EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 031 VÄRMEÖVERFÖRING, version 2017
|
|
- Erika Hellström
- för 6 år sedan
- Visningar:
Transkript
1 EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 03 VÄRMEÖVERFÖRING, verson 07 KAP 9,, Värelednng och forcerad konvekton a) Vad enas ed ett sotropt ateral? b) Vad enas ed ett hoogent ateral? Defnera terska dffusvteten a sat ange sorten (enheten) på alla ngående storheter 3 Härled värelednngsekvatonen för ett sotropt ateral ett rättvnklgt (x,y,z)- koordnatsyste 4 Varför är värekonduktvteten för flytande etaller allänhet större än för vanlga vätskor? 5 Beskrv vad so enas ed krtsk solerngstjocklek 6 Härled den dfferentalekvaton so bestäer teperaturfördelnngen en rektangulär fläns sat forulera randvllkoren 7 Härled den dfferentalekvaton so bestäer teperaturfördelnngen en rak trangulär fläns sat forulera randvllkoren 8 Härled vllkor för att flänsar skall vara lönsaa att använda (Rektangulära flänsar; gvet) 9 För en rektangulär kylfläns gäller för väreflödet att tanh( b Z L) där / b Härled uttrycken för flänsverknngsgraderna och 0 För rektangulära och trangulära flänsar gäller för en sk optal fläns Q L c b / b Hur lyder opterngskrteret? En plan vägg (värekonduktvtet ) ed tjockleken b avkyls på öse sdor av en flud so på stora avstånd har teperaturen t f Inut väggen genereras ett väre (W/ 3 ) lkforgt O väreövergångskoeffcenten är, bestä ett uttryck för axala teperaturen väggen Härled hur teperaturen ändras so funkton av tden för en kropp ed ycket god värelednngsföråga o kroppen avkyles geno påtvngad konvekton 3 Vsa att teren A cv vd nstatonär värelednng kan skrvas A cv B Fo 4 Defnera B- och Fo-odulen sat ange sorten (enheten) för de ngående storheterna 5 Vd lösnngen av den nstatonära och endensonella värelednngen en plan platta ed åttlg värekonduktvtet fås so ellanled lösnngen på foren
2 t t f e ( Acos x Bsn x) Vsa vlka resultat randvllkoren vd leder tll x 0 (syetr) och x L (konvektv avkylnng) 6 Vd tvådensonell nstatonär värelednng gäller bland att lösnngen tll teperaturfältet kan fås so produkten av två endensonella lösnngar Ange under vlka förutsättnngar 7 Defnera väreövergångskoeffcenten Ange sorten (enheten) 8 Vad enas ed en Newtonsk flud? 9 Defnera Reynolds tal 0 Härled teperaturfältsekvatonen för en flud rörelse Fluden kan anses vara nkopressbel och statonära förhållanden får antagas Defnera Pr-talet sat ange sorten (enheten) på ngående storheter Defnera Nusselts tal Nu sat ange sorten (enheten) på ngående storheter 3 Forulera lkforghetslagen vd påtvngad konvektv väreöverförng 4 Tolka resultaten Fgur 7-9 och förklara vad so händer då ( v w / ) Re 0 69 U x u/u (vw/u ) Re x 0 Blow-off at Vad enas ed tersk nloppsträcka? y Re x/ x 6 Defnera begreppet hydraulsk daeter 7 Betrakta ett crkulärt rör där ytteperaturen är konstant lka ed, t w En flud ed en lkforg nloppsteperatur ströar röret t Härled den dfferentalekvaton so beskrver teperaturfältet det ströande edet Hastghetsfältet kan antas fullt utbldat varvd gäller r u R u 8 Defnera bulkteperaturen t B
