Tentamen 41K02B En2, Bt2. Provmoment: Ladokkod: Tentamen ges för:
|
|
- Per Hermansson
- för 8 år sedan
- Visningar:
Transkript
1 ENEGIEKNIK I 7,5 högsoleoäng romoment: Ldood: entmen ges för: entmen 4K0B En, Bt Nmn: ersonnummer: entmensdtum: Måndg otober 0 id: Hjälmedel: Vlfri miniränre Formelsmling: Energiteni-Formler oh tbeller(s O Elosson oh H Alrez, Studentlittertur. Vlfri Formelsmling i mtte oh fysi otlt ntl oäng å tentmen: 60 Allmänn nisningr: I frågorn (-9 där det står endst sr rätts br sret oh beräningrn behöer inte redoiss. För frågorn 0- r nog med tt redois rbetsgången id beräningr oh roblem smt motier eentuell ntgnden/tbellärden. Om du nänder digrmmet för tt hitt ärde, måste du is ll unter oh linjer i digrmmet oh bifog det till tentmen. ättningstiden är i normlfll tre eor. Vitigt! Glöm inte tt sri nmn å ll bld du lämnr in. Ly till! OBS! Hel tentmens doument s lämns in. Ansrig lärre: Kmrn oust elefonnummer: ,
2 - En flät förbrur 4 W för tt trnsorter 4400 m 3 /h med en totltrysöning 750. Berän flätens totl erningsgrd. endst sr ( - Bestäm minimum tryet id umens sugsid när umr tten med temerturen 90 C för tt undi ittion? endst sr ( 3- I en entrifuglum, rtlet ändrs från 500 rm till 3500 rm hur mång gånger ör umens effet om erningsgrden är onstnt? endst sr ( 4- Berän mximum geodetis sughöjd for en ondenstum som hr NSH-ärdet m id tuellt olymflöde oh sugförlusten 3 m. endst sr ( 5- Berän slftorn (förhållnde melln dimetern melln en modell um som hr ufordringshöjd m oh olymflödet 5 l/s oh originlen som sll h ufordringshöjd med 60 m id olymflöde 5 m 3 /s. endst sr (4 6- Berän ärmeöergångstl för strålning för tå stor rllell ytor där en dem hr emissionsförhållnde 0,4 med temerturen 600 C oh det ndr hr emissionsförhållnde 0,5 oh temerturen 0 C. endst sr (3 7- Mn önsr trnsorter 8 m 3 /s luft 45 C oh 00mbr. Vid flätens inlo råder temerturen 30 C oh olymflödet 8,6m 3 /s. Bestäm tryet i flätens inlo. endst sr (3 8- Bestäm rörfritionsoeffiient för en rörledning med totl längden 50 m oh dimeter 0 mm med tryförlust 86. otl motståndsoeffiient är 3. Ant densitet 000g/m 3 oh olymflödet i röret är 34 l/s. endst sr (4 9- Berän seifi inre energi för ttenång med 0 % fut id tryet 0 br. endst sr (4
3 0- Värmeöerföring (0 En rmttenledning stål som hr äggtjoleen 3 mm oh innerdimetern 00 mm s isolers med en 50 mm isolerings mteril som hr ärmeondutiitet 0,5 W/(m.K. Vrmttens temertur är 90 C oh temerturen för omginingen är 0 C. Försumm strålning oh nt ärmeondutiitet för stål 80W/(m.K, ärmeöergångstl för tten 700 W/(m.K oh ärmeöergångstl för omginingen 0 W/(m.K. Hur myet minsr/ör ärmeförlusten er meter rörlängd å grund den isoleringen jämför med röret utn isolering? - Värmeäxlre ( En ärmeäxlre nänds för tt förång tten id tryet 0 br. Värmemediet är 8000 m 3 /h rögser (densitet för rögser är, g/m 3 oh ärmeitet är,0 J/(g.K med inlostemertur 950 o C. Värmeöerförnde ytn för ärmeäxlre är 80 m oh det hr ärmegenomgångsoeffiient, =73 W/(m.K. Berän öerförd ärmeflödet (ärmeeffeten ärmeäxlren,. (4 b Berän utlostemerturen för rögser. ( Hur mång g tten förångs er timme? (3 d it temertur-längd digrm oh is ll temerturer å det. ( e Gör en ny berän för ärmeeffeten för ärmeäxlren med hjäl logritmis medeltemerturdifferens metod. ( - um (3 En um hr digrm ( oh rbetr med 000 r/min. det s ols till ett rörsystem för tt um tten från reseror A till B. Systemet hr följnde informtion: sttis ufordringshöjd m, totl rörlängd 0 m, rör dimeter 0 mm, totl motstånoeffiienten 3 oh rörfritionsoeffienten för röret 0,05. it systemrteristi ur i digrm ( oh bestäm olymflöde oh ufordringshöjd, id driftunten. b En lidn um sll serieols till smm rörledning. Bestäm olymflöde, ufordringshöjd id driftunten i det fll. (4 Är umrns effet i (b dubbelt så stor som i (? Motier sret med beräningr. Ant tt erningsgrden är onstnt i båd fllen. (3 (6
4 Formelbld VVX: NU A C A min (m min mx C min ( t t mx, Värmeeffet ärmeäxlre id temertur öning eller minsning i medium m m ( t ( t t t, Värmeeffet ärmeäxlre id ondenstion eller förångning medium m i Q
