Turbulent Viskositet och Turbulent Diffusivitet - turbulent viscosity and turbulent
|
|
- Sandra Engström
- för 8 år sedan
- Visningar:
Transkript
1 Trblen Viskosie och Trblen isivie - rblen viscosi and rblen disivi σ rb q rb ρ v ρε m ρ c pv ρ cp ε q ε m ε q
2 Toal Skjvspänning och Toal Värmelöde - oal shear sress and oal hea lx σ μ ρεm ρ ( ν εm ) q m c q c λ ε λ ρ ε ρ ρc p p p c ρ p ν εm
3 Analogies: low-emperare Renolds analog α ρc U p C C F Colbrns analogi Colbrn s analog S N Re x C F x 3
4 Chilon-Colbrn sanalogi Chilon-Colbrn s analog j S / 3 C F
5 Formler ör Nssel-ale baserade på experimen (rör) Formlas or N nmber based on experimens (pipes, p bes) is-boeler-ekvaion/eqaion N Re n n 0.4 om, i > w B n 0.3 om, i w < B
6 Formler ör Nssel-ale baserade på experimen (rör), Formlas or N nmber based on experimens (pipes, bes) - hänsn ill inloppssräcka, consideraion o hermal enrance lengh N Re < L / <. 1/ ( / L) Inloppssräckan vid rblen srömning är kor, pisk The enrance lengh is shor or rblen low, picall 10 < L / < 60 enrance
7 Trblen srömning med plana plaor, rblen low along la plaes C F, x 1/ Re x Re x N. x Re 4 / 5 x 1/ 3 C F, x (log Re x ) Re x 10 10
8 Yerligare ormler ör och N vid rblen rörsrömning, addiional ormlas or and N a rblen pipe pp low S N Re ( / 3 1) N. 8(Re ) 8( / 3 1) Gnielinski (0.79ln Re 1.64) (
9 Hasighesördelning i e rblen gränsskik, veloci disribion diib i in a rblen bondar laer Trblena skike, logarimiska område; rblen laer, logarihmic i regime τ ln C 1 ln A κ κ > 30 τ ll rblen regime oer regime τ viscos sblaer ber laer 1.44 κ A
10 Hasighesördelning i e rblen gränsskik, veloci disribion diib i in a rblen bondar laer Trblena skike, logarimiska område; rblen laer, logarihmic i regime 40 τ Ldwieg and Tillmann Klebano and iehl Schlz-Grnow τ 8.3 τ 1/ 7 τ.44 ln ( )
11 Hasighesördelning i i e rblen gränsskik, veloci disribion in a rblen bondar laer 16 U- τ 14 1 U- τ.44 ln(/ δ ) Area o experimenal daa 4 U- τ 9.6 (1- / δ ) /δ
12 Hasighesördelning i rblen rörsrömning, veloci disribion in rblen pipe low 4 1 Nikradse Reichard Reichard-Schh ln( ) ln( )
13 Temperarördelning i e rblen gränsskik, p g g, emperare disribion in a rblen bondar laer ) ( 1 q v m ε ν ) ( p q c v x ρ 0, 0 : 0 v 0 ) ( q c q m ε ν ρ p w ) ( c ρ ν τ w p w ) ( q c T τ ρ
14 Temperarördelning i e rblen gränsskik, emperare disribion in a rblen bondar laer T 1 1 ε / ν m d T 1 ε / ν 0 1 m
15 Temperarördelning i e rblen gränsskik, emperare disribion in a rblen bondar laer T T T ln A () κ
16 Användning av Renolds analogi ör a inna rck ör Nssel-ale, Applicaion o Renolds analog o deermine expressions or he N nmber 1) Besäm skjvspänningskoeicienen C F, deermine he shear sress coeicien C F L pδp. p σ w π Δ p 4 σ w πl
17 Användning av Renolds analogi ör a inna rck ör Nssel-ale, Applicaion o Renolds analog o deermine expressions or he N nmber Δ p L ρ m σ w Δ p ρ m 4L 8. / C F / m σ C ρ 4 w F Renolds-Colbrns analogi ör rörsrömning, Renolds-Colbrn s lb analog or pipe low N S Re 8 / 3
18 Användning av Renolds analogi ör a inna rck ör Nssel-ale, Applicaion o Renolds analog o deermine expressions or he N nmber σ w ρ τ ( 8 8 m / τ) ( m ) Mha den logarimiska. hasighesördelningen inner man B sing he logarihmic veloci disribion one inds 1.03log( Re ) log( Re ) 0.8