3 9 Vsa att bulkteperaturen ökar lnjärt ed kanallängden då väreflödet vd kanalväggarna är q w = konstant 30 Vd konvektv väreövergång crkulera rör gäller bland NuD = 3656 och bland NuD = 4364 Ange under vlka vllkor respektve forel gäller 3 Ange tre egenskaper so karaktärserar turbulent strönng t 3 O q cp ( / Pr / Prt ) och y foren St=CF/ 33 Defnera den turbulenta vskosteten turbulenta Prandtl-talet 34 Defnera frktonshastgheten u ( u * ) u ( ), härled Reynolds analog på y och den turbulenta dffusvteten q sat det 35 Vd väreöverförng ett turbulent gränsskkt eller turbulent rörströnng nförs en densonslös teperatur enlgt T ( tw t) c q w p u * Ange vad de ngående storheterna representerar sat genoför härlednngen av att T f ( y ) 36 Defnera Stanton-talet St (grundforen) sat ange sorten (enheten) på ngående storheter 37 Beskrv hur väreövergångskoeffcenten (NuD) varerar längs perfern på en tub eller en crkulär cylnder vd låga ReD (< 40) respektve höga ReD (>0 5 ) 38 Vad enas ed lnjearrangeang respektve förskjutet arrangeang vd tubknppen tvärströnng? 39 Defnera hastgheten uax vd tubknppen 40 Ange hur tryckfallet bestäes för ett tubknppe lnjearrangeang NATURLIG KONVEKTION, KAP 0 4 Defnera Grashofs tal Gr vd naturlg konvekton uted en vertkal vägg vlken har en konstant väggteperatur ( Tw konstant) 4 Vsa att Gr/Re fyskalskt kan tolkas so förhållandet ellan gravtatonskrafterna och tröghetskrafterna 43 Vsa att volyutvdgnngskoeffcent är lka ed /T för en deal gas vd naturlg konvekton 44 Vad enas ed Boussnesqs approxaton? 45 Defnera Raylegh talet Ra 46 Beskrv hur väreutbytet ellan två vertkala plattor beräknas då edet ellan plattorna har en denstet so är starkt teperaturberoende TERMISK STRÅLNING, KAP 47 Vad enas ed en svart kropp?
4 48 Vad enas ed en grå kropp? 49 a) Defnera vnkelfaktorn b) Ange det sk reproctetssabandethärled det saband so gäller ellan transttans, absorptans and reflektans F ellan två kroppar 50 Härled sabandet ellan transtans, absorptonsföråga och reflektonsföråga 5 Vsa att vd strålnngsutbyte ellan väggarna ett slutet ru gäller o väggytorna är dffusa A A F k k E J B J J k 5 Härled Beer's lag för gasstrålnng, dvs I I e ax o KONDENSATION, KAP 3 53 Ange Nusselts förenklngar (antaganden) vd flkondensaton 54 Härled hastghetsfördelnngen kondensatskktet vd en vertkal yta 55 Defnera Jacobs tal och ange vad det fyskalskt representerar 56 Ange två sätt att underlätta droppkondensaton 57 Beskrv hur kondensaton av ånga kan ske nut ett horsontellt rör 58 Kondensaton sker huvudsak på två sätt Vlka? KOKNING, FÖRÅNGNING KAP 4 59 Beskrv Nukyaas experent 60 Beskrv den sk kokkurvan 6 Vad nnebär flkoknng 6 Bestä den sk jävktsraden för en ångbubbla 63 Bestä Taylorvåglägden T ha densonsanalys 64 Vad enas ed Helholtz nstabltet? 65 Defnera Weber-talet 66 Ange tre typer av tvåfasströnng av gas-vätska so kan förekoa horsontella rör 67 Saa so 8 fast vertkala rör 68 Defnera, X F, X S, ug, uf, ugs, uf S 69 Beskrv hur tryckfallet beräknas ed Lockhardt-Martnells etod vd soter tvåfasströnng 70 Defnera Martnell-paraetern 7 Defnera tvåfasultplkatorn f VÄRMEVÄXLARE, KAP 5
5 7 Ange två sätt efter vlka väreväxlare kan klassfceras 73 Hur tas hänsyn tll försutsnng av väreväxlare? 74 Vad är krteret för att en väreväxlare skall anses vara kopakt 75 Förklara LMTD-etoden för väreväxlardesgn 76 Beskrv -NTU-etoden för analys av väreväxlare 77 Defnera, NTU, LMTD 78 Varför bör nte korrektonsfaktorn F väljas < 075? 79 Härled ett uttryck för verknngsgraden C, C, NTU), för en otströs- ( n ax väreväxlare 80 Förklara flödena på antelsdan en tubväreväxlare, enlgt Fguren nedan 8 Vad enas ed en regeneratv väreväxlare?
EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 031 VÄRMEÖVERFÖRING, 2014
EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 03 VÄRMEÖVERFÖRING, 04 KAP 9,, Värelednng och forcerad konvekton a) Vad enas ed ett sotropt ateral? b) Vad enas ed ett hoogent ateral? Defnera terska dffusvteten a sat
Härled uttrycken för flänsverkningsgraderna η och ϕ. 15. För rektangulära och triangulära flänsar gäller för en s.k.
EXEMPEL PÅ TEORIFRÅGOR I KURSEN MMV 03 VÄRMEÖVERFÖRING KAP 9,, Värmelednng och forcerad konvekton a) Vad menas med ett sotropt materal? b) Vad menas med ett homogent materal? Defnera termska dffusvteten
Biomekanik, 5 poäng Masscentrum
Boekank, 5 poäng Masscentru Masscentru Tyngdpunkt Spelar en central roll no såväl statk so dynak. Masscentru tllhör de storheter an använder för att sna beräknngar beskrva en kropp sn helhet. Istället
Optimering av underhållsplaner leder till strategier för utvecklingsprojekt
Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77
Partikeldynamik. Dynamik är läran om rörelsers orsak.
Partkeldynamk Dynamk är läran om rörelsers orsak. Tung och trög massa Massa kan defneras på två sätt. Den ena baserar sg på att olka massor attraheras olka starkt av jordens gravtaton. Att två massor är
SVÄNGNINGAR Odämpad svängning för ett diskret system med en frihetsgrad.
SVÄNGNINGA Odäpad svängnng för e dsre sse ed en frhesgrad. r svängnng jäder [N/] Sas jävsläge. [g ] [ ] & & : & & & So har lösnngen; Bsn C cos Lösnngen nnebär; Vnelhasgheen rad/s och svängnngsfrevensen
Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.
Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Strömning och varmetransport/ varmeoverføring
Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds
2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg
Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet
Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006
INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter
MMV031 VÄRMEÖVERFÖRING. Information för teknologer. vårterminen 2011
MMV031 VÄRMEÖVERFÖRING Information för teknologer vårterminen 2011 Lund febr 2011 2 Kursens syfte Kursen syftar till att ge eleverna kunskap om och förståelse för mekanismerna för värmeöverföring och de
Centrala Gränsvärdessatsen:
Föreläsnng V såg föreläsnng ett, att om v känner den förväntade asymptotska fördelnngen en gven stuaton så kan v med utgångspunkt från våra mätdata med hjälp av mnsta kvadrat-metoden fnna vlka parametrar
Spänningsfallet över en kondensator med kapacitansen C är lika med q ( t)
Tllämnngar av dfferentalekvatoner, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen nedanstående LR krets (som nnehåller element en sole med nduktansen L henry, en motstånd
Mätfelsbehandling. Medelvärde och standardavvikelse
Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger
Mätfelsbehandling. Lars Engström
Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man
Kappa Problem 5
Piotr Badziag, Kjell Höyland Grillska gynasiet, Årstaängsvägen 33, 117 43 Stockhol Kappa 2014 - Proble 5 I det här probleet betraktas n stora rutnät av rektangulära, där avser antalet rader och n antaler
Experimentella metoder 2014, Räkneövning 5
Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och
Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad
1 KOMIHÅG 6: --------------------------------- Momentlag Tröghetsmoment ---------------------------------- Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas
Sammanfattning, Dag 1
Sammanfattnng, Dag 1 V började med en sammanfattnng om vad v redan hade lärt oss från Matematk I Sedan fortsatte v (nästan punkt för punkt) resonera vad v skulle kunna göra mer och vsade vart v kunde komma
MMV031 VÄRMEÖVERFÖRING. Information för teknologer. vårterminen 2014
MMV031 VÄRMEÖVERFÖRING Information för teknologer vårterminen 2014 Lund jan 2014 2 Kursens syfte Kursen syftar till att ge eleverna kunskap om och förståelse för mekanismerna för värmeöverföring och de
LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B
GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,
ETE115 Ellära och elektronik, tentamen oktober 2007
(0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är
BILAGOR. till KOMMISSIONENS DELEGERADE FÖRORDNING
EUROPEISKA KOMMISSIONEN Bryssel den 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 BILAGOR tll KOMMISSIONENS DELEGERADE FÖRORDNING o ändrng och rättelse av delegerad förordnng (EU) 2017/655 o kopletterng av
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
Blixtkurs i komplex integration
Blxtkurs komplex ntegraton Sven Spanne 7 oktober 998 Komplex ntegraton Vad är en komplex kurvntegral? Antag att f z är en komplex funkton och att är en kurva det komplexa talplanet. Man kan då beräkna
Beräkna standardavvikelser för efterfrågevariationer
Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.
