Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Relevanta dokument
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Lösningar till seminarieuppgifter

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

Formelsamling till Elektromagnetisk

Formelsamling i kretsteori, ellära och elektronik

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras!

Fysik TFYA68. Föreläsning 2/14

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

TATA44 Lösningar 26/10/2012.

VIKTIGA TILLÄMPNINGAR AV GRUNDLÄGGANDE BEGREPP

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Lösningar till tentamen i EF för π3 och F3

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 24 augusti, 2009, kl

Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths

Kursprogram för ETE110 Modellering och simulering inom fältteori, läsåret 2008/2009

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära,

Vektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Gradienten i kroklinjiga koordinatsystem

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik

Lösningar till tentamen i EF för π3 och F3

14. Potentialer och fält

Dugga i elektromagnetism, sommarkurs (TFYA61)

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ

Tentamen för TFYA87 Fysik och Mekanik

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Lösningar till uppgifter i magnetostatik

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl

Tentamen för TFYA87 Fysik och Mekanik

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Repetition kapitel 21

Tentamen i El- och vågrörelselära,

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik

EITF85 Elektromagnetisk fältteori (F) ETEF01 Elektromagnetisk fältteori (Pi)

Fysik TFYA68. Föreläsning 5/14

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Tentamen för TFYA87 Fysik och Mekanik

14. Potentialer och fält

ANDREAS REJBRAND Elektromagnetism Coulombs lag och Maxwells första ekvation

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

15. Strålande system

Tentamen MVE085 Flervariabelanalys

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson)

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1

Tentamen för TFYA87 Fysik och Mekanik

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.

Tentamen: Lösningsförslag

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

Fysik TFYA68 (9FY321) Föreläsning 6/15

Tentamen för TFYA87 Fysik och Mekanik

MATEMATISK FORMELSAMLING

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Tentamen för FYSIK (TFYA86)

2. Lösning av elektrostatiska problem för ledare

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

Tentamen för FYSIK (TFYA86 och 68)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)

De tre svarsalternativen (från vänster till höger) är poäng. Oriktigt svar ger -0.2 poäng. Vet ej är neutralt och ger 0 poäng.

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

Tentamen för FYSIK (TFYA86)

Tentamen ellära 92FY21 och 27

9. Magnetisk energi Magnetisk energi för en isolerad krets

1 Några elementära operationer.

Exempelsamling i elektromagnetisk fältteori för F3 och Pi3. Karlsson, Anders; Kristensson, Gerhard; Sohl, Christian. Published:

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

MATEMATISK FORMELSAMLING

3. Lösning av elektrostatiska problem för dielektrika

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Bra tabell i ert formelblad

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika

Övningar. Nanovetenskapliga tankeverktyg.

ETE055 Elektromagnetisk fältteori (F) ETEF01 Elektromagnetisk fältteori (Pi)

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Transkript:

Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014

Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik 5 4 Elektromagnetiska fält 7 5 Tidsharmoniska fält 8 6 Några vektoridentiteter 8 7 Koordinatsystem 9 8 Några integraler 11 9 Binomialutveckling 1 10 Några trigonometriska formler 1

Elstatik 1 Elstatik r Fältpunkt Origo r r r Källpunkt Coulombs lag Kraften 1 F (r) på en punktladdning q 1 i punkten r orsakad av en punktladdning q i punkten r F (r) = q 1q (r r ) Elektrisk fältstyrka E i vakuum 1. från punktladdning med laddning q i r 4πε 0 r r 3 E(r) = 1 4πε 0 q (r r ) r r 3. från volymladdningstäthet ρ i volymen V E(r) = 1 4πε 0 3. från ytladdningstäthet ρ S på ytan S E(r) = 1 4πε 0 V 4. från linjeladdningstäthet ρ l på kurvan C E(r) = 1 4πε 0 S C ρ(r ) (r r ) r r 3 dv ρ S (r ) (r r ) r r 3 ds ρ l (r ) (r r ) r r 3 dl 5. från punktdipol p = pẑ i origo E(r) = p ( ˆr cos θ + 4πε 0 r ˆθ ) sin θ 3 6. från linjeladdning ρ l E(r) = ρ l πε 0 r c ˆr c 1 Koordinatbeteckningar, t.ex. ortsvektorn r, finns i avsnittet Koordinatsystem på sidan 9.