5 Bernoullis etion: NSH : gh h s mx. g å g NSH erf g fs um gh f Värmeöerföring: Värme resistens för strålning: s =5, [W/(m K 4 ] strål. res C s Värme resistens ylindris sit: ( ( led. yl. r ln( r L strål. A strål. Värme resistens för onetion: on A on. Värme resistens näter: rllell: tot Serie: tot Värmetrnsort: tot Flätr: V V 0 0 0
6
Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för:
ENEGITEKNIK I 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4K0B En Nmn: ------------------------------------------------------------------------------------------------------- ersonnummer:
TentamensKod:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:
50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler
Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic
Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
Textil mekanik och hållfasthetslära
Textil meknik och hållfsthetslär 7,5 högskolepoäng romoment: tentmen Ldokkod: ATMH och 5MH Tentmen ges för: Textilingenjörer årskurs Tentmensum: 8-- Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentmen är gymnsieformelsmlingr
Massflödet genom en turbin följer approximativt det tidigare härledda sambandet: Med hjälp av allmänna gaslagen kan sambandet ovan omformas enligt:
Lrs Bäcströ 04-0-4, 6 Ångturner F7-F8 Mssflödet geno en turn följer roxtt det tdgre härledd sndet: Där är turnonstnten, den effet strönngsren ( ) ångns tryc före och efter turnen (P) ångns olytet före
4 Signaler och system i frekvensplanet Övningar
Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern
Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)
K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i
TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng
TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8
Oleopass Bypass-oljeavskiljare av betong för markförläggning
Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,
Lödda värmeväxlare, XB
Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler
Tentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))
Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Räkneövning 1 atomstruktur
Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
N atom m tot. r = Z m atom
Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik
38/Thoms Munther IDE-sektionen/Högskoln i Hlmstd Formelsmling Reglerteknik Smbnd melln stegsvr och överföringsfunktion ( insignlen u är nedn ett steg med mplitud = som pplicers vid t=, där är llmänt y/
RAPPORT. Kontroll av dricksvattenanläggningar 2009/2010. Tillsynsprojekt, Miljösamverkan Östergötland. DRICKSVATTEN
DRICKSVTTEN RPPORT Kontroll v dricsvttennläggningr 2009/2010. Tillsynsprojet, Miljösmvern Östergötlnd. Bgrund Ett behov v ompetensutvecling och smsyn vid ontroll v dricsvttennläggningr hr påtlts v flertlet
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF) och F3 (EITF85) Ti och plts: 3 oktober, 8, kl. 4. 9., lokl: MA A H. Kursnsvrig lärre: Aners Krlsson, tel. 4 89 och 733 35958. Tillåtn hjälpmeel:
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
IE1204 Digital Design
IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6
Internetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m.
SVESK FYSIKESMFUDET Fysiktälingen 006. Lösningsörslg. Uppgit. Vi år nt tt kinetisk energi öergår i lägesenergi, och tt tyngdpunkten lytes 6,5 m. m mgh gh t s gh 00 9,8 6,5 8,85 8,9 s Stöten stången mot
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl
Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.
Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Fotomässan.
PLTS ÖR EVENT LOO Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på otomässn. Älvsjö 20 INORMTION Specifiktion för grfiskt mteril rfisk enheten ehöver h tryckfärdig originl senst
ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.
Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)
Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på XXXXXXXXX.