TENTAMEN Datum: 11 feb 08
TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126
Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något
Dokumentation kring beräkningsmetoder använda för prisindex för elförsörjning (SPIN 35.1) inom hemmamarknadsprisindex (HMPI)
STATISTISKA CENTRALBYRÅN Dokumentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Dokumentaton krng beräknngsmetoder använda för prsndex för elförsörjnng (SPIN 35.) nom hemmamarknadsprsndex (HPI) Indextalen
PARTIKELDYNAMIK Def.: partikel utsträckning saknar betydelse Def. : Dynamik orsakar växelverkan kraft, F nettokraften
PARTIKELDYNAMIK Def.: En partkel är ett föremål vars utsträcknng saknar betydelse för dess rörelse. (Ej rotaton!) (YF kap. 1.2) Def. : Dynamk = Studer av vad som orsakar rörelse. (YF kap. 4) Observaton:
Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )
Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd
Skolbelysning. Ecophon, fotograf: Hans Georg Esch
Skolbelysnng Ecophon, fotograf: Hans Georg Esch Skolan är Sverges vanlgaste arbetsplats. En arbetsplats för barn, ungdomar och vuxna. Skolmljön ska skapa förutsättnngar för kreatvtet och stmulera nlärnng.
Flode. I figuren har vi också lagt in en rät linje som någorlunda väl bör spegla den nedåtgående tendensen i medelhastighet för ökande flöden.
Hast Något om enkel lnjär regressonsanalys 1. Inlednng V har tdgare pratat om hur man anpassar en rät lnje tll observerade talpar med hjälp av den s.k. mnsta kvadratmetoden. V har också berört hur man
Del A Begrepp och grundläggande förståelse.
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda
Energitransport i biologiska system
Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym
5.4 Feluppskattning vid lösning av ekvationssystem.
Vetenskaplga beräknngar III 58 5.4 Feluppskattnng vd lösnng av ekvatonssystem. V har tdgare påpekat, att pvot -elementen bör vara olka noll, för att man skall kunna tllämpa Gauss elmnerngsmetod. Men det
Förstärkare Ingångsresistans Utgångsresistans Spänningsförstärkare, v v Transadmittansförstärkare, i v Transimpedansförstärkare, v i
Elektronk för D Bertl Larsson 2013-04-23 Sammanfattnng föreläsnng 15 Mål Få en förståelse för förstärkare på ett generellt plan. Kunna beskrva olka typer av förstärkare och krav på dessa. Kunna förstå
Stela kroppars rörelse i ett plan Ulf Torkelsson
Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns
EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING tisdagen kl
1 EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING tisdagen 2016-03-15 kl 14.00-19.00 Teoridelen löses först utan hjälpmedel och inlämnas till vakten, varefter hjälpmedlen får användas
USEFUL PRESSURE LOSS CALCULATION IN COMPLEX DISTRICT HEATING NETWORKS
USEFUL PRESSURE LOSS CALCULATION IN COMPLEX DISTRICT HEATING NETWORKS JONAS ROSLUND Master s thess 015:E34 Faculty of Engneerng Centre for Mathematcal Scences Numercal Analyss CENTRUM SCIENTIARUM MATHEMATICARUM
Tentamen i mekanik TFYA16
TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen
Inledning och Definitioner
Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement
Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa
LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL
2B1116 Ingenjörsmetodik för IT och ME, HT 2006 Omtentamen Måndagen den 15:e jan, 2007, kl. 15:00-20:00
(5) B6 Ingenjörsetod för IT och ME, HT 006 Otentaen Måndagen den 5:e jan, 007, l. 5:00-0:00 Nan: Personnuer: Srv tdlgt! Srv nan och ersonnuer å alla nlänade aer! Ma ett tal er aer. Ansvarg lärare: Gunnar
PTG 2015 Övning 4. Problem 1
PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser
Beställningsintervall i periodbeställningssystem
Handbok materalstyrnng - Del D Bestämnng av orderkvantteter D 41 Beställnngsntervall perodbeställnngssystem Ett perodbeställnngssystem är ett med beställnngspunktssystem besläktat system för materalstyrnng.
