7 Inställning av PID-regulatorer
|
|
- Pernilla Lund
- för 6 år sedan
- Visningar:
Transkript
1 7 Intällnng av PID-regulatorer 7. PID-regulatorer 7. Spekatoner oh pretanakrterer. Pretana (elmnerng av törnngar, börväreöljnng). Stabltet (tabltetmargnal, robuthet) Stabltet har kuterat, pretana kan enera på lera ätt, krterer kan ormulera antngen tplanet eller rekvenplanet. Här behanlar v nte rekvenplanpekatoner. 7.. Stegvarpekatoner Då man egnar en återkoppla regulator, år man ota något om lknar ett anra ornngen ytem. Bl.a. överläng, tgt oh nvängnngt kan använa om pretanakrterer. Dämpnngaktorn är även en möjlg egn-parameter, typka rekommenatoner: 0.45 < ζ < 0. 7 ( ζ örekommer) 7.. Felntegralpekatoner Pretana kan även enera me hjälp av elntegraler..ex. ISE (Integral Square Error) IAE (Integral Abolute Error) 0 et () 0 t e( t) t ISE (Integral me Square Error) te( t) IAE (Integral me Abolute Error) t e( t) t 0 0 t 8-
2 Exempel 7.. Antag att v har en luten kret ωn ( ), y( ) ( ) r( ) ζωn ωn v ett anra ornngen ytem. Den naturlga rekvenen ω n påverkar ej mnmet ör elntegralerna om ntegratongränen kala me ω n, t.ex. 0 / ω n. Däremot beror elntegralerna på ämpnngaktorn ζ, vlket llutrera öljane gur IAE*ω n 3.5 IAE*ω n 3.5 ISE*ω n.5 ISE*ω n ζ Fgur. Felntegraler ör anra ornngen ytem me olka vären på ζ. Felntegral Dämpnngaktor ζ Rel. överläng ISE % ISE % IAE % IAE % 8-
3 7.3 Stegvarbaera ntällnng av PID-regulatorer Förutätt att proeen kan bekrva om ett örta ornngen ytem me öt: L e ( ) Unerämpae ytem kan ota rätt bra approxmera på etta ätt me hjälp av enterng rån tegvar, t.ex. me moerae tangentmetoen. I amtlga ntällnngrekommenatoner nean använ kvoten mellan öten oh tkontanten om en parameter: L 7.3. Zegler-Nhol rekommenatoner Främt ör kontantreglerng (elmnerng av törnngar), helt bör gälla 0. < <. 0. abell 7. Zegler-Nhol tegvarbaerae regulatorntällnngar Regulatortyp P PI PID L -..0L 0.5L 8-3
4 7.3. Cohen-Coon rekommenatoner Cohen-Coon rekommenatoner har gjort me amma målättnng om Zegler-Nhol, rekommenatoner, nämlgen att å ett tegvar var vängnngar avtar me en järeel/vängnng. abell 7. Cohen-Coon tegvarbaerae regulatorntällnngar Regulatortyp P PI 0.9 L PD PID L L 3 4 L 8-4
5 7.3.3 Rekommenatoner av Chen, Hrone oh Rewk Målättnngen ör ea rekommenatoner är att ge nabbate regulator utan överläng (.v.. 0 %), amt nabbate regulatorn me 0 % överläng. Man ärkljer okå här på typ av reglerng. abell 7.3 CHR tegvarbaerae regulatorntällnngar ör öljereglerng Överl.: 0% 0% Reg. typ. P PI PID L L abell 7.4 CHR tegvarbaerae regulatorntällnngar ör kontantreglerng Överl.: 0% 0% Reg. typ P PI PID L L 0.4L L -. L 0.4L 8-5