Elstatik Kraft F på punktladdning q 1. F = q E (gäller i elstatiken). F = q (E + v B) (Lorentz kraftlag) Elektrisk potential V E = V (gäller i elstatiken) 1. från punktladdning med laddning q i r V (r) = 1 q 4πε 0 r r. från volymladdningstäthet ρ i volymen V V (r) = 1 4πε 0 3. från ytladdningstäthet ρ S på ytan S V (r) = 1 4πε 0 V S ρ(r ) r r dv ρ S (r ) r r ds 4. från linjeladdningstäthet ρ l på kurvan C V (r) = 1 4πε 0 C ρ l (r ) r r dl 5. från punktdipol p = pẑ i origo V (r) = p r 4πε 0 r 3 = p cos θ 4πε 0 r V (r) = ρ l ln 1 πε 0 r c 6. från linjeladdning ρ l Gauss lag på differential- respektive integralform E = ρ/ε 0 D = ρ f eller E ˆn ds = ρ dv/ε 0 D ˆn ds = ρ f dv där ˆn är den från volymen utåtriktade enhetsnormalvektorn.

Elstatik 3 Polarisation P P = p v Samband mellan polarisation P, E och D { D = ε0 E + P (gäller allmänt) D = ε r ε 0 E Polarisationsladdning, även kallad bunden laddning, { ρp = P bunden volymladdningstäthet ρ ps = ˆn 1 (P 1 P ) bunden ytladdningstäthet där enhetsnormalvektorn ˆn 1 är riktad från område 1 till område. Randvillkor { Et kontinuerlig { Et kontinuerlig ρ S = ˆn (D 1 D ) ρ S = ˆn ε 0 (ε r1 E 1 ε r E ) där ρ S är fri ytladdningstäthet, enhetsnormalvektorn ˆn är riktad från område till område 1. Elektrostatisk energi W e 1. för system med diskreta laddningar Q i W e = 1 Q i V i i. för kontinuerlig laddningsfördelning ρ W e = 1 ρv dv 3. beräknad ur E och D W e = ε 0 E dv eller W e = 1 E D dv Vridmoment T e på elektrisk dipol p T e = p E Kraft F på elektrisk dipol p F = (p )E = (p E)

4 Likström Spegling 1. Spegling av punktladdning q i ledande sfär med radien a. Punktladdningen q är placerad på avståndet d från centrum av sfären. Punktladdningarna q i och q m tänkes placerade i spegelpunkten respektive sfärens centrum. q i = q a d d i = a d Q s = q i + q m V s = q m 4πε 0 a. Spegling av linjeladdning ρ l i ledande cylinder med radien a och med laddning per längdenhet ρ l. Linjeladdningen ρ l är placerad på avståndet d från cylinderaxeln. ρ i = ρ l d i = a d Likström Strömtäthet J I = J ˆn ds Kontinuitetsekvationen på differential- respektive integralform J + ρ = 0 t J ˆn ds = dq dt Ohms lag Effekt P J = σe P = J E dv där σ är materialets lednigsförmåga. Randvillkor { ˆn (J 1 J ) = 0 (ingen ytström) E t1 = E t

Magnetostatik 5 Magnetisk flödestäthet B i vakuum Magnetostatik 1. från punktdipol m = m ẑ B(r) = µ ( 0m cos θ ˆr + sin θ 4πr ˆθ ) 3. från strömtäthet J(r ) B(r) = µ 0 4π J(r ) (r r ) r r 3 dv 3. från strömbana B(r) = µ 0 Idl (r r ) 4π r r 3 4. från cirkulär trådslinga B(x = 0, y = 0, z) = µ 0I b (b + z ) 3/ ẑ 5. från lång rak strömbana B(r) = µ 0I πr c ˆφ Vektorpotential A i vakuum 1. från strömtäthet J(r ). från strömbana A(r) = µ 0 4π A(r) = µ 0 4π J(r ) r r dv I dl r r 3. från lång rak strömbana 4. från punktdipol m A = µ 0I π ln(1 r )ẑ A = µ 0 m r 4π r 3 Magnetiskt flöde Φ Φ = B ˆn ds = A dl