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
Förklaring:
rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas
Finansiell Riskhantering: Derivatinstrument och portföljvalsteori
L I N K Ö P I N G S U N I V E R S I T ET H T 1 1 I N S T I T U T I O N E N F Ö R E K O N O M I S K O C H I N D U S T R I E L L U T V E C K L I N G G Ö R A N H Ä G G O C H I N G E R A S P Fnansell Rskhanterng:
på två sätt och därför resultat måste vara lika: ) eller ekvivalent
Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas
Jämviktsvillkor för en kropp
Jämvktsvllkor för en kropp Det förekommer ofta stuatoner där man önskar bestämma vlka vllkor som måste uppfyllas för att en fast kropp skall förbl stllastående, dvs. befnna sg jämvkt. Den här delen av
EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING torsdag kl
1 EXAM IN MMV031 HEAT TRANSFER, TENTAMEN I KURSEN MMV031 VÄRMEÖVERFÖRING torsdag 2015-06-04 kl 14.00-19.00 Teoridelen löses först utan hjälpmedel och inlämnas till vakten, varefter hjälpmedlen får användas
-rörböj med utloppsmunstycke,
S Rörböj 80 Givet: Horisontell 80 kpa at 80 -rörböj ed utlosunstycke A 600 (inlo) A 650 (fritt utlo) at 00 kpa volyflöde V 0475 /in vatten 0 C hoogena förhållanden över tvärsnitt friktionseffekter kan
TNK049 Optimeringslära
TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk
TFYA16: Tenta Svar och anvisningar
160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:
N A T U R V Å R D S V E R K E T
5 Kselalger B e d ö m n n g s g r u vattendrag n d e r f ö r s j ö a r o c h v a t t e n d r a g Parameter Vsar sta hand effekter Hur ofta behöver man mäta? N på året ska man mäta? IPS organsk Nngspåver
Date/Datum 2014-02-25 Issue/Utgåva 2
STD10000-4 Rutn planerade avbrott Ttle/Rubrk Rut-179-1007 Fle name/flnamn Approved by/godkänt av (tjänsteställebetecknng namn) Issued by/utfärdat av (tjänsteställebetecknng namn telefon) QFD Dck Erksson
Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)
Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).
i = 1. (1.2) (1.3) eller som z = x + yi
Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.
LJUSETS REFLEKTION OCH BRYTNING. Att undersöka ljusets reflektion i plana speglar och brytning i glaskroppar.
LJUSETS REFLEKTION OCH BRYTNING Uppgft: Materel: Att undersöka ljusets reflekton plana speglar och rytnng glaskroppar. Rätlock av glas Halvcylndrsk skva av glas Plan spegel Korkplatta Knappnålar. -papper
Globalt experiment under KEMINS ÅR. Saltvatten
Globalt experient under KEMINS ÅR Saltvatten I det här dokuentet finns en beskrivning av Saltvattenuppgiften, so är en del av det globala experientet so genoförs under KEMINS ÅR 2011. Nästan allt vatten
Snabbguide. Kaba elolegic programmeringsenhet 1364
Snabbgude Kaba elolegc programmerngsenhet 1364 Innehåll Informaton Förpacknngsnnehåll 3 Textförklarng 3 Ansvar 3 Skydd av systemdata 3 Frmware 3 Programmera Starta och Stänga av 4 Mnneskort 4 Exportera
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 5 juni 2009 kl
KH HÅFASHESÄRA entamen FE för ngenjörstllämpnngar (SE5) den 5 jun 9 l. 8-. Resultat ommer att fnnas tllgänglgt senast den jun. Klagomål på rättnngen sall vara framförda senast en månad därefter. OBS! entand
Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y
F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v
Dödlighetsundersökningar på KPA:s
Matematsk statstk Stockholms unverstet Dödlghetsundersöknngar på KPA:s bestånd av förmånsbestämda pensoner Sven-Erk Larsson Eamensarbete 6: Postal address: Matematsk statstk Dept. of Mathematcs Stockholms
ENKEL LINJÄR REGRESSION
Fnansell statstk, vt 0 ENKEL LINJÄR REGRESSION Ordlsta tll NCT Scatter plot Dependent/ndependent Least squares Sum of squares Resdual Ft Predct Random error Analyss of varance Sprdnngsdagram Beroende/oberoende
FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff
FÖRDJUPNINGS-PM Nr 6. 20 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15- Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng
Handlingsplan. Grön Flagg. Hamregårds förskola
Handlngsplan Grön Flagg Hamregårds förskola Kommentar från Håll Sverge Rent 2016-03-30 08:43: Vlket härlgt vattentema n ska arbeta med tllsammans med barnen och strålande att n utgått från barnens ntresse
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,
Tentamen i Miljökemi (TFKE47) Fredag 26 april 2013, kl. 08:00-12:00
Lnköngs unverstet Insttutnen för Fysk, Kem ch Blg (IFM) entamen Mlökem (FKE47) Fredag 26 arl 203, kl. 08:00-2:00 llåtna hälmedel: Mnräknare, ev. erdskt system (Perdskt system, tabell över fyskalska knstanter,
2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00
(4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.
