Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Relevanta dokument
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )

Ur en kortlek på 52 kort väljer man ( utan återläggning och utan hänsyn till ordning) slumpvis 5 kort. Vad är sannolikheten för att få

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

TENTAMEN HF1006 och HF1008

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

aug 2017 Kurskod HF1012 Halilovic internet. Betygsgränser: För (betyg Fx). Sida 1 av 13

Differentialekvationssystem

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

Om exponentialfunktioner och logaritmer

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2

AMatematiska institutionen avd matematisk statistik

TENTAMEN Datum: 14 feb 2011

Föreläsning 19: Fria svängningar I

FREDAGEN DEN 21 AUGUSTI 2015, KL Ansvarig lärare: Helene Lidestam, tfn Salarna besöks ca kl 15.30

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

Lösningar till Matematisk analys IV,

Tentamensskrivning i Matematik IV, 5B1210.

AMatematiska institutionen avd matematisk statistik

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

Om exponentialfunktioner och logaritmer

Informationsteknologi

Reglerteknik AK, FRT010

FÖRDJUPNINGS-PM. Nr Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

1 Elektromagnetisk induktion

Demodulering av digitalt modulerade signaler

Hur simuleras Differential-Algebraiska Ekvationer?

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Lektion 4 Lagerstyrning (LS) Rev NM

TENTAMEN I MATEMATISK STATISTIK 19 nov 07

Signal- och bildbehandling TSBB14

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Om antal anpassningsbara parametrar i Murry Salbys ekvation

KONTROLLSKRIVNING 2 Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic Datum: 14 apr 2014 Skrivtid: 13:15-15:00

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

TISDAGEN DEN 20 AUGUSTI 2013, KL Ansvarig lärare: Helene Lidestam, tfn Salarna besöks ca kl 9

Uppgift 2) Datum: 23 okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H3000

Repetitionsuppgifter

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Anm 3: Var noga med att läsa och studera kurslitteraturen.

Skillnaden mellan KPI och KPIX

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Laborationstillfälle 4 Numerisk lösning av ODE

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

9. Diskreta fouriertransformen (DFT)

Egenvärden och egenvektorer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

TENTAMEN I MATEMATISK STATISTIK

Lite grundläggande läkemedelskinetik

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data

m Animering m Bilder m Grafik m Diskret representation -> kontinuerlig m En interpolerande funktion anvšnds fšr att

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

n Ekonomiska kommentarer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

Matematisk statistik

Lösningar till tentamen i Kärnkemi ak den 21 april 2001

Ordinära differentialekvationer,

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 8. Kap 7,1 7,2

3 Rörelse och krafter 1

2 Laboration 2. Positionsmätning

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Signal- och bildbehandling TSBB14

Livförsäkringsmatematik II

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan den 27:e augusti.

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Inbyggd radio-styrenhet 1-10 V Bruksanvisning

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1.

Kolla baksidan på konvolut för checklista Föreläsning 6

Matematisk statistik

TENTAMEN. Matematik och matematisk statistik 6H3000/6L3000

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Tentamen i Dataanalys och statistik för I den 28 okt 2015

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Föreläsning 5, Matematisk statistik Π + E

Realtidsuppdaterad fristation

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2016

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Radio-persiennaktor, mini Art. Nr.:

TENTAMEN I KOTEORI 20 dec 07 Ten2 i kursen HF1001 ( Tidigare kn 6H3012), KÖTEORI OCH MATEMATISK STATISTIK,

Transkript:

Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som hels. Förbjudna hjälmedel: Telefon, lao och alla elekroniska medel som kan kolas ill inerne. Skriv namn och ersonnummer å varje blad. Poängfördelning och beygsgränser: Tenamen ger maximal oäng. Beygsgränser: För beyg A, B, C, D, E krävs, 4,, 6 resekive oäng. Komleering: oäng å enamen ger rä ill komleering (beyg Fx). Denna enamensla får ej behållas efer enamensillfälle uan ska lämnas in illsammans med lösningar. Ugif. () Bara för dem som ine klara ks. För händelserna A och B gäller a P ( A B). 5, P ( A B). och P ( A). c a) Besäm sannolikheen P ( B ) c c b) Besäm sannolikheen P( A B ). c) Besäm P ( A B). Ugif. () Bara för dem som ine klara ks. Lå k( x), x f ( x) för övrig vara ähesfunkionen för en sokasisk variabel X. a) Besäm konsanen k. b) Beräkna medianen ill X. Var god vänd. Sida av 4