6 7.3.4 IAE-optmala rekommenatoner Smth, Murrll oh mearbere har utveklat rekommenatoner ör PID-parametrar om approxmatvt mnmerar olka elntegraler, bl.a. IAE, ISE oh IAE. Man ärkljer okå här på typen av reglerng; otat örelå örktgare ntällnngar ör öljereglerng än kontantreglerng. Igen är 0. < <. 0 önkvärt. abell 7.5 IAE tegvarbaerae regulatorntällnngar Reg. typ. yp av reglerng P ontant. 084 PI Följe PI ontant PID Följe PID ontant
7 7.4 Moellbaera regulatoregn Me moellbaera mena här att regulatorn å genom algebraka manpulatoner av moellen. Detta är ganka nrktat på öljereglerng,.v.. e ger nygga tegvar men kan blan ge ålg törnngelmnerng Drekt ynte av regulator r - u p y Överörngunktonen rån börväret r tll utgnalen y y p p r r är är en önkae överörngunktonen (även kalla komplementär känlghetunkton). Man kan peera oh beräkna en regulator om realerar etta: p Ota vll man att kall vara ett örta ornngen ytem me gven tkontant 8-7
8 Regulatorn nnehåller p, vlket kan ge problem: ) Om ytemet p är ke-mnmum a (nnehåller en öt eller negatv täljartkontant), å bör man antngen a) ta bort ke-mnmum aelen öre nverterngen b) ta me ke-mnmum aelen, å att en tar ut ytemet ke-mnmum ael. ) an lea tll regulator me täljarpolynom me högre gratal än nämnarpolynomet. Detta kan åtgära genom att höja ornngen på, t.ex. n ( ) n är n är tllräklgt tort. 3) Intabla ytem (ger ett mnmum-krav på ) I all a) är ett alternatv att approxmera en öt L moellen, t.ex. e L L I all b) måte en eventuell öt approxmera (all man vll ha en regulator utan öt). Man kan t.ex. använa e L L eller L (Paé) L e L 8-8
9 Exempel 7.. Degna en regulator ör ytemet me rekt ynte. önka. p ( ) L e Ekvatonen p kulle rekt ge regulatorn, om nte ytemet kulle vara kemnmum-a. V tetar e olka alternatven om gav ör att löa etta: Alt: V tar bort öten Vlket är en PI-regulator me oh. Alt: V approxmerar öten moellen me ett örta ornngen ytem ( )( L ) L ( L) L L ( L ) ( L ) v en PID-regulator me L L, L oh L. 8-9
10 Alt3: V approxmerar öten en önkae moellen L L a) e L,, vlket ger L L ( L ) L ( L ) L ( L ) ( L) Detta är en PI-regulator me b) e L ( L) oh 0.5L 0.5L,, vlket ger 0.5L ( )(0.5L ) 0.5L ( )(0.5L ) ( )(0.5L ) ( 0.5L ) 0.5L ( )(0.5 L ). 0.5 L (0.5 L ) (0.5 L ( L) ) 0.5 L (0.5 L ) ( L ) 0.5 L L (0.5 L ) 0.5L ( L ) (0.5 L ) (0.5 L ) 0.5 L L Detta är en lågpaltrera PID-regulator, om okå kan krva om om en PID-regulator me ltrera D-verkan. 8-0
11 Smulerng me 0,, L oh Fgur: Alt helragen, alt punkt-treka, alt3a treka, amt alt3b punktera. Börväret även punkterat. Parametrar, omräknae tll ltrerng av D-verkan: D Alt Alt Alt 3a Alt 3b
12 Internal Moel Control (IMC) IMC lknar välgt myket rekt ynte, oh e ger ota ekvvalenta regulatorer (peellt ör mnmumaytem). På amma ätt om rekt ynte har man rheten att peera en lutna kreten tkontant. abell 7.6 ger parametrar ör en ltrera PID-regulator D ) ( Denna är ekvvalent me en PID-regulator (om 0 > D ) τ τ τ κ D PID ) ( om enat ltrerar D-elen, om τ τ τ κ,,, ) (. Det rekommenera att välj å att 0 <, oh om man har en öt L å rekommenera att L > 8. 0.