6 Magnetostatik Självinduktans L och ömsesidig induktans M { Φ1 = L 1 I 1 + MI Magnetisk fältstyrka H Φ = L I + MI 1 Samband mellan magnetisering M, B och H { B = µ0 (H + M) (gäller allmänt) B = µ r µ 0 H Ampères lag B = µ 0 J B dl = µ 0 I eller H = J f H dl = I f Ekvivalent strömtäthet Randvillkor J m = M volymströmtäthet J ms = M ˆn ytströmtäthet { ˆn (H 1 H ) = J s B n kontinuerlig Magnetiska kraftlagen df m = I dl B Magnetiskt moment m för strömslinga m = I ˆn ds Vridmoment T m på magnetisk dipol m T m = m B Kraft F på magnetisk dipol m F = (m )B + m ( B) = (m B) Magnetisk energi W m = 1 J A dv = 1 B H dv = 1 L ij I i I j i j

Elektromagnetiska fält 7 Magnetisk energi, två spolar W m = 1 L 1I 1 + 1 L I + MI 1 I Elektromagnetiska fält Induktionslagen Inducerad emk E E = R I = dφ dt E = dφ dt (E + v B) dl Induktionslagen på differential- respektive integralform E = B t B E dl = t ˆn ds Maxwells ekvationer E = B t H = J + D t D = ρ B = 0 Konstanter µ 0 = 4π 10 7 H/m ε 0 10 9 36π F/m c 0 3 10 8 m/s 1 = c µ0 0 η 0 = η 0 10π Ω 377 Ω µ 0 ε 0 ε 0 Potentialer B = A E = V A t

8 Några vektoridentiteter V (r, t) = 1 ρ (r, t r r /c 0 ) dv 4πε 0 r r A(r, t) = µ 0 J (r, t r r /c 0 ) dv 4π r r Poyntings vektor S(r, t) = E(r, t) H(r, t) Tidsharmoniska fält Plan, tidsharmonisk våg E ˆx = E x = E 0x cos(k r ωt + φ), E = E 0 e ik r, komplexvärde E 0 ˆx = E 0x e iφ ögonblicksvärde för komponent Utbredningshastighet v = 1 µr µ 0 ε r ε 0 = ω k k = k Vågimpedans, oledande rymd µr µ 0 η = ε r ε 0 Komplexa strålningsvektorn S(r) = 1 [E(r) H (r)] Några vektoridentiteter 1. A (B C) = B (C A) = C (A B). A (B C) = B(A C) C(A B) 3. (ψv ) = ψ V + V ψ 4. (ψa) = ψ A + A ψ 5. (ψa) = ψ A + ψ A 6. (A B) = B ( A) A ( B) 7. V = V = V

Koordinatsystem 9 8. A = ( A) A 9. V = 0 10. ( A) = 0 11. A dv = A ˆn ds Gauss sats V S 1. V (ψ ϕ ϕ ψ) dv = (ψ ϕ ϕ ψ) ˆn ds Greens formel S 13. ( A) ˆn ds = A dl Stokes sats S C ( ) ( ) 1 14. = 1 = r r r r r r r r 3 Kartesiska koordinater (x, y, z) Koordinatsystem Ortsvektor Linjeelement r = x ˆx + y ŷ + z ẑ dl = dx ˆx + dy ŷ + dz ẑ Volymelement dv= dx dy dz Differentialoperatorer V = ˆx V x + ŷ V y + ẑ V z A = A x x + A y y + A z z ( Az A = ˆx y A ) ( y Ax + ŷ z z A ) ( z Ay + ẑ x x A ) x y V = V x + V y + V z Cylinderkoordinater (r c, φ, z) Ortsvektor Linjeelement Volymelement r = r c ˆr c + z ẑ dl = dr c ˆr c + r c dφ ˆφ + dz ẑ dv= r c dr c dφ dz