Ugif. () Bara för dem som ine klara ks. En Markov kedja i diskre id med vå illsånd E och E. har övergångsmarisen.6 x P...7 a) Syseme sarar i E. Besäm sannolikheen a syseme är i E efer seg. b) Besäm den saionära sannolikhesvekorn. Ugif 4. ()Till en elefonväxel ankommer i genomsni.5 anro er minu. Vi anar a ankomser är Poissonfördelade. Besäm sannolikheen a mins 5 anro kommer under e idsinervall som är minuer lång. Ugif 5. () E föreag behöver 8 mosånd. Man köer för ändamåle in 9 mosånd av en viss y. Dessa mosånd har en resisans som är N(5,5). Man använder sedan enbar de mosånd som har resisansen mellan 45 och 55 ohm. Vad är sannolikheen a man får mins 8 användbara mosånd av de 9 som man har kö? Ugif 6. () I e konorshus finns en hiss med anslage max 5 ersoner eller 4 kg. Vi vill därför vea hur sor sannolikheen är a hissen överlasas. Ana a viken av en ansälld är normalfördelad med vänevärde 78 kg och sandardavvikelse kg. Olika ersoners vik är oberoende. Beräkna sannolikheen a viken av 5 ersoner överskrider 4 kg. Ugif 7. () Man har gjor 5 mäningar av en s.v. X och få följande observaioner: X 9 4 5 Besäm e konfidensinervall med 95% konfidensgrad för medelvärde av X kx < x < Ugif 8. () En s.v. X har ähesfunkionen f ( x). för övrig a) Besäm k b) Besäm vänevärde för YX+5. Var god vänd. Sida av 4

Ugif 9. () En korlek med 5 kor besår av fyra färger (hjärer, sader, klöver, ruer) och valörer: ess,,, 4, 5, 6, 7, 8, 9,, knek, dam, kung. Ur en korlek å 5 kor väljer man slumvis 5 kor. Vad är sannolikheen för a) e ar och en riss x,x,y,y,y ( ex 4,4,,,) så kallade "kåk". b) Två olika ar x,x,y,y,z ( ex,, 5,5,8) men ine "kåk" Ugif. () E bejäningssysem kan modelleras som M/M//. Ankomsinensieen är λ 5 kunder/minu och bejäningsinensieen för en bejänare är µ kunder/minu. a) Besäm sannolikheerna,,, och 4. b) Beräkna N medelanal kunder i syseme c) Beräkna hur många kunder i genomsni avvisas under 5 immar. Ugif.() E sysem har i genomsni fel er år. Tidsavsånde mellan fel är exonenialfördelad. Om e fel usår då börjar rearaionen. Rearaionsiden är exonenialfördelad och sysemes rearaionsid är i genomsni månad. Vid är syseme i funkion. Besäm sannolikheen a syseme är i funkion vid idsmomen. år. Tis. Felinensie λ fel er år. Bejäningsinensie är µ 6 rearaioner er år. Lycka ill. Sida av 4

FACIT Ugif. () Bara för dem som ine klara ks. För händelserna A och B gäller a P ( A B). 5, P ( A B). och P ( A). c a) Besäm sannolikheen P ( B ) c c b) Besäm sannolikheen P( A B ). c) Besäm P ( A B). a) Från P( A B) P( A) + P( B) P( A B) får vi.5.+ P ( B). P( B). Därmed P( B c ) P( B). 7. c c c c c b) P( A B ) P( A B ) (De Morgan) P( A B).5 c) P( A B). P ( A B) P( B). c c c Svar: a) P ( B ). 7 b) P ( A B ).5 c) P ( A B) Räningsmall: för varje del Ugif. () Bara för dem som ine klara ks. Lå k( x), x f ( x) för övrig vara ähesfunkionen för en sokasisk variabel X. a) Besäm konsanen k. b) Beräkna medianen ill X. Sida 4 av 4

a) x Arean f ( x) dx k( x) dx k(x ) k Arean k k b) Medianen Lå m beeckna medianen. Vi får m genom a lösa ekvaionen m m f ( x) dx ( x) dx m x ( ) x m m m 4m + (*) Ekvaionen (*) har vå lösningar:.5858 och m +.44 Endas m.5858 ligger i inervalle [,]. Svar: a) k, b) medianen.5858 9 Räningsmall: för a, för b) Ugif. () Bara för dem som ine klara ks. En Markov kedja i diskre id med vå illsånd E och E. har övergångsmarisen.6 x P...7 a) Syseme sarar i E. Besäm sannolikheen a syseme är i E efer seg. b) Besäm den saionära sannolikhesvekorn..6.4 P..7 (efersom summan av elemen i en rad ). a) Sar sannolikhesvekor är ( ) (, ) (efersom syseme sarar i illsånde E.) Vi beräknar Sida 5 av 4

