Bilg 1. Beskrivning v uppgiftern oh provresultten 1997-00 I det följnde redoviss lydelsen på de olik uppgifter som ingår i testet oh resulttet för de fyr år som testet hittills hr nvänts. Härigenom kn mn gör jämförelser melln olik årgångrn teknologer. Syftet är tt även i frmtiden nvänd smm test för tt kunn följ utveklingen v nyörjrns mtemtikkunskper. Mot denn kgrund är det viktigt tt informtion om uppgiftern i provet evrs inom den grupp som tr del v denn rpport oh tt den inte sprids till elever i gymnsieskoln. För tt inte förstör möjligheten tt gör jämförelser melln olik årgångr KTHteknologer är det okså viktigt tt test-uppgiftern inte nvänds i prov eller övningr för elever i gymnsieskoln eller ndr skolor (motsv) som utildr studernde som skll läs vid universitet eller högskol. Vd innehåller provet? Det ör frmhålls tt det givn provet inte svrr mot de förkunskper som ehövs för tt kunn följ studiern i ivilingenjörsprogrmmen. Inte heller gör provet något nspråk tt täk det mtemtikstoff som de nylivn teknologern hr träfft på under sin tidigre studier i grundskol oh gymnsieskol. Istället kn mn se provet mer som ett test inför studiern i mtemtik, som på något sätt visr i vilken riktning mn kommer tt gå i den kommnde undervisningen. Klrt är i ll fll tt provet testr kunskper oh färdigheter som mn på KTH nser vr viktig för de fortstt studiern. Det ktuell provet innehåller smmnlgt 14 uppgifter. Någr v dess är kopplde till vrndr (som oh uppgifter på smm prolem). Vrje uppgift eller deluppgift edöms med 1, 0,5 eller 0 poäng. Smmnlgt kn mn få 14 poäng på provet. Vid nlysen i det följnde v resultten för de olik uppgiftern i provet nvänds här egreppet lösningsfrekvens. d v s ndelen utdelde poäng v ntlet möjlig. Kommentrer till de olik uppgiftern Uppgift 1: Förenkl ( ) ( ) till högst ett råkstrek i svret. 89 90 87,6 84, 79,3 78,1 Som synes hr lösningsfrekvensen gått ner från. 90 proent de två först åren till under 80 proent de två senste åren. 7
Kommentr: Duelråk är en klssiker som oft skpr prolem även för studenter på högskolenivå. Denn uppgift är dok v den llr enklste typen. Den löses lämpligen genom tt mn multiplierr täljre oh nämnre i det stor råket med. Därefter förkorts de små råken vr för sig. Slutligen förkorts (dividers täljre oh nämnre) med : ( ) ( ) = = = = Ett nnt sätt tt lös uppgiften är tt mn erinrr sig tt division med ett råk är det smm som multipliktion med råkets invers: ( ) ( ) = = = Uppgift nr : Bestäm x ur ekvtionen x x + = 1 3 89 91 88,0 87,1 8,6 81,9 Från en lösningsfrekvens på strx under 90 proent skedde ett rs år 001 till. 8 proents lösningsfrekvens. Kommentr: Uppgiften är v grundskolekrktär. Den kn löss genom tt åd leden i ekvtionen multipliers med 6: x x 6x 6x + = 1 + = 6 3x + x = 6 5x = 6 x = 3 3 6 5 Mn kn okså ryt ut x vilket leder till uppgiften tt dder 1 oh 1 3 : x x 1 1 5 6 + = 1 x 1 x 1 x 3 + 3 = 6 = = 5 8
Uppgift nr 3 Deriver 99 ( x + 1)( x + ) 7 74 71,1 67,8 60,9 56,8 en hr minskt från strx över 70 proent under 1990-tlet till något över 55 proent innevrnde år. Kommentr: Uppgiften förutsätter tt den svrnde kn deriver ett polynom (vilket vnligen hör till kurs C i gymnsieskoln). Innn mn kn deriver måste mn multiplier ihop de två inomen: ( )( ) ( ) 99 100 99 99 98 D x + 1 x + = D x + x + x + = 100x + 99x + Mn kn okså deriver de två fktorern som de står med hjälp v deriveringsregeln för en produkt (kurs D från gymnsieskoln). Dett upplevs nog v de skrivnde som mer vnert : ( + )( + ) = ( + )( + ) + ( + ) ( + ) = ( + ) + ( + ) D x 1 x D x 1 x x 1 D x x x 1 99x 99 99 99 99 98 99 99 98 99 98 = x + + 99x + 99x = 100x + 99x + För tt kunn lös uppgiften på det enklste sättet måste mn dels identifier oh kunn skriv uttryket som ett polynom dels kunn deriver ett sådnt. Snnolikt är det den först delen som mn hr misst på. Det kräver en