10 Koordinatsystem Differentialoperatorer V V = ˆr c + r ˆφ 1 V c r c φ + ẑ V z A = 1 (r c A rc ) + 1 A φ r c r c r c φ + A z z ( 1 A z A = ˆr c r c φ A ) ( φ + z ˆφ Arc z + ẑ 1 [ ] r c V = 1 r c r c (r c A φ ) A r c r c φ ) + 1 rc ( r c V r c V φ + V z A ) z r c Sfäriska koordinater (r, θ, φ) Ortsvektor Linjeelement Volymelement r = r ˆr dl = dr ˆr + r dθ ˆθ + r sin θ dφ ˆφ dv= r sin θ dr dθ dφ Differentialoperatorer V = ˆr V r + ˆθ 1 V r θ + ˆφ 1 V r sin θ φ A = 1 r r (r A r ) + 1 A θ (A θ sin θ) + 1 r sin θ ] A φ φ r sin θ [ 1 = ˆr r sin θ θ (A φ sin θ) A θ φ +ˆθ 1 [ 1 A r r sin θ φ ] r (ra φ) + ˆφ 1 [ r r (ra θ) A ] r θ ) + 1 ( sin θ V ) 1 V + r sin θ θ θ r sin θ φ V = 1 ( r V r r r Samband mellan basvektorer (r, θ, φ) (x, y, z) ˆr = ˆx sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ ˆθ = ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ ˆφ = ˆx sin φ + ŷ cos φ

Några integraler 11 (x, y, z) (r, θ, φ) ˆx = ˆr sin θ cos φ + ˆθ cos θ cos φ ˆφ sin φ ŷ = ˆr sin θ sin φ + ˆθ cos θ sin φ + ˆφ cos φ ẑ = ˆr cos θ ˆθ sin θ (r c, φ, z) (x, y, z) ˆr c = ˆx cos φ + ŷ sin φ = ( ˆxx + ŷy)/ x + y ˆφ = ˆx sin φ + ŷ cos φ = ( ˆxy + ŷx)/ x + y ẑ = ẑ (x, y, z) (r c, φ, z) ˆx = ˆr c cos φ ˆφ sin φ ŷ = ˆr c sin φ + ˆφ cos φ ẑ = ẑ (r, θ, φ) (r c, φ, z) ˆr = ˆr c sin θ + ẑ cos θ ˆθ = ˆr c cos θ ẑ sin θ ˆφ = ˆφ (r c, φ, z) (r, θ, φ) ˆr c = ˆr sin θ + ˆθ cos θ ˆφ = ˆφ ẑ = ˆr cos θ ˆθ sin θ 1.. 3. 4. 5. x n dx = xn+1 n + 1, n 1 1 dx = ln x x x + a dx = 1 dx x + a = ln (x + x + a ) dx (x + a ) 3/ = x a x + a Några integraler [ x x + a + a ln (x + ] x + a )

1 Några trigonometriska formler 6. 7. 8. 9. 10. dx a x = arcsin x a dx x + a = 1 a arctan x a dx cos x = tan x dx sin x = ln tan x ln x dx = x ln x x Binomialutveckling (1 + x) n = 1 + nx + n(n 1) x +... Några trigonometriska formler 1. cos(α β) = cos α cos β + sin α sin β. cos(α + β) = cos α cos β sin α sin β 3. sin(α β) = sin α cos β cos α sin β 4. sin(α + β) = sin α cos β + cos α sin β 5. cos α = cos α sin α 6. sin α = sin α cos α 7. cos α = 8. sin α = 1+cos α 1 cos α 9. cos α + cos β = cos α+β cos α β 10. cos α cos β = sin α+β sin α β 11. sin α + sin β = sin α+β cos α β 1. sin α sin β = cos α+β sin α β a sin t + b cos t = a + b sin(t + φ) 13. sin φ = b a + b, cos φ = a a + b