19 Användning av Renolds analogi ör a inna rck ör Nssel-ale, Applicaion o Renolds analog o deermine expressions or he N nmber E enklare rck ör ås om den s.k. sjndedelsregeln (9-54) användes A simpler expression is ond i (9-54) is sed (Re 0.5 ). Blasis relaion N Re 3 / 4 1/ 3
20 Användning av rikionsakorn och Renolds-Colbrns analogi ör a inna rck ör Nssel-ale; lusage o he ricion acor and Renolds-Colbrn s analog o ind expressions or he N nmber 0,1 64/Re (laminar) 0,05. ekv. (9-63) R/ks 507, Nikradse (sand roghness) R/k 1300, Galavics (commercial rogh) ekv. (9-6b) 0,
21 Användning av rikionsakorn och Renolds-Colbrns analogi ör a inna rck ör Nssel-ale; lusage o he ricion acor and Renolds-Colbrn s analog o ind expressions or he N nmber Transiion zone Trblen zone ε/ Lam minar low Re cr Smooh pipe E-4 1E Re m /ν
Introduktion till turbulens och turbulenta gränsskikt
Introdktion till trblens och trblenta gränsskikt Tå frågor 1. Hr sklle d karaktärisera trblens? Tänk på nckelord.. Ge eempel på sitationer när trblent strömning är bättre än laminär och ice ersa. Trblens
Aerodynamik och kompressibel strömning
Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)
DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband
Bevarandelagar för fluidtransport, dimensionsanalys och skalning
Bearandelagar för flidranspor, dimensionsanals och skalning Innehåll Blodes reologi Balansekaionerna på differeniell form Dimensionsanals Naier-Sokes ekaioner på dimensionslös form Krpsrömning Blodes reologi
Laborationsuppgift om Hertzsprung-Russell-diagrammet
Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet
Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer
Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria
Chapter 14: Förångning, g, Kokning; Evaporation, Boiling
Chapter 14: Förånnin,, Koknin; Evaporation, Boilin vätska, liquid q 1) Lokal koknin eller underkyld koknin Local boilin or subcooled boilin 2) Koknin med nettoörånnin boilin with net evaporation kittelkoknin
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
Approximativa metoder för analys av komplexa fysiologiska flöden
Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Naier-Stokes ekationer på dimensionslös form Balansekationerna på integralform Gränsskikt Smörjfilmsteori Naier-Stokes ekationer på dimensionslös
1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
Energitransport i biologiska system
Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym
Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation
Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelaar för flidransor, dimensionsanals och skalnin (Kaiel 3) Ida: Kaiel 3 Blodes reoloi (res från kaiel iår) Generella balansekaionerna å differeniell form Dimensionsanals Naier-Sokes ekaioner å
TENTAMEN I TURBOMASKINERNAS TEORI
Kraftverksteknik TMT JK/MG/IC 9-4- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den te april 9, kl. 8.-., sal M:L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för varje ny
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13
Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.
A. Egenskaper hos plana figurer (MTM458)
uleå tekniska universitet Hans Åkerstedt Aerodynamik f37t 8/9 FORMESAMING I AEROYNAMIK INNEHÅ:. Hydrostatik och standard atmosfären. Kinematik 3. Konserveringslagar 4. Modellförsök och likformighet 5.
TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m.