.6.4 ( ) () P (, ) (.6,.4)..7,.6.4 ( ) () P (.6,.4)..7 (.48,.5) Sannolikheen för illsånde E efer seg är.5 (andra koordinaen i vekorn () )., b) Lå q ( x, y) vara en saionär sannolikhesvekor. Då gäller qp q och Vi skriver qp x + y q å komonen form:.6 ( x, y)..4.6x +.y x ( x, y).7.4x +.7y y och lägger ill ekvaionen Därmed har vi syseme: x + y ( q är en sannolikhesvekor).6x +.y x.4x +.y.4x +.7y y.4x.y x + y x + y (Andra ekvaionen är ekvivalen med försa.) 4x Från försa ekvaionen har vi y som vi subsiuerar i redje ekvaionen och får 4x 7x 4 x + x. Därmed y x 7 7 Svar: a) Sannolikheen för illsånde E efer seg är.4 b) q (/ 7, 4 / 7) (.486,.574) Räningsmall: för korrek ( ) (.58,.4). Toal oäng för korrek a delen. för b delen Ugif 4. ()Till en elefonväxel ankommer i genomsni.5 anro er minu. Vi anar a ankomser är Poissonfördelade. Besäm sannolikheen a mins 5 anro kommer under e Sida 6 av 4

idsinervall som är minuer lång. a) Under min. inervalle ankommer i genomsni λ.5 6. 5 anro er min. Lå X vara anale anro under e min.-inervall. P(mins 5 anro kommer under e idsinervall som är minuer lång) { P( X ) + P( X ) + P( X ) + P( X ) + P( X 4) } P ( X 5) P( X < 5) λ e! λ λ + e! λ λ + e! λ λ + e! λ 4 λ + e 4! λ (där λ 6. 5 ).776 Svar:.776 Räningsmall: för korrek meod men fel beräkning. om all är korrek. Ugif 5. () E föreag behöver 8 mosånd. Man köer för ändamåle in 9 mosånd av en viss y. Dessa mosånd har en resisans som är N(5,5). Man använder sedan enbar de mosånd som har resisansen mellan 45 och 55 ohm. Vad är sannolikheen a man får mins 8 användbara mosånd av de 9 som man har kö? Seg. Lå ξ beeckna resisansen hos e mosånd. Då gäller ξ N(5,5). 55 5 45 5 P ( 45 < ξ < 55) F ( 55) F(45) Φ( ) Φ( ) Φ() Φ( ). 687 5 5 Vi beecknar.687 och q Seg. Lå η beeckna anale användbara mosånd bland 9 köa. Då gäller η Bin( 9, ) Sannolikheen a man får mins 8 användbara mosånd av de 9 är lika med Sida 7 av 4

9 8 9 9 q + q.6697 8 9 Svar:.6697 Räningsmall: för korrek seg. för seg. Ugif 6. () I e konorshus finns en hiss med anslage max 5 ersoner eller 4 kg. Vi vill därför vea hur sor sannolikheen är a hissen överlasas. Ana a viken av en ansälld är normalfördelad med vänevärde 78 kg och sandardavvikelse kg. Olika ersoners vik är oberoende. Beräkna sannolikheen a viken av 5 ersoner överskrider 4 kg. Lå ξξ beeckna oal vik av 5 ersoner, då där ξξ kk NN(78, ). Därför ξξ NN(5 78, 5) NN(9,.6) ξξ ξξ + ξξ + ξξ + ξξ 4 + ξξ 5 4 9 PP(ξξ > 4) PP(ξξ 4) FF(4) ΦΦ(.6 ) ΦΦ(.45) Svar: Sannolikheen är..676.64 Räningsmall: för ξξ NN(5 78, 5). för korrek FF(4).676. om all är korrek. Ugif 7. () Man har gjor 5 mäningar av en s.v. X och få följande observaioner: X 9 4 5 Besäm e konfidensinervall med 95% konfidensgrad för medelvärde av X Sida 8 av 4

x x + x + + xn n 4. variansen s n n i ( x i x) (( 4. ) + (9 4.) + (4 4.) + (5 4.) + ( 4.) ).7 4 s Variansen.7. Från formelsamling (sidan 6 rad n- 5-4 har vi α.7764 /. 5 Konfidensinervall: σ σ.6.6 x α /, x + α / ) ( 5..7764, 5.+.7764 ) n n 5 5 ( (., 8.) Svar: (48., 5.) Räningsmall: oäng för korrek x 4., oäng för korrek σ.7. om all är korrek. Sida 9 av 4

