Nankler

Läs mer

Generellt ägardirektiv

Generellt ägardirektiv Generellt ägardrektv Kommunala bolag Fastställt av kommunfullmäktge 2014-11-06, 223 Dnr 2014.0450.107 2 Generellt ägardrektv för Fnspångs kommuns drekt eller ndrekt helägda bolag Detta ägardrektv ska antas

Läs mer

Optimalitet, globala minimerare. Betrakta den -dimensionella problemet. Icke-linjär optimering. Om en punkt uppfyller

Optimalitet, globala minimerare. Betrakta den -dimensionella problemet. Icke-linjär optimering. Om en punkt uppfyller Optmatet, gobaa mnmerare Icke-njär optmerng Icke-njär optmerng utan bvkor hanar om att öa probemet ä är en två gånger kontnuergt erverbar funkton Betrakta en -menonea probemet Om en punkt uppfyer äg vara

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,

Läs mer

Gymnasial yrkesutbildning 2015

Gymnasial yrkesutbildning 2015 Statstska centralbyrån STATISTIKENS FRAMTAGNING UF0548 Avdelnngen för befolknng och välfärd SCBDOK 1(22) Enheten för statstk om utbldnng och arbete 2016-03-11 Mattas Frtz Gymnasal yrkesutbldnng 2015 UF0548

Läs mer

Mos. Statens väg- ochtrafi V" NationalRoad&Traffic Research Institute- $-58101Li: Lä & t # % p. i E d $ åv 3 %. ISSN

Mos. Statens väg- ochtrafi V NationalRoad&Traffic Research Institute- $-58101Li: Lä & t # % p. i E d $ åv 3 %. ISSN f y ä M f ; * I) > t ; + Mos -2'2 2 42/9 halkat :4 11980) S l a,th 4. VD /-/ N =0O0U% 2 ISSN 0347-6049 S 3 ä at HP 3 TP Fa e s % Statens väg- ochtraf V" NatonalRoad&Traffc Research Insttute- $-58101L:

Läs mer

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss?

Att identifiera systemviktiga banker i Sverige vad kan kvantitativa indikatorer visa oss? Att dentfera systemvktga banker Sverge vad kan kvanttatva ndkatorer vsa oss? Elas Bengtsson, Ulf Holmberg och Krstan Jönsson* Författarna är verksamma vd Rksbankens avdelnng för fnansell stabltet. Elas

Läs mer

DAGLIGVARUPRISERNA PÅ ÅLAND

DAGLIGVARUPRISERNA PÅ ÅLAND Rapport 2000:1 DAGLIGVARUPRISERNA PÅ ÅLAND - EN KOMPARATIV ANALYS I pdf-versonen av denna rapport saknas enkätblanketterna (blaga 2). En fullständg rapport pappersformat kan beställas från ÅSUB, tel. 018-25490,

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

ökar arbetslösheten i alla länder, men i USA sker tilbakagången snabbare

ökar arbetslösheten i alla länder, men i USA sker tilbakagången snabbare Europeik arbetlöhet numera generellt högre än i USA. Vid lågkonjunktur ökar arbetlöheten i alla länder, men i USA ker tilbakagången nabbare än i typikt Europeikt land. Från att ha legat på en tabil, internationellt

Läs mer

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0.

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson 1999-09-03 Rev 1.0 AKTIVA FILTER Laboration E42 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Handlingsplan. Grön Flagg. Saxnäs skola

Handlingsplan. Grön Flagg. Saxnäs skola Handlngsplan Grön Flagg Saxnäs skola Kommentar från Håll Sverge Rent 2015-01-05 09:27: Jättefnt att n jobbat utfrån elevernas önskemål när n satt hop er handlngsplan för att måna om deras nflytande. N

Läs mer

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010

Tentamen i Tillämpad matematisk statistik för MI3 och EPI2 den 15 december 2010 Tentamen Tllämpad matematsk statstk för MI och EPI den december Uppgft : Ett företag som tllverkar batterer av en vss typ har tllverknng förlagd tll två olka fabrker. Fabrk A står för 7% av tllverknngen

Läs mer

Digital signalbehandling Sampling och vikning

Digital signalbehandling Sampling och vikning Intitutionen ör data- och elektroteknik Digital ignalbehandling --9 Sampling Då vi tuderar en vanlig analog ignal, t ex med hjälp av ett (analogt) ocillokop, å kan vi vid varje tidpunkt regitrera hur ignalen

Läs mer

på fråga 6 i tävlingen för matematiklärare. 'l.

på fråga 6 i tävlingen för matematiklärare. 'l. påståendet nte gäller för alla Betrakta sdan AB och dagonalen D ;~var på fråga 6 tävlngen för matematklärare. 'l. Jag böjar med att vsa att antalet dagonaler en n-hömng är n(n-3)/2.. 2..j ' :., Bevs: Frän

Läs mer

TENTAMEN Datum: 11 feb 08

TENTAMEN Datum: 11 feb 08 TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

i = 1. (1.2) (1.3) eller som z = x + yi

i = 1. (1.2) (1.3) eller som z = x + yi Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.

Läs mer

för alla i Landskrona

för alla i Landskrona , den 3 september LANDSKRDlHLA 2015 STAD K015/[\flUf STYRELSEN 201509 0 7 Ank. Darenr. ldossenr. Moton: Utrymme för alla Regerngen beslutade antalet maj 2008 nleda ett urbant bostadråden männskor de mest

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem

Lösning till till tentamen i EIEF10 Elmaskiner och drivsystem Lög tll tll tetame EIEF0 Elmaer och drvytem 04 05 30. Ltrömmae, tatoär drft E eletrt mageterad ltrömmotor har följade data agva på märylte: P = 000 W, = 5000 rpm, U a = 0 V, I a = 0 A och I f = 0.5 A.

Läs mer

Passiva filter. Laboration i Elektronik E151. Tillämpad fysik och elektronik UMEÅ UNIVERSITET Ulf Holmgren. Ej godkänd. Godkänd

Passiva filter. Laboration i Elektronik E151. Tillämpad fysik och elektronik UMEÅ UNIVERSITET Ulf Holmgren. Ej godkänd. Godkänd Tillämpad fysik och elektronik UMEÅ UNIVESITET Ulf Holmgren LABOATION Analog elektronik 961219 Passiva filter Laboration i Elektronik E151 Namn Namn Ej godkänd Datum Datum Godkänd Datum PASSIVA FILTE -

Läs mer

Handlingsplan. Grön Flagg. Bosgårdens förskolor

Handlingsplan. Grön Flagg. Bosgårdens förskolor Handlngsplan Grön Flagg Bosgårdens förskolor Kommentar från Håll Sverge Rent 2015-08-11 14:16: Det är nsprerande att läsa hur n genom röstnng tagt tllvara barnens ntressen när n tagt fram er handlngsplan.

Läs mer