Bestämning av kornstorleksfördelning VV Publ. 1998:68 1 genom siktningsanalys. 1 Orientering 2. 2 Sammanfattning 2.
Bestäning av kornstorleksfördelning VV Publ. 1998:68 1 Innehåll 1 Orientering 2 2 Saanfattning 2 3 Benäningar 2 4 Säkerhetsföreskrifter 2 5 Utrustning 3 6 Provängder 4 7 Provning 4 7.1 Siktning av aterial
TDDC47 Realtids- och processprogrammering. Jourhavande-lärare: Mehdi Amirijoo (Telefonnummer: , ).
TENTAMEN TDD7 Realtds- och processprogrammerng Datum: December 006 Td: 8- Lokal: TER Jourhavande-lärare: Mehd Amrjoo (Telefonnummer: 0-89, 07-66996). Hjälpmedel: Poängantal: Engelsk lexkon Mnräknare 0p
FK2002,FK2004. Föreläsning 5
FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd
Balansering av vindkraft och vattenkraft i norra Sverige. Elforsk rapport 09:88
Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport 09:88 Mkael Ameln, Calle Englund, Andreas Fagerberg September 2009 Balanserng av vndkraft och vattenkraft norra Sverge Elforsk rapport
LUJA-STOLPFUNDAMENT PRISLISTA FÖR BRUNNSRINGAR 2015
LUJA-STOLP PRISLISTA FÖR BRUNNSRINGAR 2015 Från oc ed 1.12.2014 utan förbindelse ersätter prislistan 1.12.2014 1. FÖR BELYSNINGSSTOLPAR Fastsättning av stolpen ed ställbultar. Skyddsguin på sida 5. I STOLPHÖJD
Arbetslivsinriktad rehabilitering för sjukskrivna arbetslösa funkar det?
NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Uppsats fortsättnngskurs C Författare: Johan Bjerkesjö och Martn Nlsson Handledare: Patrk Hesselus Termn och år: HT 2005 Arbetslvsnrktad rehablterng för
TNK049 Optimeringslära
TNK49 Optmerngslära Clas Rydergren ITN Föreläsnng 8 Nätverksoptmerng: Nodprser och dualtet för bllgaste väg Mnkostnadsflödesproblemets egenskaper Nätverkssmple Agenda Varanter på bllgaste väg kap 8.4.4
Diverse underlag för utformning och dimensionering för maskinprogrammet
009 nov/hjo Dverse underlag för utformnng och dmensonerng för masknprogrammet Hans Johansson 009 009 aug./hjo INNHÅ Inlednng... 3 Hållfasthetslära, fasta kroppars beteende vd belastnng... 5 Spännngskomponenter
Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08
Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag
Optimering i samband med produktionsplanering av, och materialförsörjning vid, underhåll av flygmotorer
Optmerng samband med produktonsplanerng av, och materalförsörjnng vd, underhåll av flygmotorer Nclas Andréasson 1 och Torgny Almgren 2 1. Matematk Chalmers teknska högskola 412 96 Göteborg 31-772 53 78
Hur bör en arbetsvärderingsmodell
Hur bör en arbetsvärderngsmodell specfceras? en analys baserad på mångdmensonell beslutsteor Stg Blomskog Johan Brng RAPPORT 2009:19 Insttutet för arbetsmarknadspoltsk utvärderng (IFAU) är ett forsknngsnsttut
TSTE20 Elektronik 01/24/ :24. Dagens föreläsning. Praktiska saker. Repetition, storheter. Repetition kretselement och samband Tvåpolssatsen
0/4/04 :4 Dagens föreläsnng Repetton kretselement och samband Tvåpolssatsen TST0 lektronk ffektanpassnng Operatonsförstärkaren (nför labb ) Nodanalys Föreläsnng Kent Palmkvst S, SY 3 Praktska saker Repetton,