13 abell 7.6 PID-motvargheter ör IMC-regulatorer A B C D Moell ( )( ) ( ς ) - - ς ς ς E ( β ) β - β β F ( β ) β ( β )( ) β ( β ) ( ς ) ς β β β β β β ς β ς β Ovan är β >
7 Inställning av PID-regulatorer
7 Intällnng av IDregulatorer 7. IDregulatorer 7. Sekatoner oh retanakrterer. retana (elmnerng av törnngar, börväreöljnng). Stabltet (tabltetmargnal, robuthet) Stabltet har kuterat, retana kan enera å lera
Lektion 9. Teori. Bilinjär transformation. Byggblock Integratorer. Parasitkapacitanser. SC-filter Leapfrogfilter. LDI-transformation ----
Uppgfter (Lekton):.7 Uppgfter (ek.): Teoretka moment: S-flter Teor Byggblock Integratorer De vktgate byggblocken om använd S-flter är amma typ av kretar om för de tdkontnuerlga fltren, dv ummerande ntegratorer.
Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel
Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...
Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i
Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå
Lösningsförslag till tentamen i TSRT19 Reglerteknik Tentamensdatum: Svante Gunnarsson
Löningförlag till tentamen i TSRT9 Reglerteknik Tentamendatum: 207-0-03 Svante Gunnaron. (a) Styrignaler: Gapådrag, rattvinkel Utignaler: Hatighet, poition på vägbanan Störignaler: Vind, uppför-/nedförbackar
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
TSRT09 Reglerteori. Sammanfattning av Föreläsning 4. Sammanfattning av Föreläsning 4, forts. Sammanfattning av Föreläsning 4, forts.
Reglerteori 217, Föreläning 5 Daniel Axehill 1 / 28 Sammanfattning av Föreläning 4 TSRT9 Reglerteori Föreläning 5: Regulatortrukturer och reglerprinciper Daniel Axehill Reglerteknik, ISY, Linköping Univeritet
3. Algoritmer för samplande reglering
3. Samplane reglerng 3. Samplane reglerng 3. Algortmer för samplane reglerng Prnpen för samplane reglerng Bloket Samplng tar emot kontnerlga sgnaler y ( o r ( samt skretserar em tll talföljer y ( t o r
Lösningar till tentamen i Reglerteknik
Löningar till tentamen i Reglerteknik Tentamendatum: 8 Juni 205. (a) Välj t.ex. tyrbar kanonik form 5 4 3 ẋ(t) = 0 0 x(t) + 0 u(t) 0 0 0 y(t) = ( 0 ) x(t) (b) Stabilt ytem och tationär förtärkning G(0)
8.2.2 Bodediagram System av första ordningen K
8.2.2 Bodediagram System av första ordningen K ( s) =, K > Ts + A R ( ω) = ( jω) = K + ( ωt ) ϕ ( ω) = ( jω) = artan( ωt ) Detta kan framställas grafiskt i ett Bodediagram, där det normerade amplitudförhållandet
Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen?
Föreläning 7 Föreläning 7: Känlighetfunktionen och Stationära fel 4 Februari, 29. 2. Standardkreten 3. Känlighetfunktion Förra veckan Stabilitet är viktigt! yquitkriteriet Im G(iω) Amplitud- och famarginal
Industriell reglerteknik: Föreläsning 6
Föreläsningar 1 / 15 Industriell reglerteknik: Föreläsning 6 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
REGLERTEKNIK. Formelsamling
REGLERTEKNIK Formelamling Intitutionen för reglerteknik Lund teknika högkola Juni 27 2 Matriteori Beteckningar Matri av ordning m x n a a 2 a n a 2 a 22 a 2n A =. a m a m2 a mn Vektor med dimenion n x
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. umregelmetoder Bodediagram (Kompenseringsfilter) Simulering MALAB-programmet Simulink
Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.
Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 28 april 20, kl. 8.00-3.00 Plats: Gimogatan 4 sal 2 Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 9.30 och
Systemteknik/Processreglering F2
Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Tordag 3 oktober 04, kl. 3.00-6.00 Plat: Fyrilundgatan 80, Sal Anvarig lärare: Kjartan Halvoren, tel. 073-776 090. Tillåtna hjälpmedel: Kurboken (Glad-Ljung), miniräknare,
Reglerteknik I: F3. Tidssvar, återkoppling och PID-regulatorn. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F3 Tidssvar, återkoppling och PID-regulatorn Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 12 Poler och tidssvar Stegsvar u(t) G y(t) Modell Y (s) = G(s)U(s) med överföringsfunktion
Specifikationer i frekvensplanet ( )
Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet
Optimalitet, globala minimerare. Betrakta den -dimensionella problemet. Icke-linjär optimering. Om en punkt uppfyller
Optmatet, gobaa mnmerare Icke-njär optmerng Icke-njär optmerng utan bvkor hanar om att öa probemet ä är en två gånger kontnuergt erverbar funkton Betrakta en -menonea probemet Om en punkt uppfyer äg vara
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. Tumregelmetoder Bodediagram (Kompenseringsfilter) Simulering MATLAB-programmet
Digital signalbehandling Sampling och vikning
Intitutionen ör data- och elektroteknik Digital ignalbehandling --9 Sampling Då vi tuderar en vanlig analog ignal, t ex med hjälp av ett (analogt) ocillokop, å kan vi vid varje tidpunkt regitrera hur ignalen
Test av anpassning, homogenitet och oberoende med χ 2 - metod
Matematsk statstk för STS vt 00 00-05 - Bengt Rosén Test av anpassnng, homogentet och oberoende med χ - metod Det stoff som behandlas det fölande återfnns Blom Avsntt 7 b sdorna 6-9 och Avsntt 85 sdorna
Automationsteknik Implementering av diskret PID-regulator 1(9)
Automationteni Implementering av iret PID-regulator 1(9) Laboration Implementering av iret PID-regulator En PID-regulator an ontruera me enbart analog eletroni. Doc vill man ofta integrera fler funtioner
Reglerteknik Z / Bt/I/Kf/F
Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre
Sjukvårdsförsäkringar på en privat marknad
NFT 1/1995 Sjukvårdöräkrngar på en prvat marknad en teoretk analy av normatonaymmetr av cv.ek. Per-Johan Horgby Per-Johan Horgby I Skandnaven nn det en poäng med att betrakta jukvårdöräkrngar ur en ren
Välkomna till TSRT19 Reglerteknik Föreläsning 7
Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften
PARTIKELDYNAMIK Def.: En partkel är ett föremål vars utsträcknng saknar betydelse för dess rörelse. (Ej rotaton!) (YF kap. 1.2) Def. : Dynamk = Studer av vad som orsakar rörelse. (YF kap. 4) Observaton:
Tillämpningar av dekomposition: Flervaruflödesproblemet. Flervaruflödesproblemet: Lagrangeheuristik
Tllämpnngar av dekomposton: Flervaruflödesproblemet v = mn j: x k c k x k xj k = r k för alla N, k C (1) x k b för alla (, j) A (2) j:(j,) A x k 0 för alla (, j) A, k (3) Struktur: Om man relaxerar kapactetsbvllkoren
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 mars 05, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare,
Kort introduktion till Reglerteknik I
Kort introduktion till Reglerteknik I Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars egenskaper vi vill studera/styra. Vi betraktar system som har
Blixtkurs i komplex integration
Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna
Design av en ångmaskinsregulator och ett interaktivt användargränsnitt
Deign av en ångmakinregulator och ett interaktivt använargrännitt S E F A N R Y D B A C K Mater of Science hei Stockholm, Sween 2004 IR-R-EX-0408 Sammanfattning Denna rapport behanlar examenarbetet Deign
Industriell reglerteknik: Föreläsning 3
Industriell reglerteknik: Föreläsning 3 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 19 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
Lead-lag-reglering. Fundera på till den här föreläsningen. Fasavancerande (lead-) länk. Ex. P-regulator. Vi vill ha en regulator som uppfyller:
TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby Sammanfattning av föreläsning 6 Regulatorsyntes
Partikeldynamik. Dynamik är läran om rörelsers orsak.
Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)
Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd
TSIU61: Reglerteknik. Lead-lag-regulatorn. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 ˆ Sammanfattning av
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
SOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
8.2.2 Bodediagram System av första ordningen K =, antages K > 0
8. Frekvensanalys 8.2 Grafiska representationer av frekvenssvaret 8.2.2 Bodediagram System av första ordningen K G ( s) =, antages K > 0 Ts + A R ( ω) = G( jω) = K + ( ωt ) ϕ( ω) = arg G( jω) = arctan(
PID-regulatorn. Föreläsning 9. Frekvenstolkning av PID-regulatorn. PID-regulatorns Bodediagram
PID-regulatorn Frekvenstolkning Inställningsmetoder Manuell inställning Ziegler Nichols metoder Modellbaserad inställning Praktiska modifieringar Standardkretsar Föreläsning 9 Rekommenderad läsning: Process
Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem
Rs) + Σ Es) Regulator G s) R Us) Process G s) P Ys) Figur : Blockdiagram för ett typiskt reglersystem Något om PID-reglering PID-regulatorn består av proportionell del, integrerande del och deriverande
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 7 december 205, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: ursboken(glad-ljung), miniräknare,
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Förberedelse INSTALLATION INFORMATION
Förberedelse 1 Materalet tll Pergo trägolv levereras med llustrerade anvsnngar. I texten nedan ger v förklarngar tll llustratonerna, som kan delas upp tre områden: Förberedelser, Läggnng och Rengörng.
A
Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du
TENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Undersökning av inställningsmetoder för PID-regulatorer
Undersökning av inställningsmetoder för PID-regulatorer A study of methods for tuning PID-controllers Examensarbete i Elektroingenjörsprogrammet SUSANNE LUNDELL Institutionen för Signaler och System CHALMERS
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun
Lektion 8 Specialfall, del I (SFI) Rev 20151006 HL
Lekton 8 Specalfall, del I (SFI) Rev 0151006 HL Produktvalsproblem och cyklsk planerng Innehåll Nvå 1: Produktval (LP-problem) (SFI1.1) Cyklsk planerng, produkter (SFI1.) Nvå : Maxmera täcknngsbdrag (produktval)
Slumpvariabler (Stokastiska variabler)
Slumpvarabler Väntevärden F0 Slutsatser från urval tll populaton Slumpvarabler (Stokastska varabler) En slumpvarabel är en funkton från utfallsrummet tll tallnjen Ex kast med ett mynt ggr =antalet krona
Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering
Optimering av styrsystem för DC-servo
ISRN UTH-INGUTB-EX-E-08/0-SE Examenarbete 5 h Februar 08 Otmerng av tyrytem ör DC-ervo Eml Åberg Abtract Otmzaton o control ytem or DC ervo Eml Åberg Teknk- naturvetenkalg akultet UTH-enheten Beökadre:
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.
TSIU6 Föreläsning 4 Gustaf Hendeby HT 207 / 22 Innehåll föreläsning 4 TSIU6: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se ˆ Sammanfattning av föreläsning
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 4 Gustaf Hendeby HT1 2017 1 / 22 Innehåll föreläsning 4 ˆ Sammanfattning av föreläsning
Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006
INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter
Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen.
Reglering Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Regulator eller reglerenhet används för att optimera
VALUE AT RISK. En komparativ studie av beräkningsmetoder. VALUE AT RISK A comparative study of calculation methods. Fredrik Andersson, Petter Finn
ISRN-nr: VALUE AT RISK En komparatv stude av beräknngsmetoder VALUE AT RISK A comparatve study of calculaton methods Fredrk Andersson, Petter Fnn & Wlhelm Johansson Handledare: Göran Hägg Magsteruppsats
Bras-Spisen, ett bra val till din öppna spis!
Bras-Spsen, ett bra val tll dn öppna sps! Bras-Spsen nsats var före sn td när den kom ut på marknaden mtten av 80-talet. Eldnngsteknken och rökkanalsystemet skyddades under många år av tre olka patent.