PLATS ÖR EVENT LOO Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på XXXXXXXXX. Älvsjö 203 informtion Specifiktion för grfiskt mteril rfisk enheten ehöver h tryckfärdig originl senst
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
KTH Teknikvetenskap Fotografi-lab 3
KTH Teknikvetenskp Fotogrfi-lb 3 Svrtvitt kopieringsrbete, tonreproduktion Kurs: SK2380, Teknisk Fotogrfi Kjell Crlsson & Hns Järling Tillämpd Fysik, KTH, 2015 1 För tt uppnå en god förståelse och inlärning
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
MA002X Bastermin - matematik VT16
MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:
RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2
RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO
Kvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
1 av 13. Armin Halilovic: EXTRA ÖVNINGAR
Armn Hlloc: EXTRA ÖVNINGAR Vetorprodt VEKTORPRODUKT OCH TILLÄMPNINGAR Kompln etorer. Defnton: V säger tt... n är ompln etorer om etorern lgger ett pln när de stts från smm pnt. Med ndr ord ompln etorer
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
MER MASSAGE - MINDRE LJUD
MR MSSG - MINR LJU Nytt unikt bottensystem med vttenmssge Nytt unikt system - dkr med ljusterpi System sic, ett något enklre mssgesystem Nytt system i xclusive serien Revolutionernde tyst mssge ger en
UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION
OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i
Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
Frami transportbult 2,5kN
07/2012 Orginlbruksnvisning 999281910 sv Sprs för frmtid behov Frmi trnsportbult 2,5kN rt.nr 588494000 fr.o.m. tillverkningsår 2009 Orginlbruksnvisning Frmi trnsportbult 2,5kN Produktbeskrivning d Underhåll
MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12
Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling
Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p)
Introduernde kurs i hndelsrätt 10.12.2002, Helsingfors oh Vs Skrivtid: 3 timmr Fråg 1 (Övrig frågor se särskild frågeformulär). Oserver tt tentmen omfttr fem (5) olik frågeformulär oh tt ll dess formulär
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
Lösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
FAFF30 2013-03-21. Johan Mauritsson 1. Optiska system - optiska instrument Vetenskapsteori. Våglära och optik. Optiska system - optiska instrument
Våglär oc optik Optisk system - optisk instrument Vetenskpsteori FAFF3 JOHAN MAURITSSON 2 Optisk system - optisk instrument Men örst Quiz Ögt Kmern Luppen Vinkelörstoring Mikroskopet Kikren Bländre oc
Tentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Kompletterande formelsamling i hållfasthetslära
Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr
vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är
Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på Nordbygg.
Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på Nordygg. Älvsjö 20 INORMATION Är du intresserd v eller vill ok reklmpltser så kontkt: Susnne Rip, säljre, tel 0-9 3, susnne.rip@stockholmsmssn.se
BLÖTA BOKEN. Monteringsanvisning PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR W1 E1= 10 VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.
W Monteringsnvisning BLÖTA BOKEN VIKTIG INFORMATION LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS 1 Läs igenom hel nvisningen innn monteringen påbörjs PALLADIUM DE LUXE II HÖRNA MED SKJUTDÖRR 2 Kontroller produkten
Repetitionsuppgifter i matematik
Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING
INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Campingpolicy för Tanums kommun
1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn
Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.
Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Kap.9, Kompressibel strömning
Kaitel 9 Ka.9, Komressibel, strömning Kaitel 9 Komressibel strömning Evationer: Inomressibel: Kontinuitet Imuls Obeanta: Hastighet, try Komressibel: Kontinuitet Imuls Energi illståndsev. Obeanta: Hastighet,
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
BLÖTA BOKEN MONTERINGSANVISNING PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS.
MONTERINGSANVISNING BLÖTA BOKEN PALLADIUM DE LUXE PLUS VIKDÖRR I NISCH VIKTIG INFORMATION. LÄS DETTA INNAN MONTERINGEN PÅBÖRJAS. 1. Läs igenom hel nvisningen innn monteringen påbörjs. 2. Kontroller produkten
SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN
Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR
H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.
H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen
Belöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp
Belöningsbserd Inlärning Reinforcement Lerning 1 2 3 4 1 2 3 4 Belöningsbserd inlärning Reinforcement Lerning Inlärning v ett beteende utn tillgång till fcit. En belöning ger informtion om hur br det går
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Grafisk Profil. Välkommen in i Korvpojkarnas grafiska värld.
Grfisk Profil Du hr fått den här foldern i Din hnd eftersom Du på något sätt hr med vårt vrumärke och dess reproduktion tt gör. Här finns ll informtion Du behöver för tt se vilk vi är smt vilk typsnitt
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
TENTAMEN I KEMI TFKE
Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE09) TENTAMEN I KEMI TFKE09. 2006-10-16 Lokl: TER2. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088. Stefn Svensson,