Lösningar till problemtentamen
KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna
Växelström = kapitel 1.4 Sinusformade växelstorheter
Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln
6 Vägledning till övningar
6 Vägledning till övningar Deforation 1.2 Tag reda på längden, L, avdcefter deforationen. Använd att töjningen =(L L o )/L o. Ibland underlättar det att använda L =(1+ )L o. Studera den rätvinkliga triangeln
Strömning och varmetransport/ varmeoverføring
Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination
Tentamen Elektronik för F (ETE022)
Tentamen Elektronk för F (ETE022) 20060602 Tllåtna hjälpmedel: formelsamlng kretsteor. Tal 1 Fguren vsar en förstärkarkopplng med en nsgnal v n = v n (t) = cos(ωt). a: Bestäm utsgnalen v ut (t). C 1 b:
Utbildningsavkastning i Sverige
NATIONALEKONOMISKA INSTITUTIONEN Uppsala Unverstet Examensarbete D Författare: Markus Barth Handledare: Bertl Holmlund Vårtermnen 2006 Utbldnngsavkastnng Sverge Sammandrag I denna uppsats kommer två olka
Konstruktion av kvantfältteori i diskretiserad form med tillämpning på universums inflationsfas
Kanddatarbete Konstrukton av kvantfältteor dskretserad form med tllämpnng på unversums nflatonsfas Författare: Jmmy Ljungberg Handledare: Conny Sjögren Examnator: Magnus Paulsson Datum: 14--1 Kurskod:
Behovet av praktikplatser är stort och som kommun behöver vi föregå med gott exempel!
Motion o behovet av praktikplatser. Behovet av praktikplatser är stort och so koun behöver vi föregå ed gott exepel! En praktikplats kan betyda otroligt ycket för den enskilda individen. För några kan
Tentamen (TEN1) TMEL53 Digitalteknik
ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à
Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy
Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn
Utbildningsdepartementet Stockholm 1 (6) Dnr 2013:5253
Skolnspektonen Utbldnngsdepartementet 2013-11-06 103 33 Stockholm 1 (6) Yttrande över betänkandet Kommunal vuxenutbldnng på grundläggande nvå - en översyn för ökad ndvdanpassnng och effektvtet (SOU 2013:20)
Övning 2 Fotometri. Många nya enheter/storheter att hålla koll på. Här är en sammanfattning!
Övnng 2 Fotometr Många nya enheter/storheter att hålla koll på. Här är en sammanfattnng! Rymdvnkel: Som en vanlg vnkel, fast 3D. Används för att beskrva hur rktat ljuset är. Skrvs Ω. Enhet: steradaner
a) B är oberoende av A. (1p) b) P (A B) = 1 2. (1p) c) P (A B) = 1 och P (A B) = 1 6. (1p) Lösningar: = P (A) P (A B) = 1
Lösnngar tll tentamen: Matematsk statstk och sgnalbehandlng (ESS0), 4.00-8.00 den 4/-009 Examnator: Serk Sagtov (Kursansvarg: Ottmar Crone) Tllåtna hjälpmedel: Tabell "Beta", utdelad formelsamlng, valfr
Konstruktionsuppgift 1 G7006B. Sofi Isaksson Lea-Friederike Koss Henrik Silfvernagel
Kontruktonuppgft 1 G7006B Sof Iakon Lea-Frederke Ko Henrk Slfvernagel 1 1. Inlednng... 3 2. Beräknngar... 4 2.1 Metod 1, töd 2... 4 2.2 Metod 1, töd 3... 5 2.3 Metod 2, töd 2... 5 2.4 Metod 2, töd 3...