SVESK FYSIKESMFUDET Fysiktälingen 006. Lösningsörslg. Uppgit. Vi år nt tt kinetisk energi öergår i lägesenergi, och tt tyngdpunkten lytes 6,5 m. m mgh gh t s gh 00 9,8 6,5 8,85 8,9 s Stöten stången mot
TYP-TENTAMEN I TURBOMASKINERNAS TEORI
Värme- och kraftteknik TMT JK/MG/IC 008-0-8 TYP-TENTAMEN I TURBOMASKINERNAS TEORI Onsdagen den 0 oktober 008, kl. 0.5-.00, sal E408 Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist
Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +
Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra
Outline 1 Scalar Mesons Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra Light Scalar octet. m s < 1 GeV 1 B MM, M = P, S, V, A, B PS, results B 3P Carlos Ramirez
FORMELSAMLING ELTEKNIK
FOELALG ELTEKK Liström s + + + + +...... Om s lg erieoliges ersättigsresists rllelloliges ersättigsresists rllelloliges ersättigsresists. Fler v smm värde. rllelloliges ersättigsresists. Edst resistser
( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =
gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Re baseras på medelhastighet V samt hydraulisk diameter D h, Re = Re Dh = ρv D h. , D h = 4 A P. = V D h ν
RÖRSTRÖMNING Trots dess stora tekniska betydelse är den samlade kunskapen inom strömning i rörsystem väsentligen baserad på experiment och empiriska metoder, även när det gäller inkompressibel, stationär
Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden
Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera
Gasstrålning Gas radiation (Participating
Gsstrålning Gs rdition (Prticipting medi) Elementär gser (sådn där molekylern är v ett slg) t. ex. H 2 O 2 och hn 2 emitterr prktiskt tget t ingen termisk strålning och är trnsprent (τ = 1) för främmnde
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)
Bearandelagar för flidtransport, dimensionsanals och skalning (Kapitel 3) Idag: Kapitel 3 Blodets reologi (rest från kapitel ) Generella balansekationerna på differentiell form: bearande a massa och rörelsemängd
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg
Tentamen i: Matematisk fysik Ämneskod M004M Tentamensdatum 200-03-24 Totala antalet uppgifter: 6 Skrivtid 09.00-4.00 Lärare: Thomas Strömberg Jourhavande lärare: Thomas Strömberg Tel: 0920-49944 Resultatet
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng
Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:
Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning
Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning Reetition Kaitel 3 Reetition, Kaitel 3 Energiekationen ( ) ( )da n g h d g dt d W W Q CS
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
Kapitel 4. Differentialrelationer. Repetition Energiekvationen Vorticitet Strömfunktionen Hastighetspotential Potentialströmning
Differentialrelationer Reetition Energiekationen orticitet Strömfnktionen Hastighetsotential Potentialströmning Reetition, Kaitel 3 Bernollis tidgade ekation förlster 1 1 1 s f g g α α Korrektionsfaktor,
1. Ange de kemiska beteckningarna för grundämnena astat, americium, prometium och protaktinium. (2p). Svar: At, Am, Pm, Pa
Lösningar till tentamen i Kärnkemi ak den 6 februari 1999 Del A 1. Ange de kemiska beteckningarna för grundämnena astat, americium, prometium och protaktinium. (p). Svar: At, Am, Pm, Pa. a) Vilka nuklider
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i
Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:
Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Spänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler
Hydraulikcertifiering
UPPGIFT 1 Cylinder a) Cylinderdimension 80/50 x 400 F + 80000 N F 10000 N t + 3 sek t 1 sek + 50,6 cm 0,506 dm 50,6 10-4 m 30,63 cm 0,3063 dm 30,63 10-4 m η mek 0,9 Tryck p η mek F p F η mek p + p 80000
Textil mekanik och hållfasthetslära
Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen
( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen
gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,
Föreläsning 10 pn- övergången III
Förläsig 10 - övrgåg - övrgåg Tmrur RkombiBo Hög srömmr/säigr Småsiglmoll rmigskcis Sol LWiM Diffusioskcis 16-04- 0 Förläsig 10, Komo7ysik 016 1 Diffusiossrömmr E F V - V E F - µ µ = = i + 1 1 0 W W D
Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Dopplereffekt och lite historia
Dopplereffekt och lite historia Outline 1 Lite om relativitetsteorins historia 2 Dopplereffekt och satelliter 3 Dopplereffekt och tidsdilatation L. H. Kristinsdóttir (LU/LTH) Dopplereffekt och lite historia
Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Name: (Ifylles av student) Personnummer: (Ifylles av student)
Polymera Material Polymeric Materials 7,5 högskolepoäng 7.5 Credits Provmoment: Ladokkod: Tentamen ges för: Tentamen 41P13P Maskiningenjör - Produktutveckling Name: (Ifylles av student) Personnummer: (Ifylles
Lösningar till repetitionsuppgifter
Lösningar till repetitionsuppgifter 1. Vågen antas röra sig i positiva x-axelns riktning dvs s = a sin(ω t k x +δ). Elongationen = +0,5 a för x = 0 vid t = 0 0,5 a = a sin(δ) sin(δ) = 0,5 δ 1 = π/6 och
Anteckningar för kursen "Analys i en Variabel"
Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av
Om inget annat anges så gäller det kisel och rumstemperatur (300K)
Komponentfysik Uppgifter pn del VT-15 Om inget annat anges så gäller det kisel och rumstemperatur (300K Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.