kx < x < Ugif 8. () En s.v. X har ähesfunkionen f ( x). för övrig a) Besäm k b) Besäm vänevärde för YX+5. a) x k Arean f ( x) dx kx dx k k Arean k k. b) Förs beräknar vi vänevärde för X: 4 ( ) ( ) x E X xf x dx x x dx x dx. 4 4 9 Sluligen E ( Y ) E(X + 5) E( X ) + 5 + 5 7. 5 4 4 Räningsmall: oäng för korrek a-delen, b) delen + för korrek E(X)/4. All korrek. Ugif 9. () En korlek med 5 kor besår av fyra färger (hjärer, sader, klöver, ruer) och valörer: ess,,, 4, 5, 6, 7, 8, 9,, knek, dam, kung. Ur en korlek å 5 kor väljer man slumvis 5 kor. Vad är sannolikheen för a) e ar och en riss x,x,y,y,y ( ex 4,4,,,) så kallade "kåk". b) Två olika ar x,x,y,y,z ( ex,, 5,5,8) men ine "kåk" 4 4 744 Svar c): P.44576 5 59896 5 Sida av 4

b) Vi kan välja vå olika valörer som bildar vå olika ar å sä. Två kor som bildar e ar väljer vi å 4 sä. Samma gäller för andra are. Feme kor kan vi välja bland åersående valörer. 4 4 4 5 5 ( 55 59896.475956) Räningsmall a, b Ugif. () E bejäningssysem kan modelleras som M/M//. Ankomsinensieen är λ 5 kunder/minu och bejäningsinensieen för en bejänare är µ kunder/minu. a) Besäm sannolikheerna,,, och 4. b) Beräkna N medelanal kunder i syseme c) Beräkna hur många kunder i genomsni avvisas under 5 immar. 5 5 5 5 5 5 Förs. 5,, 5 5 5 5 5, 5, Subsiuionen i + + + + + 4 5 ger 8/65.968767 och därefer 9/65.947565 44/65.5678 8/65.659554 4 8/65.44879 5 5 5 5 4 Sida av 4

b) N k + + + + 4 +.774945 k k 4 5 5 c) λ särr λ kmax 5 4.866 kunder er minu. Under 5immar avvisas i genomsni 5*6*.866 558 kunder. Svar a) se ovan b) N.774945 c) 558 kunder Räningsmall. a b, c Ugif.() E sysem har i genomsni fel er år. Tidsavsånde mellan fel är exonenialfördelad. Om e fel usår då börjar rearaionen. Rearaionsiden är exonenialfördelad och sysemes rearaionsid är i genomsni månad. Vid är syseme i funkion. Besäm sannolikheen a syseme är i funkion vid idsmomen. år. Tis. Felinensie λ fel er år. Bejäningsinensie är µ 6 rearaioner er år. a) Från grafen har vi Q 6 6 Lå ) ( ( ), ( )) beeckna den söka sannolikhesvekorn. ( Vi subsiuerar ) ( ( ), ( )) ( i ekvaionen 6 ( ) ( ) Q och får ( ( ), ( )) ( ( ), ( )) 6 6 ) ( ) + 6 ( ) (ekv a) ( ) ( ) 6 ( ) (ekv b) ( Sida av 4

sam ) + ( ) ( ekv c) ( (ekv c gäller efersom ( ), ( ) är en sannolikhesvekor.) Från ekv c får vi ) ( ) ( ( som vi subsiuerar i (ekv a) för a få en differenial ekvaion med obekan funkion ( ) : ) ( ) + 6( ( )) ( Efer förenkling har vi följande ekvaion med konsana koefficiener: ) + 9 ( ) 6 (*) ( Mosvarande karakerisiska ekvaion ill homogena delen är r + 9 r 9 och därmed är Y h 9 den allmänna lösningen ill den homogena delen. Ce En arikulär lösning får vi med hjäl av ansasen y A ( efersom högerlede i (*) är 6, dvs en konsan) Subsiuionen av + 9A 6 A 6 / 9 Allså y / Därför 9 ( ) Y + y Ce + h y A i (*) gör / / Begynnelsevillkore: Enlig anagande är syseme i funkion vid. Därför (). Allså Ce + / C / och Sida av 4

9 ( ) e + (visar sannolikheen a syseme är i funkion vid iden ) (.) 9*..6666666688 Sluligen e + Svar:.6666666688 Räningsmall. för korrek maris. Korrek ekvaionssysem +. All korrek Sida 4 av 4