förtrogenhet med (oh knske okså förståelse för) mtemtisk uttryk, medn den ndr delen v uppgiften (tt deriver ett polynom) är en mer meknisk kunskp. Uppgift 4: I figuren ser du en rätvinklig tringel med sidolängdern, oh oh vinkeln x. x 4. Uttryk sin x oh os x i, oh. 4. Uttryk i oh. 4. Uttryk sin x i enrt oh. ) 88 89 88,0 85,0 81,0 76,7 ) 90 91 90,6 89,1 8,1 79,0 ) 15 19 13,4 10,4 8,0 7,5 På uppgiftern oh hr lösningsfrekvensen minskt från kring 90 proent under de tre åren på 1990-tlet till under 80 proent år 00. en på uppgift hr hlverts från 15 proent år 1997 till 7,5 proent år 00. 9
Kommentr: Uppgiftern oh hör hemm i kurs A i gymnsieskoln (snnolikt krävs det r grundskolekunskper för tt lös dem). Uppgift ) frågr efter det smnd som är mest fundmentlt om mn vill nvänd sinus oh osinusfunktionern i geometrin. (Ilnd nvänds dess smnd som definitionen v de trigonometrisk funktionern): sin x = ; os x = Svret i uppgift ) följer direkt ur Pythgors sts: = + I uppgiften ) krävs dels tt mn kommer ihåg formeln för sinus för dul vinkeln, dels tt mn nvänder resulttet i uppgift ) för tt ersätt sin x oh os x oh resulttet i uppgift ) för tt eliminer : sin x = sin x os x = = = + Uppgift 5: Då mn löser ekvtioner så säger mn ilnd tt mn flyttr över oh yter teken. (Ex x + 4 = 3 ger x = 3 4 ). Förklr vrför mn kn gör så. 76 76 78,1 73, 73,1 75, en hr vrit stil kring 75 proent under hel provperioden Kommentr: Uppgiften förväntr sig tt den svrnde känner till (eller hr förstått ) tt snningsvärdet för en likhet (i dett fll en ekvtion) inte förändrs om mn sutrherr (eller dderr) åd leden med smm uttryk. ( Eller: ett sätt tt lös en ekvtion är tt minsk åd leden med smm uttryk ). Egentligen orde det okså krävs tt den svrnde kn gör ett formellt evis för överflyttningsstsen för en godtyklig ekvtion innehållnde x : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) f x + g x = h x f ( x) + g x g x = h x g x f x = h x g x Snnolikt hr det vid rättningen inte krävts en generell ehndling enligt ovnstående för tt få full poäng på uppgiften. Uppgift 6: 75 00 100 Ordn följnde tl i växnde storleksordning: 10,, 8. 3 10 3 (Ledning: = 8, 10. ) 45 49 45,6 4, 36,0 31,8 1998 löstes denn uppgift v hälften v ll provdeltgre. År 00 löstes den v en tredjedel. 30
Kommentr: Uppgiften kräver dels tt den svrnde i enkl fll kn hnter potensräkneregeln: ( ) = dels tt hn/hon kn orgniser ehndlingen v de tre uttryken oh nvänd ledningrn till tt gör om det först oh det tredje tlet till potenser v : ( ) ( ) ( ) ; ( ) 10 = 10 = 8 = = 75 3 5 10 5 50 100 3 100 300 Dett medför tt 00 75 100 < 10 < 8 Uppgift 7: Hr ekvtionen x = os x någon lösning? I så fll hur mång? Svr oh motivering: 10 11 10,0 9,1 8,4 8,4 Efter en lösningsfrekvens kring 10 proent de först åren hr resulttet minskt någr proentenheter. Kommentr: Dett är den uppgift som tillsmmns med uppgift 4 hr lägst lösningsfrekvens v smtlig. Uppgiften är tänkt tt löss grfiskt. Mn söker ntlet skärningspunkter melln kurvorn y = x oh y = os x. Det är möjligt tt studentern i gymnsieskoln någon gång hr sett en liknnde uppgift, men det vnlig hr nog vrit tt mn studert ntlet skärningspunkter melln en kurv oh x-xeln. För tt lös uppgiften krävs därför ntingen vd mn skulle kunn kll mtemtisk llmänildning eller tt mn kn översätt formler till kurvor oh dessutom hr ett visst mått v kretivt tänknde. Uppgift 8: ( ) = ( ) Kedjeregeln för derivering säger tt om h( x) f g( x) ( ) ( ) ( ) (Ex: om ( ) h x e x = så är h x g x f g x. = kn vi välj ( ) = oh ( ) f x e x g x = x ) 8: Vd är derivtn v e x? 8: Finn funktioner f ( x) oh g( x) så tt sin x f g( x) ( ) =. ) 54 65 59,4 54,1 46,8 4,6 ) 5 7,7 0,8 17, 15,9 Den krftig försämringen sedn provet år 000 v resulttet på uppgiften 8 är nmärkningsvärd. Kommentr: Kedjeregeln introduers i kurs D i gymnsieskoln. I formuleringen v uppgiften nger mn okså formeln för kedjeregeln oh ger okså i ledningen preis uppgifter om hur mn skll välj funktionern f oh g för tt formeln skll kunn nvänds i uppgift 8. 31