HYDRAULIK Grundläggande ekvationer I
HYDRAULIK Grundläggande ekvationer I Rolf Larsson, Tekn Vattenresurslära För VVR145, 23 mars, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 23 mar 2016
TENTAMEN I TURBOMASKINERNAS TEORI (lätt modifierat)
Energivetenskaper - Kraftverksteknik JK 03-04-04 TENTAMEN I TURBOMASKINERNAS TEORI (lätt modifierat) Hjälpmedel: OBS! Räknedosa, Tefyma. Skriv endast på papperets ena sida. Börja för varje ny uppgift på
Transportfenomen i människokroppen
Transportfenomen i människokroppen Kapitel 8-9. Porösa medier och Transvaskulär transport 2016-02-15 Porösa medier Glatt muskelvävnad Nanomaterial Grus (granulat) Svampliknande Fibermatris i polymergel
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010 Kapitel 1 8b) Ja c)s = {h, mh, mmh, mmmh, mmmmh, mmmmm} d) A 1 = {mh}; A 2 = {h, mh}; Nej, A 1 A 2 = {mh} = 10 a)12 b) 60 c) 360 14 a) 2 4
2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.
Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?
Matematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Bevarandelagar för fluidtransport, dimensionsanalys och skalning. Approximativa metoder för analys av komplexa fysiologiska flöden
Bearandelagar för fliransport, dimensionsanals och skalning Approimatia metoder för anals a komplea fsiologiska flöden Innehåll Blodets reologi Balansekationerna på differentiell form Dimensionsanals Naier-Stokes
Dagens program. Linjära ekvationssystem och matriser
Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,
Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som
Formelblad, lastfall och tvärsnittsdata
Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:
HYDRAULIK Grundläggande ekvationer I
HYDRAULIK Grundläggande ekvationer I Rolf Larsson, Tekn Vattenresurslära För VVR145, 23 mars, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR015 Hydraulik/ Grundläggande begrepp I 23 mar 2016
Tentamen i Molekylär växelverkan och dynamik, KFK090 Lund kl
entamen i lekylär växelverkan ch dynamik, KFK9 Lund 57 kl 4. 9. illåtna hjälpmedel: iniräknare ( med tillhörande handbk, utdelat frmelblad samt knstantblad, KFK9. Slutsatser skall mtiveras ch beräkningar
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.
UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:
1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5
LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan
Differentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:
Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-03-8 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas
Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r
oelsalg TYA6 ekak TB E eko: a a ˆ + a ˆj + a kˆ z ˆ ˆj kˆ a a a + a + a Skalä poduk ˆ ˆ ˆ ˆj z Vekopoduk (kss poduk) C c ˆ + c ˆj + c kˆ C A B A B cosφ dä Φ ä kel ella A C A B Dä A A, B B och Φ ä kel ella
σ ϕ = σ x cos 2 ϕ + σ y sin 2 ϕ + 2τ xy sinϕcos ϕ
ÃÓÑÔÐ ØØ Ö Ò ÓÖÑ Ð ÑÐ Ò Ì Ò Ñ Ò Ú º Ö ÀÐÐ Ø Ø ÐÖ ÄÙÒ ÍÒ Ú Ö Ø Ø Ù Ù Ø ¾¼½¾ ½ ËÔÒÒ Ò Ö τ σ ÆÓÖÑ Ð ÔÒÒ Ò σ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ú Ò ÐÖØ ÑÓØ Ò ØØÝØ Ë ÙÚ ÔÒÒ Ò τ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ø Ò ÒØ ÐÐØ Ø ÐÐ Ò ØØÝØ ËÔÒÒ Ò
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.
Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn
Föreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
Repetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
TENTAMEN I TURBOMASKINERNAS TEORI
Kraftverksteknik TMT JK/MG/IC 008-0- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den oktober 008, kl. 8.00-.00, sal M:L, L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för
DUBBELINTEGRALER. Rektangulära (xy) koordinater
ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal
FORMELBLAD Grundläggande mekanik och ellära Medel- och momentanhastighet
FORMELBLAD Grundläggande mekanik och ellära Medel- och momentanhastighet s ds vmedel, vmomentan t Medel- och momentanacceleration v v v0 amedel t s dv d s amomentan Rörelsemängd p m v Kraft dp dv F m m
Separation av två klasser av åtta-dimensionella reella divisionsalgebror
Searation av två klasser av åtta-dimensionella reella divisionsalgebror av Lars Lindberg U.U.D.M. eort 21:P4 Examensarbete i matematik, 2 oäng Handledare och examinator: Ernst Dietrich Maj 21 Deartment
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016
Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:
KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN.
KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) Nedanstående är en minneslista över väsentliga formler och detaljer i den inledande kursen i fasta tillståndets fysik. Observera
Kap 12 termodynamiska tillståndsrelationer
Vissa storheter kan man enkelt mäta (T, P, m, V). Kap 12 termodynamiska tillståndsrelationer Andra storheter kan man få fram genom enkla relationer (ρ, v =spec. volym). Vissa storheter kan man varken mäta
FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.