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta
Reglerteknik Ö6. Köp övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik Ö6 öp övninghäfte på kårbokhndeln . Stbilitet Vilk proceer är tbil? y y 6y x x b y 6y 8y x c y y y x 4x d y y y y u 5u e y 7 y y 4y u u f y y y 6y u 7u g h 6 4 . löning, Stbilitet y y 6y x
SIMULINK. Introduktion till. Grunderna...2. Tidskontinuerliga Reglersystem. 6. Uppgift Appendix A. Symboler 14
Intitutionen för Tillämpad Fyik och elektronik Umeå Univeritet BE Verion: 02-03-09 TFEA3 Introduktion till SIMULINK Grunderna....2 Tidkontinuerliga Reglerytem. 6 Uppgift.. 3 Appendix A. Symboler 4 Introduktion
Reglerteori. Föreläsning 5. Torkel Glad
Reglerteori. Föreläsning 5 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 4 Kalmanlter Optimal observatör Kräver stokastisk modell av störningarna Kräver lösning av
Tentamen i mekanik TFYA16
TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen
F9: Elementär motorreglering (EMS-Kap 11) och Varvtalsreglering (PE-Kap 9)
F9: Elementär motorreglerng EMS-Kp och Vrvtlreglerng PE-Kp 9 Allmänt om motorreglerng I de flet ppltoner med roternde elmner efterträvr nvändren: En önd poton potonreglerng Ett önt vrvtl vrvtlreglerng
TENTAMEN Reglerteknik I 5hp
Denna tentamen gäller Reglerteknik I 5hp ör F3. På sista sidan av tentamen inns ett örsättsblad, som ska yllas i och lämnas in tillsammans med dina lösningar. TENTAMEN Reglerteknik I 5hp Tid: Lördag 19
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88
Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport 09:88 Mkael Ameln, Calle Englund, Andreas Fagerberg September 2009 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
ETE115 Ellära och elektronik, tentamen oktober 2007
(0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
Sammanfattning, Dag 1
Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma
Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253
Skolnspektonen Utbldnngsdepartementet 2013-11-06 103 33 Stockholm 1 (6) Yttrande över betänkandet Kommunal vuxenutbldnng på grundläggande nvå - en översyn för ökad ndvdanpassnng och effektvtet (SOU 2013:20)
STATISTISKA CENTRALBYRÅN
STATISTISKA CENTRALBYRÅN 2013-04-12 1(7) Kalibreringsrapport 1 Inlening I en urvalsunersöning är allti sattningarna behäftae me urvalsfel beroene på att enast en elmäng (urval) av populationen stueras.
Reglerteknik Ö6. Köp övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik Ö6 öp övninghäfte på kårbokhndeln Willim Sndqvit willim@kth.e . Stbilitet Vilk proceer är tbil? y y 6y x x b y 6y 8y x c y y y x 4x d y y y y u 5u e y 7 y y 4y u u f y y y 6y u 7u g h 6 4 Willim
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl
KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand
odeller och storlekarw
odeller och storlekarw Bras-Spsen, ett bra val tll dn öppna sps! Bras-Spsen nsats var före sn td när den kom ut på marknaden mtten av 80-talet Eldnngsteknken och rökkanalsystemet skyddades under många
Moment 2 - Digital elektronik. Föreläsning 2 Sekvenskretsar och byggblock
Moment 2 - gtal elektronk Föreläsnng 2 Sekvenskretsar och byggblock Jan Thm 29-3-5 Jan Thm F2: Sekvenskretsar och byggblock Innehåll: Sekvenser Latchar och vppor Regster Introdukton - byggblock Kodare
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
REGLERTEKNIK Laboration 3
Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell
TNK049 Optimeringslära
TNK49 Optmerngslära Clas Rydergren ITN Föreläsnng 8 Nätverksoptmerng: Nodprser och dualtet för bllgaste väg Mnkostnadsflödesproblemets egenskaper Nätverkssmple Agenda Varanter på bllgaste väg kap 8.4.4
Mätfelsbehandling. Lars Engström
Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man