uppgift 8. Det är möjligt tt denn ledning hr vrit svår tt förstå oh tt mång v dem som löst uppgift 8 snrre gått på tidigre inlärd ( meknisk ) deriveringsregler (med inre derivt o.s.v.): x x De = e x Ett rgument för en sådn slutsts är tt etydligt färre än de som löste uppgift 8 klrde v uppgift 8, där mn skulle vis tt mn förstått den givn formeln genom tt sätt: ( ) ( ) f x = x ; g x = sin x En förklring till tt inte så mång hr klrt uppgiften 8 kn vr tt mn skriver f ( x) med f y oh ( ) g x så tt är det möjligt tt fler hde kunnt lös uppgiften. Erfrenhetern visr tt även efter högskolestudier i mtemtik hr mång studenter svårigheter tt hnter uppgifter v den typ som ges i 8. x som vriel. Om mn istället hde skrivit: Finn funktioner ( ) Uppgift 9 Summn v de först udd tlen eskriver ett enkelt mönster: Vis tt mönstret fortsätter tt stämm, t ex genom tt motiver vrför (Ledning Titt på prikkvdrtern till höger.) 1 = 1, 1+ 3 =, 1+ 3 + 5 = 3.. 1+ 3 + 5+... + 199 = 100.. 36 35 37,9 33,4 5,8 9,9 Jämfört med utveklingen för mång v de ndr uppgiftern är minskningen v lösningsfrekvensen på denn uppgift reltivt måttlig. Kommentr: Uppgiften löses t ex genom tt mn, inspirerd v figuren, oserverr tt [ ] [ ] [ ] [ ] 1+ 3 + 5 + 7... + 199 = 1+ 1+ ( 1+ 1) + 1+ ( + ) + 1+ ( 3 + 3) +... + 1+ ( 99 + 99) 100 1 1 3 99 100 99 1 + = * + ( + + +... + ) = + * * 99 = 100 + 100 * 99 = 100 * 100 = 100 Ett nnt sätt är tt tänk sig figuren utyggd till 100 vinkelhkeformde lger som innehåller 1,3 5. 199 småkvdrter (ntlet småkvdrter ökr med för vrje steg). Smtidigt är figuren en kvdrt estående v 100*100 småkvdrter. Dett evisr påståendet. Formeln för ritmetisk summ som nvändes i eviset, förekommer i kurs C i gymnsieskoln. I övrigt är uppgiften snrst ett test på vd mn skulle kunn kll mtemtisk mognd oh mtemtisk kretivitet. Dessutom krävs noggrnnhet oh försiktighet för tt håll red på hur de lång summeringrn slutr o.s.v. 3
Uppgift 10: Om x oh y är positiv reell tl så gäller som eknt tt ( xy) = ( x) + ( y) ln ln ln Din uppgift är tt evis dett genom tt endst utnyttj följnde tre regler (som du inte ehöver evis): ln x (i) e = x om x > 0 x+ y x y (ii) e = e e om x, y är reell tl (iii) e x y = e om oh endst om x = y 18 3 19,8 16, 10,0 1,1 Efter en reltivt krftig förättring v resulttet melln år 1997 oh år 1998 hr det skett en suessiv nedgång i lösningsfrekvensen. Kommentr: Den nturligste lösningen är tt mn konstterr tt de först påståendet (i) ger Av dett följer med hjälp v (ii) Från dett följer från (iii) tt e ln x e ln y ln xy = x, e = y oh e = xy ln xy = xy = e e = e ln x ln y ln x + ln y ( xy) = ( x) + ( y) ln ln ln Denn typ v uppgifter, där det gäller tt läs oh tolk en mtemtisk text oh nvänd den på ett systemtiskt (oh knske okså kretivt) sätt är v erfrenhet svår. Det gäller åde på gymnsienivån oh på högskolenivån. Å ndr sidn är det en typ v kunskper som är viktig åde för den som fortsätter med studier i mtemtik oh för den som fortsätter i olik ämnen inom teknik, nturvetenskp oh smhällsvetenskp. 33
Uppgift 11. Bevis Pythgors sts genom tt utnyttj figuren 4 47 46,9 45, 3, 3,0 Efter fyr år med ett resultt kring 45 proent rsde lösningsfrekvensen år 001 till strx över 30 proent. Kommentr: Det förväntde eviset är det som mn vnligen nvänder i undervisningen: Den stor kvdrtens re kn skrivs på två sätt, vilket ger + = + 4 * ( ) Utvekling v kvdrten i vänstr ledet (med hjälp v först kvdreringsregeln) ger ( + ) = + 4 * + + = + 4 * + = Mindre än hälften v de skrivnde (sedn år 001 t o m mindre än en tredjedel) klrde denn uppgift. Snnolikt hr dok de llr flest sett eviset någon gång under sin skoltid även om de inte nu kunnt reproduer det. 34